The present invention relates to a hearing apparatus with a transmission unit for wireless data transmission in a main frequency band, a loudspeaker and a control facility for controlling the loudspeaker using a control signal. The present invention also relates to a corresponding method for operating a hearing apparatus. The term “hearing apparatus” is understood here to mean in particular a hearing device, a headset, earphones and other devices which can be worn on the head.
Hearing devices are portable hearing apparatuses which are used to supply the hard-of-hearing. To accommodate the numerous individual requirements, different configurations of hearing devices such as behind-the-ear hearing devices (BTE), in-the-ear hearing devices (ITE), e.g. including conch hearing devices or completely-in-the-channel hearing devices (CIC), are provided. The hearing devices designed by way of example are worn on the outer ear or in the auditory canal. Furthermore, bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. In such cases the damaged hearing is stimulated either mechanically or electrically.
Essential components of the hearing devices include in principle an input converter, an amplifier and an output converter. The input converter is generally a receiving transducer, e.g. a microphone and/or an electromagnetic receiver, e.g. an induction coil. The output converter is mostly realized as an electroacoustic converter, e.g. a miniature loudspeaker, or as an electromechanical converter, e.g. a bone conduction receiver. The amplifier is usually integrated into a signal processing unit. This basic configuration is shown in the example in
The pulse-density modulation (PDM) or pulse-width modulation (PWM) is frequently used to control the loudspeaker and/or receiver of a hearing device for instance. The digital control is advantageous in that the stage of the digital-analog converter can be dispensed with in the case of digital hearing devices. Digital control circuits also have a significantly higher efficiency rate than analog control circuits. By contrast, analog control circuits are less prone to interference, i.e. they occupy a frequency spectrum which is restricted to an acoustic signal with a small harmonic wave part. The very strongly developed harmonic waves in the case of digital control nevertheless interfere with the wireless transmission of data between hearing devices and the transmission between a hearing device and an external accessory (remote controller, wireless programming device, wireless relay device etc.).
One possible solution to this problem could lie in the following compromise: The receiver is controlled analogously in the case of hearing devices with wireless transmission and in the case of hearing devices without the wireless function, a power-saving digital control takes place. Hearing devices with wireless transmission may however thus not profit from the power-saving digital control.
The object of the present invention thus consists in enabling a power-saving digital control of the loudspeaker of the hearing apparatus, also especially for digitally operating hearing apparatuses. A corresponding method for operating a hearing apparatus is also to be provided.
This object is achieved in accordance with the invention by a hearing apparatus with a transmission facility for wireless data transmission in a main frequency band, a loud speaker and a control facility for controlling the loudspeaker with a control signal, with the frequency spectrum of the control signal having a significant notch in one range of the main frequency band.
Provision is also made in accordance with the invention for a method for operating a hearing apparatus by wirelessly transmitting data in a main frequency band and controlling a loudspeaker of the hearing apparatus with a control signal, with the frequency spectrum of the control signal having a significant notch in one range of the main frequency band.
By separating the signals for the data transmission and for the control of the loudspeaker in the frequency range, alternate interferences hardly occur any more so that a hearing apparatus, which is designed for wireless data transmission, can also digitally control the internal receiver and/or loudspeaker.
The control signal of the control facility is preferably pulse-density modulated or pulse-width modulated. An inductive loudspeaker which operates as a low pass can thus be controlled by a digital signal processing circuit without considerable signal processing outlay.
The data transmission through the transmission facility can take place in a broadband fashion in several frequency bands and the frequency spectrum of the control signal can have a significant notch in the range of each of the frequency bands in each instance. The principle according to the invention can thus also be applied to a broadband transmission of high data rates.
The transmission facility can also comprise a band pass filter, which essentially only allows frequency parts to pass, which lie in the main frequency band or in the main frequency band and in the range of multiples thereof. The interference resistance of the wireless transmission can herewith be additionally increased.
In a special embodiment, the hearing apparatus according to the invention can be configured as an in-the-ear hearing device, even if the current consumption there and the space available are extremely limited. The minimal space available forces the receiver, which is generally a magneto-acoustic converter, very close to the receiver coil. The position and alignment with each device is also individual with in-the-ear hearing devices. In any case, the receiver induces more or less large interference signals into the receiver coil. The signal-to-noise ratio there is thus generally clearly impaired. The poor signal-to-noise ratio could be improved by an increased transmission power, which can however only be achieved by an enormous energy requirement. Therefore the inventive solution involving spectrally separating the control signal for the receiver from the transmission signal for the wireless data transmission is even more welcome.
According to a further embodiment, a hearing system with two hearing devices is provided in accordance with the invention, which each have the design of the hearing apparatus described above, with the transmission facilities of both hearing devices allowing a bidirectional, wireless data transmission and a data transmission in one direction taking place in a different frequency band to a data transmission in the other direction. A real bidirectional connection can thus be made available with synchronized directional transmissions.
The present invention is described in more detail on the basis of the appended drawings, in which;
The exemplary embodiments illustrated below represent preferred embodiments of the present invention.
The receiver 14 has a specific inductive characteristic. The temporal PDM voltage signal in the receiver and reproduced in
The frequency spectrum of the PDM voltage signal of
The basic idea of the present invention now consists in adjusting the working frequency of the digital receiver control to the wireless transmission system. A concrete attempt is thus made to remove interfering receiver noise parts from the used frequency band for the wireless data transmission. This is achieved here by the corresponding favorable shaping of the interference spectrum (“noise shaping”) by the working frequency of the PDM modulator likewise being selected such that the notches E lie in the range of the transmission frequency for the wireless transmission and/or the multiples thereof. The wireless transmission is thus again only marginally impaired and the advantages of the digital receiver control remain.
The spaces of the interference parts from the frequency ranges used for the wireless data transmission can be supplemented by additionally known “noise-shaping” methods. Thus for example noise parts from the low-frequency range of audio signals can knowingly be moved in the direction of higher frequencies. This and other known methods thus allow the width and shape of the notches to be optimized in each instance.
The interference resistance of the wireless transmission against the receiver control can be further improved by the signal processing of the wireless transmission part being embodied with a bandpass filter, which only allows frequencies within the wirelessly used bandwidth to pass unobstructed. The filter function F of a bandpass filter of this type is shown in
In the example in
Following the filtering process, an even, low basic noise level, from which small wanted signals can also still be readily detected, is achieved. The possible coverage of the wireless transmission increases as a result. Alternatively, a higher data rate can be achieved with the same coverage.
The fact that bandwidth-intensive transmissions of audio signals or programming data are possible for applications in which several frequency ranges are used was already indicated above. If necessary, several frequency bands can however also be used for synchronized bidirectional transmissions, by the directions being divided up across different frequency ranges.
The present application claims the benefit of the provisional patent application filed on Apr. 16, 2007, and assigned application No. 60/923,681, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6157727 | Rueda | Dec 2000 | A |
6605991 | Midya et al. | Aug 2003 | B2 |
20040109577 | Husung et al. | Jun 2004 | A1 |
20040202333 | Csermak et al. | Oct 2004 | A1 |
20060072658 | Yasuda et al. | Apr 2006 | A1 |
20060104463 | Roeck et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
1527500 | Sep 2004 | CN |
1883172 | Dec 2006 | CN |
0 823 829 | Feb 1998 | EP |
1860914 | Nov 2007 | EP |
10174195 | Jun 1998 | JP |
2006217088 | Aug 2006 | JP |
03021770 | Mar 2003 | WO |
2006003550 | Jan 2006 | WO |
2006074655 | Jul 2006 | WO |
Entry |
---|
Klaus David, Thorsten Benkner; “Digitale Mobilfunksysteme”; 1996; pp. 326-329; B.G. Teubner Verlag Stuttgart; ESBN 3-519 06181-3. |
Office action from Chinese Patent Office and English translation, Jul. 19, 2011, pp. 1-12. |
Number | Date | Country | |
---|---|---|---|
20090010473 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60923681 | Apr 2007 | US |