This application claims the priority, under 35 U.S.C. § 119, of German Patent Application DE 10 2022 203 528.3, filed Apr. 7, 2022; the prior application is herewith incorporated by reference in its entirety.
The invention relates to a hearing aid, in particular an in-the-ear hearing aid (ITE), having a device housing with a housing shell insertable into an auditory canal and with a housing front plate which closes the housing shell and faces toward the environment in the worn state, a battery accommodated in the device housing, and a signal processing device having a ground plane disposed at least in sections between the battery and the housing front plate.
Hearing aid devices are wearable hearing aids, which are used in particular for the treatment of the hard of hearing or the hearing impaired. In order to meet the numerous individual requirements, different structural forms of hearing aid devices are provided, such as behind-the-ear hearing aids (BTE) and hearing aids having an external receiver (RIC: receiver in the canal) as well as in-the-ear hearing aids (ITE), for example also pinna hearing aids or canal hearing aids (CIC: completely-in-channel, IIC: invisible-in-the-channel). The hearing aids listed by way of example are worn on the outer ear or in the auditory canal of a hearing aid device user. In addition, however, bone vibrator hearing aids, implantable hearing aids, or vibrotactile hearing aids are also available on the market. In that case, the damaged sense of hearing is stimulated either mechanically or electrically.
Such hearing aids have in principle as important (hearing aid) components an input transducer, an amplifier, and an output transducer. The input transducer is generally an acousto-electrical transducer, such as a microphone. The output transducer is usually implemented as an electroacoustic transducer, for example as a miniature loudspeaker (receiver), or as an electromechanical transducer, for example a bone vibration receiver. The amplifier is typically integrated into a signal processing device. The energy supply is typically carried out by a battery or a chargeable accumulator.
Such hearing aids furthermore have, for example, an electromagnetic receiver, for example an antenna element as an RF antenna, through the use of which the hearing aid can be coupled for signaling, for example, to an operating element (remote control) and/or to a further hearing aid. In general, the same antenna element is used for transmitting and receiving data for reasons of space.
Hearing aids are preferably configured to be particularly space-saving and compact, so that they can be worn by a hearing aid user in the most optically inconspicuous manner. Increasingly smaller hearing aids are thus produced, which have an increasingly higher level of wearing comfort, and thus can hardly be perceived by a user when worn on or in an ear. Due to the installation space which is thus reduced, however, it is increasingly more difficult to house and/or install conventional antenna elements for wireless signal transmission in such hearing aids.
In particular in ITE hearing aids, the radiation efficiency of the antenna element integrated into the device housing and its sensitivity with respect to the environment is a problem. Due to the limited area which is available as installation space for the antenna element, the antenna element generally has only a low radiation efficiency in this case and a high sensitivity with respect to the ear shape of the hearing aid user. An antenna development process for ITE hearing aids is thus disadvantageously influenced, since every antenna element has to be individually adapted for a respective environment or ear shape. An “ear shape” is to be understood in this case in particular as the shape of an auditory canal of the ear, in which the ITE hearing aid is inserted.
In order to improve the radiation efficiency and to reduce the sensitivity with respect to the respective ear shape, it is possible, for example, to use a quasi-monopolar antenna or a PIF antenna (planar inverted F-shaped antenna, PIFA) as an antenna element in the ITE hearing aid. Alternatively, attempts can be made to arrange the antenna element further outward, in that, for example, a monopolar antenna embedded in the front plate is used, which uses the battery as the ground plane. The antenna element can also be integrated into a removal thread of the ITE hearing aid in this case. Integrating a dipole on an outer surface of the front plate is also conceivable, for example.
It is accordingly an object of the invention to provide a particularly suitable hearing aid, in particular an in-the-ear hearing aid, which overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type, which in particular has an antenna element, which has a good radiation efficiency and which has a high level of robustness with respect to various ear shapes of a hearing aid user.
With the foregoing and other objects in view there is provided, in accordance with the invention, a hearing aid configured, in particular, as an in-the-ear hearing aid, thus as an ITE hearing aid. The hearing aid can be embodied as a binaural hearing aid having two individual devices. In this case, the hearing aid has a device housing having a housing shell (shell) insertable into an auditory canal of a hearing aid user and having a housing front plate (faceplate), which closes the housing shell and faces toward an environment in the worn state. A battery is accommodated in the device housing, wherein a signal processing device having a ground plane is disposed at least in sections between the battery and the housing front plate. The ground plane is in this case in particular a radio-frequency ground plane (RF ground plane) or a high-frequency ground plane (HF ground plane), thus a ground plane for electrical signals in the radio-frequency, radio-wave, or high-frequency range. A ground plane is in this case in particular a flat or substantially flat horizontal conductive surface, which can be coupled with an antenna device, for example, to reflect radio waves. The ground plane in particular forms a (second) pole of an antenna device.
According to the invention, an antenna device embodied as a folded dipole having at least two folded antenna arms is provided in this case, which is disposed between the ground plane and the housing front plate. The structural size of the antenna device or the antenna arms is advantageously reduced by the folding. The basic concept in folded (miniaturized) antennas is in particular to expand the current paths in a limited volume in order to reduce the resonance frequency. Folded antennas can substantially be classified in two categories: planar (2D) antennas having meandering or zigzag shapes, and volumetric (3D) antennas, for example having a helix shape.
According to the invention, the antenna arms are guided volumetrically as three-dimensional spirals or helices along a height direction. A three-dimensional spiral is to be understood in this case in particular as a conical spiral or conic spiral. The height direction is in this case oriented perpendicular to the ground plane and directed outward in the worn state. The spiral or helical antenna arms each have at least one turn or one pitch in this case. The spiral or helical antenna arms preferably each have at least one and one-half (1.5) turns or pitches. The antenna arms have an antenna pole on each of their antenna ends, wherein the antenna poles disposed spaced apart from the ground plane are electrically connected to one another. The other antenna end or the other antenna pole is coupled in one of the antenna arms to a (signal) feed, wherein the other antenna poles of the remaining antenna arms are electrically contacted with the ground plane and are thus electrically short-circuited with one another. A particularly suitable hearing aid is thus implemented.
According to the invention, a folded spiral or helix antenna is thus implemented on the ground plane above the battery. This antenna device utilizes the available structural volume particularly effectively, which as a consequence results in an advantageous bandwidth with respect to the antenna size. An antenna device compact with respect to installation space and having a high efficiency is thus implemented for ITE hearing aids. The antenna arms of the antenna device form a resonance structure, so that it is possible to avoid using tuning elements (e.g., inductors, capacitors). Furthermore, the antenna device is far enough away from the body materials of the hearing aid user with its axis oriented outward in relation to the ear (height direction), so that the signal properties of the antenna device depend less or substantially do not depend on the respective ear shape of the hearing aid user. In other words, the antenna device is integrated into the device housing in such a way that the antenna performance is substantially independent of the ear shape. In particular, a structurally identical antenna device can thus be used for the left and right individual device in binaural hearing aids.
Advantageous embodiments and refinements are the subject matter of the dependent claims.
In one advantageous embodiment, the antenna arms of the antenna device are advantageously disposed rotationally symmetrically and, for example, evenly distributed in relation to one another with respect to the height direction. For example, in an antenna device having two helical antenna arms, the antenna arms are disposed rotated by 180° in relation to one another with respect to the height direction.
In one suitable embodiment, the antenna device has precisely two or three antenna arms. The antenna formed by the antenna arms has an impedance having a real part and an imaginary part. The goal in this case is in particular to bring the real part at the desired frequency (for example 2.44 GHz) to a resistance of 50Ω (ohm) and dimension the imaginary part at 0Ω. It is thus possible, for example, to transmit a maximum HF power (HF: high frequency) from a Bluetooth chip to the antenna. The number of the antenna arms determines in this case the real part, wherein the number of the turns determines the imaginary part. The number of the turns is preferably selected in this case in such a way that the imaginary part is brought to 0Ω, so that a maximum antenna radiation efficiency is ensured. In other words, the number of the turns is selected in such a way that the antenna is resonant at a desired frequency (operating frequency, transmission frequency). And therefore, the number of the turns is more important than the number of the antenna arms.
In one preferred configuration, the antenna device has a hollow body overlapping the ground plane. The antenna arms are disposed on a surface, in particular on an outer surface, which faces toward the environment in the worn state. The antenna arms are thus carried or supported by the hollow body, so that the mechanical stability of the antenna device is improved by the hollow body.
In one expedient refinement, the hollow body is produced from an electrically nonconductive material. For example, the hollow body is embodied as a plastic injection molded part.
In one particularly preferred embodiment, the hollow body is produced from a plastic material suitable for laser direct structuring (LDS), wherein the antenna arms are applied by using laser direct structuring to the hollow body. In this case, to produce the hollow body, a thermoplastic is doped with a (nonconductive) laser-activatable metal compound as a plastic additive. The hollow body is produced in this case, for example, by using a single-component injection molding method from this plastic material. Subsequently, the later conductor tracks or microstrip lines of the antenna arms are written on the plastic of the hollow body using a laser beam, wherein the plastic additive is activated. The activated areas are subsequently provided locally with an electrically conductive metallization as a microstrip line or conductor track. A particularly stable antenna device which is particularly compact with respect to installation space is thus implementable.
In one conceivable refinement, the hollow body is configured as (hollow) cylindrical or tubular, wherein the antenna arms are guided in a helix shape on the lateral surface, and wherein the antenna poles are electrically connected to one another by using an end-face ring conductor. The embodiment of the hollow body as a (hollow) cylinder has the advantage in this case, for example, that a trigger device can be applied to the ground plane in the center of the cylinder, in particular in the form of a pushbutton, without the antenna device influencing or blocking its actuation.
In an alternative refinement which is also conceivable, the hollow body is configured in the form of a hemisphere (hemispherical shell) or dome, wherein the antenna arms are guided in a spiral shape on the sphere surface (spherical shell surface), and wherein the antenna poles are electrically connected to one another by using a conductive contact surface in the area of a vertex. The refinement as a hemisphere or dome has the advantage in this case in particular of an organic shape, which enables the antenna device—and thus the hearing aid—to be made smaller and more compact with respect to installation space.
In one expedient embodiment, the housing front plate has an outwardly directed bulge or receptacle, in which the antenna device engages at least partially in a form-locking manner. This means that the antenna device extends in the bulge beyond the footprint of the housing front plate, it is thus ensured that the radiation and performance properties of the antenna device are less dependent on the respective individual ear shape.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a hearing aid, in particular an in-the-ear hearing aid, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now in detail to the figures of the drawings, in which parts and dimensions corresponding to one another are always provided with the same reference numerals, and first, particularly, to
The housing shell 4 and the housing front plate 6 can be embodied as separate components. A one-piece, thus integral or monolithic, device housing 8 is also conceivable.
The signal processing device 10 has in this case a motherboard having a printed circuit board (PCB) 16. The printed circuit board 16 has in this case an integrated ground plane 18 as a radio-frequency ground plane (RF ground plane). The approximately U-shaped printed circuit board 16 encloses the battery 12 at least in sections in this case, so that an arrangement which is compact with respect to installation space is implemented.
The transceiver unit 14 has two antenna devices 20, 22.
The antenna device 20 is embodied as a magnetic induction antenna and is disposed on one of the vertical U legs of the printed circuit board 16. The antenna device 20 is provided in this case, for example, for a wireless ear-to-ear connection (e2e) in a binaural hearing aid 2.
The antenna device 22 is suitable and configured, for example, for a wireless 2.4 GHz Bluetooth signal transmission in an ISM frequency band. The antenna device 22 is provided as a folded dipole having two (
As is shown in more detail in
As is apparent in particular on the basis of the top view of
The antenna pole 26 of the antenna arm 24a is coupled in this case to a (signal) feed, wherein the antenna pole 26 of the antenna arm 24b is contacted with the ground plane 18. The antenna poles 28 of the antenna arms 24a, 24b are interconnected with one another.
In the exemplary embodiment of
In the embodiment shown in
As shown in
In the exemplary embodiment shown in
The claimed invention is not restricted to the above-described exemplary embodiments. Rather, other variants of the invention can be derived therefrom by a person skilled in the art in the scope of the disclosed claims, without leaving the subject matter of the claimed invention. In particular, all individual features described in conjunction with the various exemplary embodiments can furthermore be combined in another way in the scope of the disclosed claims, without leaving the subject matter of the claimed invention.
The following is a summary list of reference numerals and the corresponding structure used in the above description of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2022 203 528.3 | Apr 2022 | DE | national |