The invention relates to a system for providing hearing assistance to a user, comprising a table microphone unit for capturing audio signals from a speaker's voice and a hearing assistance device to be worn by the user comprising a receiver unit for receiving audio signals transmitted from a transmitter of the table microphone unit and an output transducer for stimulation of the user's hearing according to the received audio signals. Typically, the hearing assistance device is a hearing instrument or an auditory prosthesis.
For users of hearing assistance device, such as hearing instruments, the use of one or more remote microphones allows to increase the signal-to-noise ratio (SNR), which provides for improved speech understanding, especially in noisy environments.
A typical use situation may be in a cafeteria or at a restaurant where the hearing instrument user is confronted with multiple small groups of talkers. Similar situations may occur at work or at school, where colleagues and pupils/students often work in groups of a few persons, thereby creating a potentially noisy environment. For example, in classrooms the teacher may typically set up some groups of four or five pupils for working together. In such use cases, sound is usually captured by placing a remote microphone unit at the center of the group. Alternatively, an individual clip-on microphone (“lapel microphone”) or a microphone to be worn around the user's neck at the chest could be given to each participant, but often not enough wireless microphones for each participant are available, and it may be generally not very attractive to have the need of managing a larger number of wireless devices.
Typically, current solutions offered by conferencing systems in order to capture the talkers' voices with good audio quality mostly reside in using an omnidirectional sound capturing characteristic and applying strong noise cancelling. Examples of such systems are a wireless handheld microphone unit sold by the company Phonak Communications AG under the designation “Roger Pen”, which has an omnidirectional conference mode when the microphone unit is lying on a table, and a table microphone unit sold by Phonak Communications AG under the designation “Roger Table Mic”, which has a single omnidirectional microphone but offers the possibility to include two or more devices in a multi talker network (MTN).
An alternative approach is to use a microphone unit which has a directional characteristic in order to “point” toward the signal of interest; for example, the “Roger Pen” microphone unit is also provided, in addition to the omnidirectional table mode, with a directional reporter mode.
Noise cancelling algorithms used in omnidirectional conferencing systems to enhance speech quality tend to destroy part of the speech cues necessary for the listener, so that speech understanding actually may be compromised by the noise cancelling. Further, in situations with multiple groups of talkers, unwanted speech (i.e. speech coming from the adjacent group) may not be considered as noise by the noise cancelling algorithm and may be transmitted to the listener, which likewise may compromise understanding of the speech of interest.
Further, omnidirectional microphones may capture significant reverberation in case of rooms having difficult acoustics, thereby potentially lowering speech intelligibility.
Using a directional microphone may be inconvenient in case that the direction of the preferred audio source/talker is variable in time.
US 2010/0324890 A1 relates to an audio conferencing system, wherein an audio stream is selected from a plurality of audio streams provided by a plurality of microphones, wherein each audio stream is awarded a certain score representative of its usefulness for the listener, and wherein the stream having the highest score is selected as the presently active stream. The microphones may be omnidirectional. It is mentioned in the prior art discussion that audio streams to be selected may be the outputs of beam formers; it is also mentioned that there are systems utilizing a fixed beamformer followed by a stream selection subsystem.
EP 1 423 988 B2 relates to beamforming using an oversampled filter bank, wherein the direction of the beam is selected according to voice activity detection (VAD) and/or SNR.
US 2013/0195296 A1 relates to a hearing aid comprising a beamformer which is switched between a forward direction and a rearward direction depending on the SNR of the respective beam.
WO 2009/034524 A1 relates to a hearing instrument using an adjustable combination of a forward acoustic beam and a rearward acoustic beam, wherein the adjustment is triggered by VAD.
U.S. Pat. No. 6,041,127 relates to a beamformer which is steerable in three dimensions by processing of audio signals from a microphone array.
US 2008/0262849 A1 relates to a voice control system comprising an acoustic beamformer which is steered according to the position of a speaker, which is determined according to a control signal emitted by a mobile device utilized by the user.
WO 97/48252 A1 relates to a video conferencing system wherein the direction of arrival of a speech signal is estimated in order to direct a video camera towards the respective speaker.
WO 2005/048648 A2 relates to a hearing instrument comprising a beamformer utilizing audio signals from a first microphone embedded in a first structure and a second microphone embedded in a second structure, wherein the first and second structure are freely movable relative to each other.
It is an object of the invention to provide for a hearing assistance system comprising a microphone unit which is convenient to handle and which provides for good speech understanding even when used with groups of multiple talkers. It is a further object to provide for a corresponding hearing assistance method.
According to the invention these objects are achieved by a system as defined in claim 1 and a method as defined in claim 29.
The invention is beneficial in that, by providing for a plurality of acoustic beams having a fixed direction, with one of the acoustic beams being selected as the presently active beam based on the values of at least one acoustic parameter of the beam, and by providing, during a transition period starting upon switching of the beam selection from a first beam to a second beam, a mixture of the first and second beam with a time-variable weighting of the first and second beam as an output stream to the wireless transmitter of the table microphone unit, typical drawbacks of omnidirectional systems, such as high reverberation, capturing of unwanted speech and reduced speech understanding due to the need for high noise cancelling, may be avoided, while there is no need for manual adjustment of acoustic beam directions by the user; further, loss of speech portions or unpleasant hearing impressions resulting from hard switching between beam directions can be avoided.
Preferred embodiments of the invention are defined in the dependent claims.
Hereinafter, examples of the invention will be illustrated by reference to the attached drawings, wherein:
The table microphone unit 10 comprises a microphone arrangement 16 for capturing audio signals from speakers 72 located close to the table microphone unit 10, an audio signal processing unit 18 for processing the captured audio signals and a transmission unit 20 comprising a transmitter 22 and an antenna 24 for transmitting an output audio signal stream 26 provided by the audio signal processing unit 18 via the wireless link 14 to the hearing assistance device 12.
The hearing assistance device 12 comprises a receiver unit 30 including an antenna 32 and a receiver 34 for receiving the audio signals transmitted via the wireless link 14 and for supplying a corresponding audio stream to an audio signal processing unit 36 which typically also receives an audio input from a microphone arrangement 38. The audio signal processing unit 36 generates an audio output which is supplied to an output transducer 40 for stimulating the user's hearing, such as a loudspeaker. According to one example, the hearing assistance device 12 may be a hearing instrument, such as a hearing aid, or an auditory prosthesis, such as a cochlear implant. According to another example, the hearing assistance device 12 may be a wireless earbud or a wireless headset. Typically, the hearing assistance system comprises a plurality of hearing assistance devices 12 which may be grouped in pairs so as to implement binaural arrangements for one or more listeners, wherein each listener wears two of the devices 12.
Usually, the wireless link 14 is a digital link which typically uses carrier frequencies in the 2.4 MHz ISM band. The wireless link 14 may use a standard protocol, such as a Bluetooth protocol, in particular a Bluetooth Low Energy protocol, or it may use a proprietary protocol.
The microphone arrangement 16 of the table microphone unit 10 comprises at least three microphones M1, M2 and M3 which are arranged in a non-linear manner (i.e. which are not arranged on a straight line) in order to enable the formation of at least two acoustic beams having directions which are angled with regard to each other. In the example of
In
In the example of
Typically, the beamformers BF1, BF2, . . . operate in a “fixed beam mode” wherein the direction of the beam generated by the respective beam former unit is fixed, i.e. constant in time.
According to one example, the acoustic beams may be generated by an adaptive beamformer. In that case the beams are still focused in their preferred direction but the “nulls” of the beams are variable in time, depending on the result of an analysis of the audio signals captured by the microphone arrangement 16. The said “nulls” are typically steered toward the currently higher source of noise.
The beams B1, B2, . . . generated by the beamformers BF1, BF2, . . . are supplied to a beam switching unit 50 which selects, at least when operating in a “single beam mode”, one of the beams B1, B2, . . . as the presently active beam, based on the values of at least one acoustic parameter which is regularly determined for each of the acoustic beams B1, B2, . . . To this end, the beam switching unit 50 comprises an audio signal analyzer unit 52 for determining such at least one acoustic parameter and a beam selection unit 54 for selecting one of the beams as the presently active beam based on the input provided by the audio signal analyzer unit 52 (see
The output of the beam switching unit 50 is supplied to an output unit 60 which generates an acoustic output stream 26 from the acoustic beams B1, B2, . . . of the beamformers BF1, BF2, . . . , which output stream is supplied to the transmission unit 20 for being transmitted via the wireless link 14 to the hearing assistance device 12.
The output unit 60 comprises a weighting unit 64 which receives the output from the beam switching unit 50 in order to output a weighting vector as a function of the input; the weighting vector includes a certain weight component W1, W2, . . . for each of the beams B1, B2, . . . The weighting vector is supplied as input to an adding unit 66 which adds the beams B1, B2, . . . according to the respective weight component W1, W2, . . . of the weighting vector; the accordingly weighted sum is output by the adder unit 66 as the audio output stream 26.
The output unit 60 may operate at least in a “single beam mode” wherein, during stationary phases of the beam selection by the switching unit 50, the presently active beam (in the example of
During transition periods, i.e. during times when the time interval having passed since the last switching of the presently active beam is still shorter than the predetermined length of the transition period, the output unit 60 provides a mixture of the “old beam” and the “new beam” with a time-variable weighting of the old beam and the new beam as the output stream 26, so as to enable a smooth transition from the old beam to the new beam during the transition period (it is to be understood that a transition period starts upon switching of the beam selection by the beam switching unit 50 from the old beam to the new beam).
In the example of
Alternatively or in addition to the use of the SNR as the relevant acoustic parameter for selection of the presently active beam the switching unit 50 may use the voice activity status of the respective beam, as detected by a voice activity detector (VAD), i.e. in this case the beam switching unit 50 would include a VAD for each beam B1, B2, . . .
According to one embodiment, the beamformers BF1, BF2 may operate not only in a “fixed beam mode” but alternatively may operate in a “variable beam mode” in which the beamformers BF1, BF2, . . . generate a steerable beam having a variable direction controlled according to a result of an analysis of the audio signals captured by the pair of microphones associated with the respective beamformer. This allows to optimize the SNR, for example, in situations in which a speaker is located in directions in-between two of the fixed beams.
According to another example, the output unit 60 may be configured to operate not only in the above discussed “single beam mode”, but it alternatively also may operate in a “multi-beam mode” in which the output unit 60 not only during transition periods but also during stationary periods of the beam selection provided for a weighted mixture of at least two of the beams as the output stream 26. According to one example, the weights of the beams in the multi-beam mode may be determined as a function of the SNR of the respective beam. Thereby multiple beams having a similarly high SNRs may contribute to the output stream 26. According to one example, the output unit 60 may decide to operate in the multi-beam mode rather than in the single-beam mode if the difference of the SNR of the two beams with the highest SNR is below a predetermined threshold value (which indicates that there are two equally useful beams). According to another example, the output unit 60 may decide to operate in the multi-beam mode if it is detected by analyzing the audio signals captured by the microphone arrangement 16 that the audio signals captured by the microphones contributing to at least two of the beams contain valuable speech. Typically, this can be done with a VAD or with the absolute SNR values (for example, the output unit 60 may decide to operate in the multi-beam mode in case that the SNR of each of the two beams with the highest SNR is above a predetermined threshold value).
The audio signal processing unit 18 of the table microphone unit 10 may include, in addition to the beamformers BF1, BF2, . . . , further audio signal processing features, such as application of a gain model and/or noise cancellers to the respective beam provided by the beamformers BF1, BF2, . . . , prior to supplying the respective beam to the output unit 60 (or to the switching unit 50), thereby implementing a full audio path.
As a variant of the beamforming scheme of
Such beamforming scheme could be applied also to different microphone configurations, such as an equilateral triangular configuration as illustrated as in
It is to be understood that, while preferably the beams are oriented along the axes defined by the microphone pairs, the beams in general could be off-axis. This also implies that more than 2 microphones could be considered in each beamformer BF1, BF2, . . . For example, 4 perpendicular or opposite beams such as illustrated in
In some examples, there may be more than three microphones in order to even more equally cover the entire angular range by selecting one fixed beam out of a plurality of fixed beams during the stationary periods.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/057614 | 4/7/2016 | WO | 00 |