This application claims the benefit, under 35 U.S.C. § 119, of German patent application DE 10 2016 222 323.2, filed Nov. 14, 2016; the prior application is herewith incorporated by reference in its entirety.
The invention relates to a hearing aid with a housing and, inserted in the latter, an (electronics) frame which carries electrical or electronic components of the hearing aid, and with an antenna which is configured to transmit and/or receive electromagnetic waves (in particular radio signals, also called RF signals). Such a hearing aid is known from international patent disclosure WO 2014/090419 A1, corresponding to U.S. Pat. No. 9,571,944.
“Hearing aids” include portable hearing devices that serve to assist those with hearing impairments. In order to satisfy the numerous individual needs, various structural types of hearing aids are made available, such as behind-the-ear hearing devices (BTE), hearing aids with an external receiver (RIC: receiver-in-canal), and in-the-ear hearing devices (ITE), e.g. also concha hearing devices or canal hearing devices (ITE, CIC). The listed examples of hearing aids are worn on the outer ear or in the auditory canal. In addition, however, bone conduction hearing aids, implantable or vibrotactile hearing aids, are also available on the market. In these, the damaged hearing is stimulated either mechanically or electrically. Such hearing aids are also designated as “hearing devices”.
In addition to the classic hearing aids described above, hearing aids have also recently been developed that assist people with normal hearing. Such hearing aids are also referred to as “Personal Sound Amplification Products” or “Personal Sound Amplification Devices” (abbreviated to “PSAD”). These hearing aids are not provided to compensate for hearing losses. Instead, such hearing aids are used precisely to assist and improve normal human hearing capacity in specific hearing situations, e.g. to assist hunters out on the hunt, or in order to assist in the observation of animals, to be better able to perceive animal noises and other sounds generated by animals, for sports reporters in order to permit improved speaking and/or speech understanding under difficult conditions, for musicians, in order to reduce the stress on their hearing, and so on.
In principle, the essential components of hearing aids are an input transducer, an amplifier and an output transducer. The input transducer is normally an acoustic-electric transducer, e.g. a microphone, and/or an electromagnetic receiver, e.g. an induction coil. The output transducer is generally realized as an electroacoustic transducer, e.g. a miniature loudspeaker (receiver), or an electromechanical transducer, e.g. a bone-conduction receiver. The amplifier is usually integrated in a signal-processing device.
Modern hearing aids are often equipped with transmitting and/or receiving units that permit wireless communication with other electronic devices, in particular with other hearing aids (e.g. in order to form a binaural hearing aid system), remote controls, programming devices or cell phones. The wireless communication is often effected by means of electromagnetic waves in the radiofrequency range, e.g. using Bluetooth technology at 2.4 GHz.
A problem with hearing aids lies in the realization of the (RF) antennas needed for them, since standard antenna designs cannot easily be used on account of the free-space wavelength (corresponding to the abovementioned frequency range) of more than 10 cm and on account of the electrically small volume of conventional hearing aids. This problem is becoming increasingly important as the miniaturization of hearing aids gathers pace.
In the hearing aid known from international patent disclosure WO 2014/090419 A1, the antenna is formed by a conductive structure which is an integral part of the (electronics) frame of the hearing aid. This allows the antenna to be accommodated in a space-saving manner in the housing of the hearing aid. Moreover, the antenna can be installed with the frame in a large number of different housings, without the antenna design always having to be reconfigured.
The object of the invention is to improve the antenna design known from international patent disclosure WO 2014/090419 A1.
The hearing aid according to the invention contains a housing and, inserted in the housing, an (electronics) frame for receiving electrical and/or electronic assemblies. The assemblies received in the frame contain a transmitting and/or receiving unit for electromagnetic waves, in particular radio waves in the MHz or GHz range (e.g. 2.4 GHz). The hearing aid moreover has an antenna which is assigned to the transmitting and/or receiving unit and which is configured as an integral part of the frame. Integral part is to be understood here in particular as meaning that the antenna or a structure partially or completely forming the antenna cannot be released from the frame without destruction and/or is substantially part of the outer shape of the frame, i.e. does not protrude much therefrom, wherein the frame is made of a different, non-conductive material, in particular a plastic. In an alternative embodiment of the invention, the antenna is configured as a stamped/bent part (connected to the frame) or as an inlay part (connected to the frame) made of metal.
According to the invention, the antenna contains two parts which are each configured as an open loop, wherein these two loop-shaped parts of the antenna, hereinafter abbreviated to “antenna loops”, are electrically shorted to each other by one of the two (loop) ends. At least one of the two other ends of the two antenna loops is in contact with the transmitting and/or receiving unit. In particular, the antenna is designed as a folded dipole antenna. The ends of both antenna loops are preferably arranged at the same longitudinal end of the frame.
Through the integration of the antenna on the frame, in combination with the double-loop shape of the antenna, it is considerably easier to achieve the antenna length that is necessary for effective transmitting and/or receiving characteristics of the antenna. Each antenna loop then preferably has a length which corresponds with good approximation to a quarter or an eighth of the wavelength of the radio waves for which the transmitting and/or receiving unit is designed.
In a preferred embodiment of the invention, the two antenna loops are connected to each other electrically conductively, i.e. shorted, via at least one bridge. Such a bridge or a part of such a bridge is formed for example by at least one electrical conductor track which completely or at least partially bridges the distance between the short-circuit ends of the antenna loops and which is therefore referred to below as a “bridging conductor”. Like the entire antenna, the or each bridging conductor is configured as an integral part of the frame, stamped/bent part or inlay part.
In one expedient configuration, the frame is formed by two frame halves, each one of the two antenna loops being arranged respectively on one of the two frame halves. The two antenna loops are preferably configured symmetrically to each other with respect to a separating plane that separates the frame halves. The symmetrical configuration of the antenna advantageously facilitates a side-independent use of the hearing aid. This feature in other words allows one and the same housing, including the frame and the components received in the latter, to be used both for use on the left ear and also for use on the right ear.
However, in differing embodiments of the invention, the two antenna loops can also be formed asymmetrically with respect to each other. The asymmetric configuration of the two antenna loops is preferably always chosen when a symmetrical configuration of the antenna loops would lead to stronger electromagnetic interference between the antenna and the other electrical or electronic assemblies in or on the frame. The asymmetry between the two antenna loops is preferably slight. The antenna loops are in particular made as symmetrical as possible while avoiding the interference.
In embodiments of the invention with a two-part frame, the two antenna loops in a preferred embodiment of the invention are shorted to each other via two bridging conductors which, as has been mentioned above, are configured as integral parts of the frame, with one of the bridging conductors being arranged respectively on one of the two frame halves. To produce an electrical cross-connection between the antenna loops, the two bridging conductors are soldered to each other. In this case, a bridge connecting the two antenna loops electrically to each other is then formed by the two bridging conductors and a soldered connection or a solder point. The antenna, on the other hand, is typically formed by the two antenna loops and the bridge or bridges connecting the two antenna loops.
In an expedient embodiment, at least one of the two bridging conductors is arranged on a collar structure of the associated frame half which extends over the entire width of the frame as far as the lateral surface of the other frame half. The two bridging conductors are in this case soldered to each other on this surface of the other frame half. This configuration of the frame halves and of the bridging conductors allows the bridging conductors to be laterally soldered in a manner that is advantageous from the point of view of process engineering (in particular through ease of access), i.e. soldered on one side surface of the frame.
It is also of advantage if the two antenna loops are each arranged on a flank or in a side region of the frame. Here, side region or flank designates a side of the frame that connects an upper face and an underside of the frame. The corresponding designation of the sides of the frame with upper face, underside and flank relates to the intended orientation of the hearing aid relative to a wearer or user of the hearing aid while wearing the corresponding hearing aid. The underside of the frame then typically points in the direction of the trunk of the user or wearer, and one of the two flanks or one of the side regions points in the direction of the head, while the other of the two flanks or the other of the two side regions is directed away from the head. The resulting relative arrangement and/or orientation of the two antenna loops relative to the user or wearer of the hearing aid is relevant as regards the radiating characteristics of the antenna during transmission.
Particularly when the two antenna loops are arranged in the region of the two flanks of the frame, it is moreover of advantage if, in order to form a bridge, a conductor structure, for example a conductor track or an aforementioned bridging conductor, is routed over the upper face of the frame. The conductor structure is then configured, for example, as a continuous conductor track or as a continuous conductor strip and extends from one of the ends of one antenna loop to one of the ends of the other antenna loop.
It is furthermore advantageous for the embodiment and the arrangement of the antenna and the conductor structures thereof if the corresponding conductor structures are positioned as far away as possible from the other metallic elements, such as for example, electronic components arranged in or on the frame. In this way, undesired interactions maybe reduced or avoided.
If the frame is configured in one part, or if the conductor structures partially or completely forming the antenna are realized or formed after a multi-part frame has been assembled, the conductor structures can be configured in such an way that no visible or clearly defined transition can be discerned between the antenna loops and the conductor structure that forms the bridge and connects the two ends of the two antenna loops. In this case, the position of the ends of the two antenna loops is then virtually defined by the geometry of the frame. That is to say, the antenna loops in such a case extend only over the flanks of the frame, whereas the conductor structure forming the bridge extends only over the upper face of the frame.
However, an above-described two-part configuration of the frame is preferred. The two-part configuration is preferably such that the separating plane separating the two frame halves divides the upper face and the underside of the frame in two, but not the flanks. In this case, in order to form a bridge on both frame halves, a conductor structure, in particular a conductor track or a bridging conductor, is preferably formed which extends from the end of the antenna loop, positioned on the corresponding frame half, as far as the separating plane, specifically in such a way that the corresponding two conductor structures or bridging conductors of the two frame halves meet each other head on at the separating plane or lie opposite each other in a manner separated by the separating plane. In this case, the conductor structures partially or completely forming the antenna can be mounted on the individual frame parts before the frame is assembled.
After the frame has been assembled, i.e. after the individual frame parts have been joined together, the bridge is then completed, for example by a contact, or by the fact that the conductor structures or bridging conductors lying opposite each other or abutting each other in the region of the separating plane are soldered to each other, in particular by application of a solder point, or electrically conductively connected to each other in another way.
Particularly if the application of a solder point or a connection via an additional connection element of relevant volume is provided, it is moreover of advantage if a depression is formed on the frame in the region of the separating plane and in the region in which the conductor structures or the bridging conductors meet at the separating plane. In this way, a produced solder point or another connection element completing the bridge is arranged in a recessed state and thus, for example, protected from damage.
In one embodiment variant, a bridge of this kind spanning the upper face is arranged in the region of the front face or front of the frame, i.e. the side of the frame that is directed toward the wearer's face when the hearing aid is being worn.
In an advantageous refinement, the two antenna loops are in addition electrically conductively connected to each other via a second bridge, in particular a second bridge spaced apart from the first one. In this case, the second bridge is preferably likewise routed over the upper face of the frame. If the frame is in two parts in the manner described above, then, in the case of the second bridge too, conductor structures or bridging conductors are preferably also arranged on both frame halves and are then electrically conductively connected to each other in the region of the separating plane, for example by a solder point. Here too, it is again preferable for a depression to be arranged on the frame in this region in order for a corresponding connection element, e.g. a solder point, to be arranged in a recessed position.
Through the formation of a second bridge, a conductor structure is realized in which the two bridges, together with conductors of the two antenna loops connecting the two bridges, form a conductor ring, i.e. a closed annular structure made of a conductive material. In addition, this has a favorable effect on the radiating characteristics of the antenna during transmission.
If two bridges are now provided, then, according to an expedient embodiment variant, one bridge is arranged in the region of the front of the frame and routed over the upper face of the frame, and one bridge is arranged in the region of the rear face of the frame lying opposite the front and is routed over the upper face of the frame.
Particularly if two bridges are provided, it is moreover preferable that one of the two bridges is positioned in a region above the position of the battery or of the battery compartment of the hearing aid.
In this case, the positions of the linking points or connecting points of the bridges are also of particular importance, that is, the positions along the two antenna loops, to which the bridges connect or at which the bridges are connected to the two antenna loops/ The latter are expediently chosen such that an advantageous, relative phase position is the result. In so doing, it is the aim to ensure that the partial waves radiated away from the conductor structures of the antenna overlap one another, that is, particularly in a structural sense.
According to an advantageous refinement of the invention, the frame is made from a non-conductive material, in particular a plastic, that has a higher permittivity than the material of the housing. The frame material of the hearing aid according to the invention also has in particular a higher permittivity than materials that are generally used for electronics frames of conventional hearing aids. In particular, the frame material of the hearing aid according to the invention has a relative permittivity of at least 3.8, preferably at least 4.5. It has been found that the increased permittivity of the frame material as a result of dielectric interaction with the electromagnetic field that is produced or received by the antenna allows significant shortening of the antenna length at given transmitting/receiving characteristics. This in turn represents a considerable advantage for accommodating the antenna on the frame.
For the integration of the antenna or parts of the antenna in the frame, the surface of the frame is preferably first of all structured in such a way that, when the conductive layer is applied, the latter is applied only as per the structuring. This is effected, for example, by means of laser direct structuring (LDS). The surface of the frame is in this case treated with a laser in such a way that a conductor track deposits only on the treated locations in an electroplating bath.
In another embodiment of the method, a conductive layer is first of all applied to the surface of the frame, after which the conductive layer is structured. In this case, the conductive layer is applied, for example, by bonding, sputtering or some other means.
In a further alternative in this context, the antenna is printed onto the frame or parts of the antenna are printed onto the frame.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a hearing aid with electronics frame and an antenna integrated therein, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Parts that correspond to each other are always provided with the same reference signs in all of the figures.
Referring now to the figures of the drawings in detail and first, particularly to
The hearing aid 100 shown in
The hearing aid 100 has a housing 1 which is made of plastic and in which a frame 11 is inserted. The frame 11 is an injection-molded plastics part. The frame 11 serves generally to hold electrical and electronic assemblies of the hearing aid 100 and to fix these assemblies in defined positions relative to one another. Specifically, one or more microphones 2 for receiving sound (i.e. acoustic signals) from the environment are arranged in the frame 11. For this purpose, a printed circuit board (PCB) carrying at least some of the electrical or electronic components is in particular folded into the frame 11.
The microphones 2 are acoustic-electric transducers for converting the sound into audio signals. A signal-processing device 3, which is likewise integrated in the housing 1, processes these audio signals. The output signal of the signal-processing device 3 is transmitted to a loudspeaker or receiver 4, which emits an acoustic signal. The sound is transmitted to the eardrum of the device wearer, possibly via a sound tube that is fixed in the auditory canal with an ear mold. The power supply for the hearing aid and particularly for the signal-processing device 3 is provided by a battery 5 that is likewise integrated in the housing 1. The signal-processing device 3, the receiver 4 and the battery 5 are likewise arranged in the frame 11, such that the frame with the components arranged therein can easily be removed from the housing, for example in order to be able to exchange the housing 1.
The signal-processing device 3 according to the invention is also configured to process electromagnetic waves. The signal-processing device 3 has a transmitting and receiving device 6 for producing and detecting electromagnetic waves and/or for decoding. The transmitting and receiving device 6 is electrically connected to an antenna 10 in order to transmit and receive electromagnetic waves.
The antenna 10 is configured as an integral part of the frame 11, namely as a conductive structure integrated in the frame 11. The antenna 10 is mounted directly on the frame 11. It is not spaced apart from the surface and cannot be released from the frame 11 without destruction.
The antenna 10 is mounted on the frame 11 in particular using MID technology. This is accomplished in particular by using laser direct structuring (LDS). In an alternative embodiment, the antenna 10 is printed directly onto the frame 11. The conductor structures put onto the surface of the frame 11 are then optionally electrically insulated and protected against damage by a protective lacquer or coating.
When the hearing aid 100 is operated as intended, a sound tube is attached to a tip or front 35 of the frame 11 and allows the sound generated by the receiver 4 to be conveyed to an ear mold insertable into the auditory canal of a user. The sound tube and the ear mold are not shown in
The frame 11 is divided into two frame halves 42 and 43 lengthwise (i.e. perpendicular to the transverse direction 20) along a dividing plane or separating plane 38. After the insertion of the assemblies accommodated therein, the frame halves 42 and 43 are in this case connected by clipping, screwing, adhesive bonding and/or by retaining pins.
In the embodiment of the hearing aid 100 shown in
The two antenna loops 40 and 41, seen transversely with respect to the dividing plane or separating plane 38 of the frame 11, run parallel to each other and are thus aligned with each other. The antenna 10 therefore has mirror symmetry with respect to the dividing plane or separating plane 38 of the frame 11.
Each of the two antenna loops 40 and 41 has two respective ends 44 and 45 (cf.
In the embodiment shown in
The frame half 43 is also provided with a collar structure 52 that reaches as far as the lateral surface of the other frame half 42. The collar structures 49 and 52 engage in a toothed manner into the respective other frame half 43 or 42. The collar structures 49 and 52 therefore bring about mechanical stabilization of the frame 11. This stability is advantageous particularly for stabilizing the solder joint 51 between the bridging conductors 47, 48. The bridging conductor 47 runs between the collar structures 49 and 52. It is protected thereby and routed at a distance from other electrical or electronic components, such that electromagnetic interference between the antenna 10 and the other electrical or electronic components is avoided.
The distribution of the antenna 10 over both frame halves 42 and 43 firstly facilitates the provision of the required antenna length. Secondly, the symmetrical formation of the antenna 10 with respect to the two frame halves 42 and 43 advantageously facilitates side-independent use of the hearing aid 100. In other words, this feature allows one and the same housing 1, including the frame 11 and the components received therein, to be used both for use on the left ear and for use on the right ear.
The frame 11 is produced from a plastic that has a much higher permittivity than the housing 1. It has been found that the increased permittivity of the frame material as a result of dielectric interaction with the electromagnetic field that is produced and received by the antenna 10 allows significant shortening of the antenna length.
A further embodiment variant of the hearing aid 100 is shown in
The frame 11 is again configured in two parts, and an antenna loop 40, 41 is positioned on each frame half 42, 43, in each case in the region of the flank 37. The antenna loops 40, 41 terminating at the transition to the upper face 36 of the frame 11 are here continued by external bridging conductors 61, 62 as far as the separating plane 38 and meet each other at the separating plane 38 or terminate here opposite each other. To form an electrical connection between these bridging conductors 61, 62, the latter are preferably connected electrically conductively to each other by means of a connection element, for example a solder point 64. The corresponding solder point 64 or the corresponding connection element is more preferably recessed in a depression 66 in the frame 11. In this illustrative embodiment, the antenna 10 is then formed only by conductor structures or conductor elements positioned externally on the frame 11, as is also depicted in
An advantageous development of the hearing aid 100 according to
In further variants (not shown) according to the invention for the hearing aid 100, the two antenna loops 40, 41 are formed asymmetrically in relation to each other. The asymmetric form of the two antenna loops 40, 41 is preferably chosen when a symmetrical form of the antenna loops 40, 41 would lead to greater electromagnetic interference between the antenna 10 and the other electrical or electronic components in or on the frame 11. The asymmetry between the two antenna loops 40 and 41 is preferably small in this case. The antenna loops 40, 41 are made as symmetrical as possible particularly in order to avoid the interference.
The invention will be particularly clear from the illustrative embodiments described above. However, it is not limited to these illustrative embodiments. Instead, many other embodiments of the invention may be derived from the claims and from the above description.
The following is a summary list of reference numerals and the corresponding structure used in the above description of the invention:
Number | Date | Country | Kind |
---|---|---|---|
10 2016 222 323 | Nov 2016 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
8699733 | Polinske | Apr 2014 | B2 |
9571944 | Fischer et al. | Feb 2017 | B2 |
9743198 | Bergner | Aug 2017 | B2 |
20080272980 | Adel | Nov 2008 | A1 |
20100158291 | Polinske et al. | Jun 2010 | A1 |
20120087506 | Oezden | Apr 2012 | A1 |
20140010394 | Kvist | Jan 2014 | A1 |
20150281859 | Fischer et al. | Oct 2015 | A1 |
20160241973 | Murray et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2014090419 | Jun 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20180139548 A1 | May 2018 | US |