Presbycusis or Age Related Hearing Loss (ARHL) is the most common type of hearing loss in the elderly. ARHL is characterized by (1) a loss of hearing sensitivity and (2) a decreased ability to understand speech in the presence of background noise (the “cocktail party effect”). Conventional amplification techniques can be very helpful for overcoming the loss of sensitivity. But conventional techniques have provided a much lower degree of success at overcoming the inability to understand speech.
One aspect of the invention is directed to a first hearing assist apparatus. The first hearing assist apparatus comprises a microphone that generates a first signal; and a set of at least four band-stop filters arranged in series. Each of the band-stop filters has a respective center frequency and a respective bandwidth, and the first signal is filtered by each of the at least four band-stop filters in series to yield a second signal. The first hearing assist apparatus also comprises an audio frequency amplifier configured to drive a speaker with an amplified version of the second signal.
In some embodiments of the first hearing assist apparatus, the center frequencies of all the band-stop filters are positioned at regular intervals on a linear scale. In some embodiments of the first hearing assist apparatus, the spacing in frequency between the center frequency of any given band-stop filter and the center frequency of a subsequent band-stop filter is at least two times the bandwidth of the given band-stop filter. In some embodiments of the first hearing assist apparatus, each of the band-stop filters has an order N of at least 6 and a stop band gain that is below −9 dB. In some embodiments of the first hearing assist apparatus, the set of filters has between 8 and 20 band-stop filters arranged in series. Some embodiments of the first hearing assist apparatus further comprise the speaker.
In some embodiments of the first hearing assist apparatus, the center frequencies of all the band-stop filters are positioned at regular intervals on a linear scale, and the size of the regular intervals is user-adjustable. Optionally, in these embodiments, each of the band-stop filters has the same bandwidth B, and B is user-adjustable. Optionally, in these embodiments, the set of filters has between 8 and 20 band-stop filters arranged in series.
Another aspect of the invention is directed to a second hearing assist apparatus. The second hearing assist apparatus comprises a microphone that generates a first signal; and a digital filter having at least four audio frequency stop bands, with an audio frequency pass band positioned between adjacent stop bands. Each of the stop bands has a respective center frequency and a respective bandwidth, and the digital filter inputs the first signal and generates a corresponding filtered second signal as an output. The second hearing assist apparatus also comprises an audio frequency amplifier configured to drive a speaker with an amplified version of the second signal.
In some embodiments of the second hearing assist apparatus, the center frequencies of all the stop bands are positioned at regular intervals on a linear scale. In some embodiments of the second hearing assist apparatus, the spacing in frequency between the center frequency of any given stop band and the center frequency of a subsequent stop band is at least two times the bandwidth of the given stop band. In some embodiments of the second hearing assist apparatus, each of the stop bands has an order N of at least 6 and a stop band gain that is below −9 dB. In some embodiments of the second hearing assist apparatus, the digital filter has between 8 and 20 stop bands. Some embodiments of the second hearing assist apparatus further comprise the speaker.
In some embodiments of the second hearing assist apparatus, the center frequencies of all the stop bands are positioned at regular intervals on a linear scale, and the size of the regular intervals is user-adjustable. Optionally, in these embodiments, each of the stop bands has the same bandwidth B, and B is user-adjustable. Optionally, in these embodiments, the digital filter has between 8 and 20 stop bands.
Another aspect of the invention is directed to a first method of processing an audio signal to assist a person's hearing. The first method comprises inputting the audio signal; and filtering the audio signal using a filter that has between 8 and 20 audio frequency stop bands, with an audio frequency pass band positioned between adjacent stop bands. Each of the stop bands has a respective center frequency and a respective bandwidth, and each of the stop bands has an order N of at least 6 and a stop band gain that is below −9 dB. The first method also comprises generating an output signal based on the filtered audio signal.
In some instances of the first method, the center frequencies of all the stop bands are positioned at regular intervals on a linear scale. In some instances of the first method, the spacing in frequency between the center frequency of any given stop band and the center frequency of a subsequent stop band is at least two times the bandwidth of the given stop band. In some instances of the first method, the center frequencies of all the stop bands are positioned at regular intervals on a linear scale, and the size of the regular intervals is user-adjustable.
Various embodiments are described in detail below with reference to the accompanying drawings, wherein like reference numerals represent like elements.
The digital filter 30 implements m band-stop filters BSF1, BSF2, . . . BSFm connected in series, where m is at least 4.
Experimental testing revealed that filtering using the particular set of parameters identified in the previous paragraph provided improved understandability of speech for most members of a group of test subjects. This experimental testing was accomplished using digital signal processing algorithm software running on a personal computer (PC) to implement a set of m band-stop filters arranged in series, with the center frequencies of all the stop bands positioned at regular intervals on a linear scale. The software was programmed to vary m, the bandwidth B of the stop bands, the spacing between the center frequencies of the stop bands, the gain in the stop bands, and the order N of each of the band-stop filters based on inputs received from users via a user interface.
In the experiments, a group of individuals with relevant hearing impairments listened to a recording of a clean speech to which noise was added. The added noise was “cocktail party” type noise, which is a background noise that one would encounter in busy public places such as a busy restaurant, and
The signal to noise ratio (SNR) was controllable. After the SNR was set to a value at which a given test subject could not understand the speech when the digital filter was turned off, The test subjects were given access to a GUI similar to the one depicted in
Sets of parameters for the digital filter that provided improved ability to understand speech were found within the following ranges: filter order N of at least six; number of band-stop filters m between 8 and 20; and stopband gain below −9 dB.
By way of comparison, when the GUI depicted in
Returning to
In alternative embodiments, the system (including components 20-50) is miniaturized to the size of a hearing aid that rests on or in the user's ear, and the digital filtering algorithms described above are implemented by a digital signal processor (DSP) chip incorporated within the miniaturized system. In these embodiments, the DSP chip can perform the functions of both the digital filter 30 and the controller 50. Alternatively, the DSP chip can perform the functions of the digital filter 30 only, and a separate integrated circuit can perform the functions of the controller 50. In these miniaturized embodiments, the user interface 60 may be implemented using an app on a smart phone that communicates with the controller 50 using any conventional communication approach (e.g., Bluetooth). Of course, a wide variety of alternative user interfaces 60 can be readily envisioned, including but not limited to a set of dials and/or switches that can be actuated by the user to adjust the parameters of the digital filter 30.
In some embodiments, the entire system depicted in
In some embodiments, the user interface 60 allows the user to control all of the parameters described above. (See, e.g., the GUI 62 depicted in
In other embodiments, use of the user interface 60 is restricted to a practitioner (e.g. an audiologist), and the user interface 60 is not provided to the end-user. In these embodiments, the audiologist could set the parameters for the digital filter 30 during an office visit, and those parameters would remain in force until such time that they are updated by the audiologist. In still other embodiments, after a suitable set of parameters for the digital filter 30 has been identified, those parameters could be hardcoded into a dedicated digital filter, in which case the controller 50 can be omitted from the device that is worn by the user.
Note that in the examples noted above, the center frequencies of all the band-stop filters were positioned at regular intervals on a linear scale. But in alternative embodiments, the center frequencies of all the band-stop filters could be positioned at regular intervals on a logarithmic scale or at irregular intervals.
The results described herein may seem counterintuitive because filtering the signal+noise using a set of at least four band-stop filters arranged in series discards a significant portion of the signal, and because the noise is not arriving at a known frequency. For example, when the digital filter parameters described above in connection with
Without being bound or limited by this theory, one possible explanation of why introducing a plurality of stop bands to the frequency response that arrives at the user's ears improves the user's ability to understand speech in noisy environments is as follows.
Sound sensation is based on the vibration induced by sound waves in the structures of the inner ear (e.g., the cochlea). The hair cells residing on the vibrating base membrane are responsible for the actual transduction of the mechanical pressure waves into neural signals. The amplitude of base membrane response is a function of the sound wave frequency (in the audio range) in a unique way: the response is location selective, i.e. the response at the basal part of the membrane is limited mostly to high frequencies and the responsiveness to low frequencies increases with distance from the base as seen in
The net effect is a bell-shaped response vs. frequency curve (tuning curve), that is somewhat asymmetric, as illustrated schematically in
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application claims the benefit of U.S. Provisional Application 62/836,276, filed Apr. 19, 2019, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62836276 | Apr 2019 | US |