The present invention relates to a hearing aid comprising a behind-the-ear unit comprising a pump arrangement which is fluidly connected to an inflatable part of an in-the-ear unit. The pump arrangement comprises one inlet valve and two outlet valves which are arranged in series. The valve leakage of the two outlet valves is not identical.
In a first aspect the present invention relates to a hearing aid comprising a behind-the-ear unit, an in-the-ear unit and an interconnecting element arranged therebetween, wherein the in-the-ear unit comprises an inflatable element which when inserted into an auditory canal of a user may be inflated to abut an inner surface of the auditory canal so as to retain the inflatable element in the auditory canal, wherein the interconnecting element defines at least one conduit which is fluidly connected to the inflatable element and to a pump arrangement which is provided in and/or on the behind-the-ear unit; wherein the pump arrangement comprises:
The outlet of the pump arrangement comprises two valves which are arranged in series. The first outlet valve is less tight than the second outlet valve. The provision of the second tighter valve prevents or limits backflow of air from the inflatable element and back into the pump chamber. At the same time, the first valve may be a valve which opens more rapidly than the second valve. This way, it may be ensured that the overpressure provided by the pump (which is arranged downstream the first outlet valve) may be quickly transferred downstream the first outlet valve and subsequently gradually through the second outlet valve as the second outlet valve opens more slowly. Moreover, as the second outlet valve is more tight, any air which passes through the second valve is less likely to flow back upstream.
In the context of the present invention, the first inlet valve may also be called a unidirectional inlet rectifier valve. In the context of the present invention, the first outlet valve may also be called a unidirectional outlet rectifier valve. In the context of the present invention the second outlet valve may also be called a unidirectional outlet check-valve.
Each of the valves is adapted to change between a closed and an open position and the valve is designed such that the valve is biased towards its closed position. In one embodiment, one or more of the valves are formed as a resilient materiel which is biased to cover a passage. The resilient material may be flap-shape i.e. made from a thin material which is secured along one edge such that it may flap between the closed and the open position.
The pump chamber comprises one or more inlets and one or more outlets. If more than one inlet is provided, an inlet valve may be provided in each of the inlets. Alternatively, one or more inlets may be fluidly connected to a common inlet valve. Similarly, one or more of the outlets may be provided. If more than one outlet is provided, each outlet may comprise a first and a second outlet valve. Alternatively, one or more of the outlets may be fluidly connected to a common first outlet valve and a common second outlet valve.
As an alternative to an inlet valve, an inlet flow resistance member/means/arrangement/passage may be provided. This may e.g. be a more narrow section in an inlet tube. It will be appreciated that while a unidirectional inlet valve in the electrical domain corresponds to an electrical diode, a flow resistance member in the electrical domain corresponds to an electrical resistance.
Similarly, the first outlet valve may be substituted with a flow resistance member/means/-arrangement/passage.
In the context of the present invention, the term valve leakage shall be defined as the flow rate of air flowing/leaking through the valve in the upstream direction (at a predetermined reference pressure), while the valve is closed. It will be appreciated that a valve may be more or less tight and that when an engineer is designing a system he may have to choose solutions which is a compromise of several parameters. As an example an engineer may choose to have a faster responding valve instead of a very tight valve which is slow to respond i.e. a difference in valve velocity.
In one embodiment, the valve leakage of the second outlet valve is 10 percent lower than the valve leakage of the first outlet valve, such as 20 percent lower, such as 30 percent lower, such as 40 percent lower, such as 50 percent lower, such as 60 percent lower, such as 70 percent lower, such as 80 percent lower, such as 90 percent lower, such as 100 percent lower, such as 150 percent lower, such as 200 percent lower.
In one embodiment, the valve leakage of the second outlet valve is an order of magnitude 10 lower than the valve leakage of the first outlet valve. Preferably the valve leakage is multiple orders of magnitude lower.
In order to allow the compressed air to slowly pass through the second outlet valve in a downstream direction, a buffer chamber may be defined between the first outlet valve and the second outlet valve. In one embodiment, the volume of the buffer chamber is of approximately the same volume as the pump chamber. In another embodiment, it may differ in volume by an order of magnitude smaller or an order of magnitude larger.
As mentioned above the valve opening velocity of the two outlet valves may be non-identical. Thus in one embodiment, a valve opening velocity of the first outlet valve is higher than the valve opening velocity of the second outlet valve, the valve opening velocity being defined as the time it takes the valve to change from a closed state to an open state when the valve is subjected to a predetermined relative pressure. In some embodiments, the valve velocity may be defined as the time it takes the valve to change from the fully closed state to a half open state.
In one embodiment, the valve opening velocity of the first outlet valve is 10 percent higher than the valve velocity of the second outlet valve, such as 20 percent higher, such as 30 percent higher, such as 40 percent higher, such as 50 percent higher, such as 75 percent higher, such as 100 percent higher (i.e. twice as high), such as 200 percent higher, such as 300 percent higher.
In one embodiment, the valve velocity of the inlet valve corresponds to the stroke frequency of the pump. More preferably, the valve velocity of the inlet valve is higher than the pump frequency.
In order to pressurize the inflatable element the hearing aid comprises a pump. In one embodiment, a pump is arranged in the pump chamber or defines the pump chamber. The pump may be arranged inside the behind-the-ear unit or may be attached to the outer surface. In one embodiment, the pump is accessible from an outer surface of the behind-the-ear device. As an example, the pump may be a manual pump (such as a bellows pump) provided on the outer surface of the behind-the-ear unit. In the latter case the inlet of the pump arrangement may be defined by the manual pump. Alternatively, the pump may be an electrical pump. In one particular embodiment, the pump is a receiver as known in the hearing aid industry. It will be appreciated that when a receiver generates sound it moves air and thus a receiver may be used for moving air into the inflatable element. Thus by providing a receiver inside the pump chamber, it may be used as a pump. The receiver is preferably operated at its resonance frequency.
A receiver as pump typically produces a pressure of about 10 kPa, resulting in a pressure build-up of 2-3 kPa downstream of the second outlet valve. The second outlet valve preferably opens after 3-5 strokes of the pump having pumped air in the buffer chamber.
The pump is to work over a wide range of operating conditions, namely from the starting condition when the balloon is empty (no pressure, only flow) to the filled balloon condition (no flow, static pressure). A membrane pump is capable thereof. Preferably the membrane is driven by a resonant actuator, such as a balanced armature motor applied for hearing aid receivers. Below the resonance frequency of the pump, the power consumption is almost independent of the drive frequency, while the flow is proportional with the drive frequency. This means that the efficiency is proportional with the drive frequency and the design should be optimized so that it can be operated at the highest possible drive frequency.
However, the efficiency is also dependent of the resonance frequency of the first outlet valve. A study showed that the resonance frequency of the first outlet valve should at least be higher than the drive frequency of the pump, such as 3 times higher, such as 5 times higher. For a given design, the valve resonance frequency can be maximized by increasing its stiffness; While taking in account that a high stiffness may limit the valve from opening far enough, resulting in a too high flow resistance of the open valve. The open valve resistance should be low enough the ensure pressure equalization within the outlet cycle.
For the second outlet valve the resonance frequency is of less influence, it foremost should provide a low valve leakage. For example pressure leakage for 1 cc volume pressurized to 1000 Pa above atmospheric pressure over a period of time of 12 hours less than 200 Pa.
In a second aspect, the present invention relates to a pump arrangement for use in a hearing aid according to any of the preceding claims.
It will be appreciated that the invention according to the second aspect may comprise any combination of features and elements of the invention according to the first aspect.
The invention will now be described with reference to the figures in which:
The interconnecting part may define a bi-lumen system 110, defining a first lumen 112 and a second lumen 114. In the embodiment of
The second lumen 114 of the interconnecting tube is fluidly connected to an inflatable cavity 118 of the ear piece 108. The inflatable cavity 118 is arranged such that it defines an outer circumferential surface 120 of the ear piece. In one embodiment, the inflatable cavity 118 defines a torus/donut. In another embodiment, the inflatable cavity defines a sphere. When a fluid such as air, is pumped or blown into the inflatable cavity 118, the inflatable cavity 118 is caused to expand radially. Thus when provided inside the auditory canal of the user, the outer surface 120 of the inflatable cavity 118 will gradually be brought into to contact with an inner surface (not shown) of the auditory canal of the user. Once the desired pressure is applied to said inner surface, the pumping action may be halted by the user. Accordingly, by pumping air into the inflatable cavity 118 the ear piece 108 may be retained in the auditory canal. It will be appreciated that one advantage of the inflatable ear piece 108 is that it need not be customised to a specific user, as the user simply just adjusts the pressure to the desired level. Moreover, it will be realised that as the walls 122 of the inflatable cavity 118 are made of a flexible material (such that it is capable of expanding), the walls 122 will adjust their shape to the shape on the auditory canal of the user.
Inside the inflatable cavity, a dome 124 is provided which is arranged to bias the wall 122 of the inflatable cavity 118 away from a completely collapsed state.
In order to pump air into the inflatable cavity, a pump 126 is provided at the other end of the second lumen 112. A valve arrangement 128 is provided which secures that air blown into the second lumen 114 remains therein unless the user desires to remove the air. In order to be able to remove the air, the behind-the-ear part 102 is provided with a release valve 130 which is fluidly connected to the valve arrangement 128 and to the second lumen 114. Accordingly, if the user desires to remove the inflatable ear piece or if too much air has been blown into the inflatable cavity, the user may press the release valve 130 whereby the air contained inside the second lumen 114 and in the inflatable cavity 118, is free to escape. The release valve comprises a button 132 which is accessible from outside the behind-the-ear part 102.
As previously mentioned, the behind-the-ear part 102 and the behind-the-ear part adaptor 104 are detachable from each other. The area of separation is disclosed by line A, see ref. 134.
During operation the movable leg portion 170 is caused to move up and down by applying an altering current to the coil 180. This movement causes the abovementioned under and over pressure to be created in the pump chamber 178. When an under pressure is created, air is sucked into the pump chamber through the valve inlet 162. When an over pressure is created, air is expelled from the pump chamber 178, through the first and the second outlet valve 164,166. Between the first outlet valve and the second outlet valve 166, a buffer chamber 182 is defined.
The first outlet valve 164 has a more rapid valve opening velocity than the second outlet valve 166, while the second outlet valve 166 had lower valve leakage (i.e. it is more leakage tight when closed). Thus, when an overpressure is created in the pump chamber 178, the first outlet valve 164 rapidly will open and the pressure in the pump chamber 178 and a buffer chamber 182 will equalize. When the pressures have equalised, the first valve will close as no over-pressure in the pump chamber 178 (relative to the buffer chamber 182) exist. This is due to the valve being biased towards its closed state. The pressure in the buffer chamber 182 will cause the second outlet valve to open, provided that the pressure in the buffer chamber 182 is larger than the pressure downstream the second outlet valve. Although the first outlet valve is not as tight as the second outlet valve it will maintain its pressure sufficiently long for the second outlet valve to open. This valve will remain open until the pressure in the buffer chamber is equal to the pressure downstream the second outlet valve. When the two pressures are identical the second outlet valve will close and due to the good sealing capabilities of the second outlet valve no or very little air will flow/leak in the upstream direction through the second outlet valve.
In order to be able to release air from the second lumen 114 and the inflatable cavity 118, a release valve 130 is provided. The release valve 130 is operable by the user from an outer surface of the hearing aid assembly 100 by means of a button 132. The release valve 130 defines an open state when the button 132 is depressed and a closed state when the release valve 130 is not depressed. The release valve 130 comprises means for biasing the valve 130 into the closed state.
It will be appreciated that the hearing aid assembly 100 may also in some embodiments comprise an electrical pump (e.g. in the form of a receiver) which the user may operate by means of activation buttons (not shown) provided on an outer surface of the hearing aid assembly 100 e.g. on an outer surface of the behind-the-ear part 102 or the behind-the-ear part adaptor 104.
A receiver 116 is provided in the behind-the-ear part and in order for the sound generated by the receiver 116 to propagate in the first lumen, a first lumen connector 156 is provided which engages the first lumen 112 of the behind-the-ear part adaptor 104, when hearing aid assembly 100 is assembled.
This application claims the benefit of U.S. Provisional Patent Application No. 61/718,571, filed Oct. 25, 2012, entitled “A Hearing Aid with a Pump Arrangement” which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61718571 | Oct 2012 | US |