This document relates generally to hearing assistance systems and more particularly to earhook and sound tube antennas for hearing assistance devices.
Hearing assistance devices, such as hearing aids, are used to assist patient's suffering hearing loss by transmitting amplified sounds to ear canals. In one example, a hearing aid is worn in and/or around a patient's ear. Hearing aids should be small and of appropriate form-factor to be unobtrusive and comfortable for the patient to wear. Size limitations of the hearing aid housing can limit the performance of the hearing aid antenna system, since antenna size and form factor affect efficiency. This in turn limits quality and range of the wireless communications link.
There is a need in the art for improved antenna systems for electronic wireless communication for hearing assistance devices.
Disclosed herein, among other things, are apparatus and methods for electronic wireless communication antennas for hearing assistance devices. In various embodiments, a hearing assistance device includes a housing configured to be worn on or behind the ear, hearing assistance electronics enclosed in the housing, an earmold configured to be worn in the ear, a sound tube configured to connect to the earmold and to transmit an acoustic output to the earmold, and an earhook configured to connect the housing to the sound tube. At least one of the earmold, the sound tube, and the earhook includes a conductive polymer forming at least a portion of an antenna for wireless communication, in various embodiments.
Various aspects of the present subject matter include a hearing assistance device including a housing configured to be worn on or behind the ear, hearing assistance electronics enclosed in the housing, a wireless communications receiver in the housing and configured to connect to the hearing assistance electronics, an earmold configured to be worn in the ear, a sound tube configured to connect to the earmold and to transmit an acoustic output to the earmold, and an earhook configured to connect the housing to the sound tube. In various embodiments, at least one of the earmold, the sound tube, and the earhook include a conductive polymer configured to provide at least a portion of an antenna for wireless communication. The device includes one or more couplers configured to selectively couple the electrical conductor to the wireless communications receiver to form the antenna, in various embodiments.
This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. The scope of the present invention is defined by the appended claims and their legal equivalents.
Various embodiments are illustrated by way of example in the figures of the accompanying drawings. Such embodiments are demonstrative and not intended to be exhaustive or exclusive embodiments of the present subject matter.
The following detailed description of the present subject matter refers to subject matter in the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. References to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description is demonstrative and not to be taken in a limiting sense. The scope of the present subject matter is defined by the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
The present detailed description will discuss hearing assistance devices using the example of hearing aids. Hearing aids are only one type of hearing assistance device. Other hearing assistance devices include, but are not limited to, those in this document. It is understood that their use in the description is intended to demonstrate the present subject matter, but not in a limited or exclusive or exhaustive sense.
Hearing aids should be small and of appropriate form-factor to be unobtrusive and comfortable for the patient to wear. Size limitations of the hearing aid housing can limit the performance of the hearing aid antenna system, since antenna size and form factor affect efficiency. This in turn limits quality and range of the wireless communications link. Previous methods to combat this problem included increasing hearing aid size, reducing the size of other hearing aid components or removing hearing aid components to make room for a larger antenna. However, increasing hearing aid size makes the device more noticeable (less discrete) and less comfortable to wear. In addition, reducing component size or removing components can reduce hearing aid performance and increase cost. The present subject matter solves the problem of limiting the hearing aid antenna size and form factor to the hearing aid. The present subject matter improves antenna system performance, and hence wireless link performance and range, without increasing the size of the hearing aid and without reducing hearing aid functionality.
The present subject matter uses all or part of the earhook, sound tube, ear mold and/or other parts of the hearing aid as an antenna element by including one or more conductors in those parts. In addition, various embodiments of the present subject matter include one or more couplers to selectively include or exclude the conductors to tune and align the resulting antenna. Thus, the present subject matter increases system antenna radiation efficiency and gain (larger aperture), and improves antenna alignment with multiple polarizations for better performance across multiple use-cases, thus improving wireless link performance and range, without increasing the size of the hearing aid or loss of functionality.
The present subject matter can use electrical conductors in one or more of the following features as antenna elements: part or all of the earhook, part or all of the sound tube, and/or part or all of the earmold (or ear bud). Electrical conductors can include wire, traces, other metal parts, conductive materials, and/or metalized polymers (coated or impregnated). In various embodiments, the electrical conductors used as antenna elements include, but are not limited to, wire or formed metal parts, conductors on rigid or flex circuit boards, other metal parts (metal parts other than wire or conductors on circuit boards), and/or conductive polymers. The conductive polymers include, but are not limited to, parts coated with conductive polymers, parts coated with conductive polymer ink(s), and/or parts made of conductive polymers (for example, moldable conductive resins). The conductors can be attached to (inside or outside) or integrated (partially or entirely) into the earhook, sound tube and/or earmold/ear bud. In various embodiments, the conductors can be partially or entirely embedded inside an earhook, a sound tube, an earmold, and/or an ear bud. The conductors can be molded partially or entirely into an earhook, a sound tube, an earmold, an ear bud, in various embodiments.
One or more external antenna elements, such as electrical conductors 4, 5, 6, can be combined with one or more internal antenna elements 8, 9 to form various dipole or monopole antenna configurations, in various embodiments. Electrical conductors in one or more of the following heating aid features can be used as internal antenna elements: including, but not limited to, hearing aid spine, outer case, microphone cover, battery door, other structural of functionally desired parts, or combinations thereof, in various embodiments. Electrical conductors can include, but are not limited to, wire, other metal parts, metalized polymers (coated, plated or impregnated). In various embodiments, the internal antenna element electrical conductors include, but are not limited to, wire or formed metal parts, conductors on rigid or flex circuit boards, other metal parts (other than wire or conductors on circuit boards), and/or conductive polymers, including but not limited to, parts coated with conductive polymers, parts coated with conductive polymer ink(s), parts plated with metal, and/or parts made of conductive polymers (example: moldable conductive resins).
In various embodiments, the internal antenna element electrical conductors can be attached to (inside or outside) or integrated partially or entirely into the hearing aid spine, outer case, or other structural parts. In various embodiments, the conductors can be partially or entirely embedded inside a hearing aid spine, a hearing aid case, a hearing aid earhook attachment structure, a hearing aid microphone cover, and/or a hearing aid battery door. The conductors can be molded partially or entirely into a heating aid spine, a hearing aid case, a heating aid earhook attachment structure, a hearing aid sound tube attachment structure, a heating aid microphone cover, and/or a hearing aid battery door, in various embodiments. Other locations for the internal antenna element electrical conductors can be used without departing from the scope of the present subject matter.
One or more electrical conductors (external, internal, or in combination) can be electrically coupled to form desired antenna element electrical lengths such a one quarter wavelength at the desired frequency of operation, in various embodiments. In one example from
RF couplers or direct electrical connections may be used to couple RF energy to and from the external antenna elements. Electrical conductors used in the couplers can include wire, other metal parts and metalized polymers (coated, plated or impregnated). The coupler electrical conductors can include, but are not limited to, wire or formed metal parts, conductors on rigid or flex circuit boards, other metal parts (other than wire or conductors on circuit boards), and/or conductive polymers. The conductive polymers can include, but are not limited to, metalized polymers, parts coated with conductive polymers (example: conductive polymer ink), parts plated with metal, and/or parts made of conductive polymers (example: moldable conductive resins). In addition, the electrical conductors can include polymers realized using laser direct structuring (LDS) or other methods of selectively plating polymers with metal.
The RF coupler or direct electrical connection electrical conductors can be contained inside, attached to (inside or outside) or integrated partially or entirely into the heating aid spine, outer case, earhook, sound tube, earmold, earbud, or other structural parts. For example, the conductors can be partially or entirely embedded inside the coupling structures, and/or the conductors can be molded partially or entirely into the coupling structures. In
Another RF coupler embodiment is a sleeve like coupler. One example is a coupler for use between earhook and sound tube using metalized tubing and earhook exterior overlapping area that is conductive, such as sleeve style coupler 303 in
In various embodiments, electrical conductors can include wire, other metal parts, and/or metalized polymers (coated or impregnated). The conductors can be attached to (inside or outside) or integrated into the earhook, sound tube and earmold/ear bud, in various embodiments. RF coupler or connector embodiments that provide contact or capacitive coupling may also be used. Earhook and sound tube antennas can be used to improve wireless charging efficiency of a hearing aid battery. In further embodiments, a pinna anchoring structure can be entirely or partially conductive and used with a sound tube and earmold/ear bud as an antenna element. The present subject matter provides for smaller, more discreet and more comfortable wireless hearing aids.
Hearing assistance devices typically include at least one enclosure or housing, a microphone, hearing assistance device electronics including processing electronics, and a speaker or “receiver.” Hearing assistance devices can include a power source, such as a battery. In various embodiments, the battery is rechargeable. In various embodiments multiple energy sources are employed. It is understood that in various embodiments the microphone is optional. It is understood that in various embodiments the receiver is optional. It is understood that variations in communications protocols, antenna configurations, and combinations of components can be employed without departing from the scope of the present subject matter. Antenna configurations can vary and can be included within an enclosure for the electronics or be external to an enclosure for the electronics. Thus, the examples set forth herein are intended to be demonstrative and not a limiting or exhaustive depiction of variations.
It is understood that digital hearing assistance devices include a processor. In digital hearing assistance devices with a processor, programmable gains can be employed to adjust the hearing assistance device output to a wearer's particular hearing impairment. The processor can be a digital signal processor (DSP), microprocessor, microcontroller, other digital logic, or combinations thereof. The processing can be done by a single processor, or can be distributed over different devices. The processing of signals referenced in this application can be performed using the processor or over different devices. Processing can be done in the digital domain, the analog domain, or combinations thereof. Processing can be done using subband processing techniques. Processing can be done using frequency domain or time domain approaches. Some processing can involve both frequency and time domain aspects. For brevity, in some examples drawings can omit certain blocks that perform frequency synthesis, frequency analysis, analog-to-digital conversion, digital-to-analog conversion, amplification, buffering, and certain types of filtering and processing. In various embodiments of the present subject matter the processor is adapted to perform instructions stored in one or more memories, which can or cannot be explicitly shown. Various types of memory can be used, including volatile and nonvolatile forms of memory. In various embodiments, the processor or other processing devices execute instructions to perform a number of signal processing tasks. Such embodiments can include analog components in communication with the processor to perform signal processing tasks, such as sound reception by a microphone, or playing of sound using a receiver (i.e., in applications where such transducers are used). In various embodiments of the present subject matter, different realizations of the block diagrams, circuits, and processes set forth herein can be created by one of skill in the art without departing from the scope of the present subject matter.
Various embodiments of the present subject matter support wireless communications with a hearing assistance device. In various embodiments the wireless communications can include standard or nonstandard communications. Some examples of standard wireless communications include, but not limited to, Bluetooth™, low energy Bluetooth, IEEE 802.11 (wireless LANs), 802.15 (WPANs), and 802.16 (WiMAX). Cellular communications can include, but not limited to, CDMA, GSM, ZigBee, and ultra-wideband (UWB) technologies. In various embodiments, the communications are radio frequency communications. In various embodiments the communications are optical communications, such as infrared communications. In various embodiments, the communications are inductive communications. In various embodiments, the communications are ultrasound communications. Although embodiments of the present system can be demonstrated as radio communication systems, it is possible that other forms of wireless communications can be used. It is understood that past and present standards can be used. It is also contemplated that future versions of these standards and new future standards can be employed without departing from the scope of the present subject matter.
The wireless communications support a connection from other devices. Such connections include, but are not limited to, one or more mono or stereo connections or digital connections having link protocols including, but not limited to 802.3 (Ethernet), 802.4, 802.5, USB, ATM, Fibre-channel, Firewire or 1394, InfiniBand, or a native streaming interface. In various embodiments, such connections include all past and present link protocols. It is also contemplated that future versions of these protocols and new protocols can be employed without departing from the scope of the present subject matter.
It is further understood that different hearing assistance devices can embody the present subject matter without departing from the scope of the present disclosure. The devices depicted in the figures are intended to demonstrate the subject matter, but not necessarily in a limited, exhaustive, or exclusive sense. It is also understood that the present subject matter can be used with a device designed for use in the right ear or the left ear or both ears of the wearer.
The present subject matter is demonstrated for hearing assistance devices, including hearing assistance devices, including but not limited to, behind-the-ear (BTE), in-the-ear (ITE), in-the-canal (ITC), receiver-in-canal (RIC), invisible-in-canal (IIC) or completely-in-the-canal (CIC) type hearing assistance devices. It is understood that behind-the-ear type hearing assistance devices can include devices that reside substantially behind the ear or over the ear. Such devices can include hearing assistance devices with receivers associated with the electronics portion of the behind-the-ear device, or hearing assistance devices of the type having receivers in the ear canal of the user, including but not limited to receiver-in-canal (RIC) or receiver-in-the-ear (RITE) designs. The present subject matter can also be used in hearing assistance devices generally, such as cochlear implant type hearing devices. The present subject matter can also be used in deep insertion devices having a transducer, such as a receiver or microphone. The present subject matter can be used in devices whether such devices are standard or custom fit and whether they provide an open or an occlusive design. It is understood that other hearing assistance devices not expressly stated herein can be used in conjunction with the present subject matter.
This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
The present application is related to U.S. patent application Ser. No. 12/027,151 filed on Feb. 6, 2008 (now U.S. Pat. No. 8,867,765), which is hereby incorporated herein by reference in its entirety.