1. Field of the Invention
The present invention relates to a hearing device, in particular a hearing aid, of the type having at least one operating element for setting an output sound level of the hearing device, the operating element being adjustable to a number of settings. In addition, the present invention relates to a method for monitoring the hearing ability of a person with impaired hearing.
2. Description of the Prior Art
The hearing ability of a person with impaired hearing is not constant, but a variable that changes as a result of learning, aging and other processes. If a person with impaired hearing is already fitted with a hearing system, such a change should lead to readjustment of the hearing system.
Two typical situations can be mentioned in particular in this respect:
A “hearing system” refers here to one or two hearing aids, which may optionally also be equipped with a remote control. In this case, the remote control may also have functions that assist the signal processing of the hearing aid/hearing aids.
According to the current state of the art, the person with impaired hearing must take responsibility for responding to the aforementioned situations a) and b) as follows:
In this connection, it is known from the document EP 1 351 552 A2 to classify the acoustic input signal and use the result as an input criterion for the determination of a set of hearing aid parameters. For this purpose, the classification result is fed to a complex application logic.
Furthermore, there are numerous proposals for storing data in a hearing aid. This may be data transferred to the hearing aid from the outside (for example DE 40 20 154 A: storage of device- and customer-specific data). Similarly, it may be data representing the adjusting position of an operating element of the hearing aid and data taken from the set of parameters controlling the signal processing. In addition, EP 1 367 857 A1 proposes storing the input signal for further evaluation.
Swiss Application CH 672 215 A5 discloses a programmable hearing aid which has an amplifier and transmission section that can be controlled in its transmission characteristics. A detector-amplifier connected downstream of the microphone determines an ambient or background noise, compares it with stored noise level patterns and, by means of a control circuit, brings about an automatic selection of one of the stored groups of parameters that come closest to the determined noise level pattern. The detector-amplifier thereby controls the emission of the signals corresponding to the parameters to the actual hearing aid.
An object of the present invention is to provide a hearing device with which the current hearing ability of the user is automatically taken into account in the signal processing.
This object is achieved according to the invention by a hearing device, in particular a hearing aid, with at least one operating element for setting an output sound level of the hearing device, by the operating element being adjustable to a number of settings, a level measuring unit for measuring an ambient sound level in the vicinity of the hearing device and an evaluation unit for comparing a current setting position with a current, measured ambient sound level and for outputting a control signal in dependence on the result of the comparison.
In addition, a method for monitoring the hearing ability of a person with impaired hearing according to the invention includes the steps of sensing a setting of an operating element which serves for setting an output sound level of a hearing device, measuring an ambient sound level in the vicinity of the hearing device, comparing a current setting with a current, measured ambient sound level and outputting a control signal dependent on the result of the comparison.
The hearing system or the hearing device consequently automatically detects on the basis of the settings chosen by the wearer a change of the hearing ability and can either automatically perform corrections or indicate this situation to the person with impaired hearing. Consequently, a change of the hearing ability of the person with impaired hearing, and with it less than optimum use by him of the aid, does not go unnoticed. It should also be considered as particularly advantageous that the number of visits to the acoustician is reduced.
The control signal which the evaluation unit of the hearing device according to the invention generates preferably is used for readjusting an amplification of the hearing device. This leaves the user with a setting range that is as wide as possible, without the user constantly having to operate his or her device at a limit of the settings.
In a preferred embodiment, the hearing device according to the invention has a signaling unit, in order to inform the user of the hearing device dependent on the control signal by means of an information signal. For this purpose, for example an acoustic or optical signal is emitted from a hearing aid.
In addition, the hearing device may have a signal transmission unit for transmitting the control signal or a corresponding signal to an external device. In an embodiment, the external device has a text output unit. In this way, a text message can reach the user via a remote control, a smart phone and the like.
In the hearing device according to the invention, a storage unit can be provided for recording a history of comparison results, the control signal being generated by the evaluation unit in dependence on the history. This also allows the time factor that characterizes the changing of the hearing ability to be taken into account in the information provided to the user or in the automatic readjustment.
It is favorable for one or more average values to be continuously determined by the level measuring means. In this way, better account can be taken of certain ambient situations.
When processing the setting of the operating element of the hearing device, it is favorable for each setting to be assigned a setting level by the evaluation unit and for this to be used to produce a difference between the setting level and the ambient sound level for further processing. It is then only necessary to store the difference to monitor the hearing ability.
Corresponding to the basic concept of the present invention, a hearing system is provided with the capability of measuring the ambient sound level and bringing this measured value into a relationship with preferred settings of operating elements, which regulate the output sound level of the hearing system. For this purpose, an evaluation unit analyzes a measured level value and a setting, stores a corresponding comparison value and activates a special function if the comparison value indicates a changed hearing ability. This allows the following response to the situations a) and b) presented above:
To a): When a user is becoming accustomed to a hearing system, the corresponding, preprogrammed acclimatization stage can be automatically activated as soon as the aforementioned evaluation unit initiates it. Alternatively, the corresponding hearing aid may also readjust the amplification of the hearing aid, so that the person with impaired hearing will always keep the volume adjuster in the same setting range.
To b): With hearing ability deteriorating in the long term, an acoustic detection signal is output, for example at the initiation of the evaluation unit, or a message is sent to an intelligent remote control, a smart phone or other system, which in response uses a text or other audio and/or visual feedback to draw the attention of the person with impaired hearing to his or her deteriorating hearing ability or recommend visiting a specialist.
As shown in
The actual configuration of the components within the hearing aid housing 9 according to the invention is schematically reproduced in
The level meter P generates a level signal 3 of the output signal 1 and supplies it to an analysis unit A1. Furthermore, the analysis unit A1 also receives a position signal 2 of an operating element, here a speaker adjuster LS. The position signal 2 of the speaker adjuster LS is also used in an accustomed way in the signal processing unit SE.
The analysis unit A1 establishes a relationship between the position signal 2 of the loudspeaker adjuster LS and the level signal 3 of the level meter P and supplies a corresponding analysis value 4. This is fed to a threshold detector SD and a persistent memory PS. Optionally, one or more analysis values 5, which have previously been stored in the persistent memory PS, are provided by the non-volatile memory for the analysis unit A1, possibly including additional parameters. The output signal 4 of the analysis unit A1 is then correspondingly calculated, including these analysis values 5 and possibly other parameters.
The threshold detector SD receives for example a difference level, which the analysis unit A1 has determined from the ambient sound level 3 and an adjuster level assigned to the adjuster position 2. If the difference level exceeds a predetermined threshold value, the threshold detector SD triggers an activation signal 6 for a special function. In the present example, a change of the set of parameters of the signal processing unit SE is initiated by the activation signal 6.
Furthermore, the hearing aid according to the invention may have a second analysis unit A2, to which the data 5 of the memory PS are made available. The second analysis unit A2 analyzes these data on the basis of specific, predetermined criteria and performs one or more special functions, such as for example a warning function or self-adjustment. In the present example, an analysis value 7 is fed to the threshold detector SD for this purpose. The analysis unit A2 preferably serves the purpose of also analyzing the data stored in the persistent memory PS on a time basis and possibly making corresponding average values or other statistical data available.
In practice, the level meter P is preferably configured in such a way that it averages the ambient sound level over a predeterminable time interval and feeds the average value to the first analysis unit A1. In another embodiment, the level meter P is designed in such a way that it continuously carries out an averaging over a short time interval, for example 30 s, and over a long time interval, for example 5 min. In this case, for improved analysis two sliding values are available for the analysis unit A1 as a result.
An alternative embodiment is to use two level meters, upstream of which there is respectively a frequency filter, for example a high-pass filter and a low-pass filter. In this case as well, two values are fed to the first analysis unit A1.
The first analysis unit A1 preferably is designed to be activated in response to specific actuations of operating elements. After that, it stores the data described above, and possibly also a time and/or date stamp, in the nonvolatile or persistent memory PS. It is also possible to store there the number of the chosen hearing program and the current result of a classifier, which usually investigates the incoming signal in the signal processing path of the hearing aid and assigns it to one of a number of possible classes.
In addition, as already indicated, the analysis unit A1 may operate to form a difference value between the input signal level 3 and a setting level which has been assigned to the setting of the operating element. This difference value is then stored in the memory PS. If the difference value exceeds a predetermined threshold value, the amplification adjuster of the signal processing unit SE is adjusted.
In a simplified exemplary embodiment, the analysis unit A1 first calculates the difference between the input signal level 3 and the setting 2, then calculates from this difference value and a number of last-stored difference values a sliding average value and activates a special function only if the sliding average value exceeds a threshold value.
One particular benefit of the type of signal processing according to the invention is that, when handling the incoming audio signals and settings of operating elements, only the processing result is sent for storage. This reduces the volume of data to be stored, so that the hearing aid according to the invention can manage with a chip of a smaller area. Therefore, extensive data preprocessing is carried out before the data storage. In this preprocessing, an analysis and feature extraction is performed, so that the volume of data of the result values is significantly reduced in comparison with the original input signals.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of their contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 008 316 | Feb 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4947432 | Topholm | Aug 1990 | A |
5604812 | Meyer | Feb 1997 | A |
6751325 | Fischer | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
40 20 154 | Jan 1992 | DE |
0 335 542 | Mar 1989 | EP |
1 351 552 | Mar 2003 | EP |
1 367 857 | May 2003 | EP |
1 467 595 | Apr 2004 | EP |
WO 03098970 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070269067 A1 | Nov 2007 | US |