This application claims priority to, and the benefit of, Danish Patent Application No. PA 2020 70803 filed on Nov. 30, 2020. The entire disclosure of the above application is expressly incorporated by reference here.
The present disclosure relates to a hearing device earpiece with a tilted microphone/receiver.
Earpieces are used in a large variety of situations, where an audio signal is presented to the user via the earpiece. Further, earpieces are used in communication systems for presenting to and/or receiving audio signals from the user.
In two-part hearing devices with an earpiece and an external device, the earpiece is connected to the external device by a cable comprising one or more wires and/or a sound guiding channel.
Earpieces for hearing devices are typically worn for many hours and therefore wearing comfort is of key importance for a hearing device user.
Accordingly, there is a need for earpieces for hearing devices where the earpiece does not put strain on the ear of the user and improves the wearing comfort for the user.
An earpiece for a hearing device for insertion into an ear canal of a user and having a longitudinal axis is disclosed. The earpiece comprises an earpiece housing having a distal end, a proximal end, and an outer surface connecting the distal end to the proximal end. The earpiece housing has a sound outlet at the proximal end and optionally a microphone inlet. The earpiece comprises a receiver for providing an audio output signal to the ear canal when the earpiece is inserted into the ear canal. The receiver has a receiver axis, e.g., being a longitudinal center axis. The earpiece optionally comprises a microphone for provision of a first microphone input signal. The microphone comprises a microphone membrane, wherein the microphone has a microphone axis forming a normal to the microphone membrane. The receiver axis and the microphone axis optionally form a first angle, wherein the first angle is larger than 5 degrees.
Also, a hearing device comprising an earpiece as described herein is provided.
It is an important advantage of the hearing device that a size of the earpiece can be reduced thereby increasing the wearing comfort to a user. By placing the microphone such that the receiver axis and the microphone axis form a first angle larger than 5 degrees to the receiver, the dimensions of the earpiece may be reduced. This can allow for ease of fit with a user. This also allows for an improved form factor of the earpiece which can increase the wearing comfort to a user of the earpiece. Previous hearing device solutions may not fit properly in small ear canals, or may extend too far outwards from the ear canal to make it comfortable for the user to wear. Further, the present disclosure allows for the microphone inlet to the arranged in the earpiece housing for optimal sound reception. In one or more variations of the disclosed hearing device, the device may be more accommodating to those users with smaller ear canals.
The present disclosure allows for improved sound quality of the hearing device. By placing the microphone such that the receiver axis and the microphone axis form a first angle larger than 5 degrees to the receiver, the microphone inlet may be directed away from the skin of the ear of a user of the hearing device, which may otherwise distort the incoming sound, and directed in the direction of an incoming sound wave reaching the ear of the user.
Thus, the earpiece of the present disclosure allows for improved sizing, improved comfort to a user, and improved sound quality.
The above and other features and advantages will become readily apparent to those skilled in the art by the following detailed description of exemplary embodiments thereof with reference to the attached drawings, in which:
Various exemplary embodiments and details are described hereinafter, with reference to the figures when relevant. It should be noted that the figures may or may not be drawn to scale and that elements of similar structures or functions are represented by like reference numerals throughout the figures. It should also be noted that the figures are only intended to facilitate the description of the embodiments. They are not intended as an exhaustive description of the invention or as a limitation on the scope of the invention. In addition, an illustrated embodiment needs not have all the aspects or advantages shown. An aspect or an advantage described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced in any other embodiments even if not so illustrated, or if not so explicitly described.
An earpiece for a hearing device is disclosed. The hearing device may be configured to be worn at an ear of a user and may be a hearable or a hearing aid, wherein a processor of the hearing aid is configured to compensate for a hearing loss of a user. The hearing device may be of the behind-the-ear (BTE) type, in-the-ear (ITE) type, in-the-canal (ITC) type, receiver-in-canal (RIC) type, receiver-in-the-ear (RITE) type, and/or microphone-and-receiver-in-ear (MaRie) type. The hearing device may be a behind-the-ear (BTE) and microphone-and-receiver-in-ear (MaRie) hearing device.
The earpiece is configured for insertion into an ear canal of a user and has a longitudinal axis. The earpiece comprises an earpiece housing having a distal end, a proximal end, and an outer surface connecting the distal end to the proximal end. The proximal end can herein be seen as the end closest to an ear drum of the user when the earpiece is inserted into the ear of the user. The distal end of the earpiece can herein be seen as the end furthest away from an ear drum of the user when the earpiece is inserted into the ear of the user. The outer surface of the earpiece housing may at least partly define a first volume inside the earpiece housing. The earpiece housing may comprise a first and a second earpiece housing part, such as a distal earpiece housing part and a proximal earpiece housing part.
As discussed herein, the terms proximal or proximally can herein be seen as a side, a surface, end, or part closest to an ear drum of the user when the earpiece is inserted into the ear of the user or a side, a surface, end, or part intended to be arranged closest to an ear drum of the user when the earpiece is inserted into the ear of the user. The terms distal or distally can herein be seen as a side, a surface, end, or part furthest away from an ear drum of the user when the earpiece is inserted into the ear of the user or a side, a surface, end, or part intended to be arranged furthest away from an ear drum of the user when the earpiece is inserted into the ear of the user.
The earpiece housing has a sound outlet at the proximal end and a microphone inlet. The sound outlet and the microphone inlet can be seen as openings in the earpiece housing having an area. The earpiece comprises a receiver for providing an audio output signal to an ear canal when the earpiece is inserted into the ear canal. The receiver has a receiver axis being a longitudinal center axis, such as a longitudinal center axis of the receiver. The receiver may comprise a receiver membrane. The receiver axis may be perpendicular to a normal of the receiver membrane. The earpiece comprises a microphone for provision of a first microphone input signal. The microphone comprises a microphone membrane. The microphone membrane optionally is in fluid communication with the microphone inlet. The microphone has a microphone axis forming a normal to the microphone membrane. The receiver axis and the microphone axis optionally form a first angle, such as a first angle to each other. The first angle may be larger than 5 degrees. In other words, the microphone may be tilted in relation to the receiver. By arranging the microphone axis and the receiver axis at the first angle larger than 5 degrees to each other, the orientation of the microphone may be configured to follow the shape of the human ear when inserted into the ear of a user. The microphone may for example be arranged to be directed away from the outer ear of the user when the earpiece is inserted into the ear of the user, such as away from the tragus of the ear of the user. The microphone may be arranged so that the microphone axis, e.g. through the microphone inlet, has a clear line of sight out of the ear of the user and is not directed towards any part of the ear of the user.
The sound outlet may be configured to direct the sound from the receiver towards the ear drum of the user when the earpiece is arranged in the ear canal of the user. The sound outlet may be defined as a cross section of a proximal end of the earpiece housing, such as an end (proximal end) of a first proximal part of the earpiece housing. The proximal part of the earpiece housing may have a cylindrical shape. The proximal part of the earpiece housing may herein also be referred to as a nozzle. In one or more example earpieces, the earpiece housing, such as the proximal part of the earpiece housing, may be configured to receive a dome, such as a flexible dome, for securing the earpiece in or to the ear canal of the user. The earpiece housing, such as the proximal part of the earpiece housing, may comprise a flange for securing the dome to the earpiece housing. The sound outlet and/or the proximal part of the earpiece housing may in one or more example earpieces be configured to hold a filter device for preventing cerumen from entering the sound outlet and the sound tube. Thereby, the sound tube may be prevented from clogging up, which could otherwise cause a degradation of the sound quality and subsequently a malfunction of the hearing device. The microphone inlet may comprise one or more apertures in the earpiece housing allowing sound waves to enter and/or leave the earpiece housing. In one or more example earpieces, the microphone is at least partly arranged between a distal end of the receiver and a proximal end of the receiver along the receiver axis. In other words, the microphone may extend at least partially along the receiver axis outside the receiver housing.
The microphone may in one or more example earpieces at least partly overlap with the receiver in the longitudinal direction of the receiver and/or along the longitudinal axis of the earpiece. By arranging the microphone to at least partly overlap with the receiver in the longitudinal direction and/or along the longitudinal axis of the earpiece, the longitudinal extension of the earpiece may be reduced. In other words, the size of the earpiece in the longitudinal direction of the earpiece may be reduced. In one or more exemplary earpieces, a distal end of the microphone and/or a proximal end of the microphone may be arranged distal to the receiver. In one or more exemplary earpieces, a proximal end of the microphone may be arranged proximal to the distal end of the receiver. In one or more exemplary earpieces, a distal end of the microphone may be arranged proximal to the distal end of the receiver. In one or more exemplary earpieces, the microphone may be offset from the receiver axis, such as in a direction perpendicular to the receiver axis. By offsetting the microphone from the receiver axis, the microphone may be moved closer to the receiver in the longitudinal direction of the receiver, since a proximal end of the microphone may be positioned to overlap with the distal end of the receiver. In one or more example earpieces, the proximal end of the microphone may be arranged between the proximal end and the distal end of the receiver in the longitudinal direction of the earpiece, while the distal end of the microphone is arranged distal to the distal end of the receiver. In one or more example earpieces, the proximal end of the microphone and the distal end of the microphone may be arranged between the proximal end and the distal end of the receiver in the longitudinal direction of the receiver. By placing the microphone so that it at least partly overlaps with the receiver in the longitudinal direction of the earpiece, the longitudinal extension of the earpiece can be reduced. The longitudinal extension of the earpiece can herein be seen as the size of the earpiece in the longitudinal direction of the earpiece. In one or more example earpieces, the first angle is in a range from 10 to 85 degrees or in a range from 5 to 10 degrees. In one or more example earpieces, the first angle may be larger than 85 degrees. In one or more example earpieces, the microphone axis is perpendicular to the receiver axis. In one or more exemplary earpieces, the first angle is in the range from 1 degree to 5 degrees. The first angle may be less than 5 degrees, such as less than 1 degree.
In one or more exemplary earpieces/microphones, the microphone has a microphone port arranged in an outer surface of the microphone. The microphone port can be seen as an opening in the microphone element, the opening having an area. The microphone port is configured to allow sound waves to enter the microphone and to reach the microphone membrane arranged inside the microphone. In one or more exemplary microphones, the microphone port is arranged in an outer surface parallel to the microphone membrane, such as perpendicular to the microphone axis. Sound waves may thus enter the microphone parallel to the microphone axis. The microphone port may have a microphone port axis perpendicular to the area of the microphone port, such as to the plane defined by the area of the microphone port. When the microphone port is arranged in the outer surface of the microphone being parallel to the microphone membrane, the microphone port axis may be parallel to the microphone axis, e.g., coaxial with the microphone axis.
In one or more exemplary earpieces/microphones, the microphone port is arranged in an outer surface of the microphone being perpendicular to the microphone membrane, such as being parallel to the microphone axis. In other words, a plane defined by the area of the microphone port is perpendicular to the microphone membrane, such as parallel to the microphone axis. In one or more exemplary microphones, the microphone port is arranged in a distal outer surface being perpendicular to the microphone membrane. The distal outer surface being perpendicular to the microphone membrane may be smaller such as have a smaller surface area, than the outer surface being parallel to the microphone membrane. In other words, the microphone port may be arranged on a thin side of the microphone element, such as on one of the sides parallel to the microphone axis. The microphone port may have a microphone port axis perpendicular to the area of the microphone port, such as to the plane defined by the area of the microphone port. When the microphone port is arranged in the outer surface of the microphone being perpendicular to the microphone membrane, the microphone port axis may be perpendicular to the microphone axis.
In one or more example earpieces, the earpiece housing has an outlet axis perpendicular to the sound outlet. The outlet axis may be arranged at a second angle to the receiver axis of the receiver. The second angle may be larger than 5 degrees. The second angle may be less than 75 degrees. The second angle may for example be in a range of 8 to 75 degrees. In one or more example earpieces, the second angle is less than 75 degrees, such as less than 45 degrees, or even less than 30 degrees. By arranging the outlet axis at a second angle to the receiver axis, the receiver can be arranged to follow the shape of the ear canal of the user, while the sound outlet can be directed towards the ear drum of the user, when the earpiece is positioned in the ear of the user. In one or more exemplary earpieces, the second angle is in the range from 1 degree to 5 degrees. The second angle may be less than 5 degrees, such as less than 1 degree.
In one or more example earpieces, the first angle and/or the second angle may be selected so that the microphone port axis is directed away from the outer ear of the user such as away from the tragus of the ear of the user. The first angle and/or the second angle may be selected so that the microphone port axis has a clear line of sight out of the ear of the user, such as along the external auditory canal, and is not directed towards any part of the ear of the user.
In one or more example earpieces, the receiver comprises a receiver outlet arranged at a proximal end of the receiver. In one or more example earpieces, the earpiece comprises a sound tube for guiding sound from the receiver outlet, such as from a spout of the receiver, towards the sound outlet of the earpiece. The sound tube may be arranged at a third angle to the receiver axis, the third angle being larger than 5 degrees. The third angle may be less than the second angle. In one or more exemplary earpieces, the third angle is in the range from 1 degree to 5 degrees. The third angle may be less than 5 degrees, such as less than 1 degree. By arranging the sound tube at a third angle to the receiver axis, the receiver can be arranged to follow the shape of the ear canal of the user, while the sound tube can be directed towards the ear drum of the user, when the earpiece is positioned in the ear of the user. Thus, the comfort of wear and the sound quality experienced by the user of the earpiece can be improved. In one or more example earpieces, the second angle is equal to the third angle, such that the sound tube extends in parallel to the outlet axis of the earpiece.
The receiver outlet may have a center being offset from the receiver axis. By offsetting the center of the receiver outlet from the receiver axis, the sound tube connected to the receiver outlet can be arranged centered in the sound outlet of the earpiece, when the sound tube is arranged at the third angle to the receiver axis. The offset of the center of the receiver outlet from the receiver axis may be determined based on the second angle between the output axis and the receiver axis and a relative position between the receiver and the sound outlet, such that the offset receiver outlet is located on the outlet axis.
In one or more example earpieces, the earpiece housing has a cable outlet and the microphone inlet. The cable outlet may in one or more example earpieces be distal to the microphone inlet. In other words, the cable outlet may be arranged further away from the ear drum of the user than the microphone inlet when the earpiece housing is mounted to an earpiece and the earpiece is inserted into the ear of the user. In one or more example earpieces, the cable outlet has a cable axis perpendicular to the cable outlet. The cable axis and the receiver axis may form a fourth angle. The fourth angle may be larger than 10 degrees. In one or more example earpieces, the earpiece comprises a cable extending from the earpiece housing. The cable may be configured for connection to a secondary housing, such as a BTE housing, of the hearing device. The cable may extend through the cable outlet for connecting the microphone and the receiver comprised within the earpiece housing with a secondary housing of the hearing device. In one or more example earpieces, the fourth angle is in the range of 45 to 90 degrees. The earpiece housing may further comprise a strain relief device arranged in the cable outlet, for absorbing forces acting on the cable.
In one or more example earpieces, the earpiece comprises a dome, such as a flexible dome, for securing the earpiece in the ear canal. The dome may extend circumferentially along the outer surface of the earpiece housing. The dome may have an inner surface extending circumferentially along the outer surface of the earpiece housing and an outer surface configured to abut the inside of the ear canal of the user. The dome may be formed as a plug or shell manufactured to fit snugly in the ear canal of the user, e.g., by manufacturing the dome according to an impression made of the ear canal or by manufacturing the dome as a generically shaped dome made from a resilient material, e.g., a silicone-based elastomeric material. The dome may be made from a plastic material with a smooth outer surface for comfort, stability, and hygienic reasons. In one or more example earpieces, the dome has a vent aperture through the dome for provision of fluid communication between a proximal side and a distal side of the dome.
In one or more example earpieces, the earpiece comprises a vent mechanism arranged in the earpiece housing. The vent mechanism may be arranged proximal or distal to the receiver. The vent mechanism may be an active vent mechanism. The vent mechanism may be configured to open and close a vent path inside the earpiece housing. The vent path can pass at least partially through the earpiece housing. The vent mechanism can include any mechanical mechanism that opens and closes a vent path. In one or more exemplary earpieces, the vent mechanism may be operated electronically and/or automatically and/or manually and/or mechanically. The opening and closing of the vent mechanism may not be audible to the user. In one or more example earpieces, the vent path has a first set of first vent apertures comprising a first primary vent aperture on the proximal end of the earpiece housing. The vent path may extend through the earpiece housing, such as from a proximal end of the earpiece housing to a distal end of the earpiece housing. The vent path may have a second set of second vent apertures comprising a second primary vent aperture on the outer surface distal to the vent mechanism.
When the vent mechanism is open, the vent mechanism allows air to flow through the earpiece between a proximal end and a distal end of the earpiece. When closed, the vent mechanism prevents air from flowing through the vent path in the earpiece, e.g., between a proximal end and a distal end of the earpiece and/or between a distal side and a proximal side of the vent mechanism. Thus, the vent mechanism can prevent fluid communication when closed. This can advantageously allow for improved sound quality when a user is for example listening to music. For example, the vent mechanism can be closed so that a user can experience improved bass hearing.
However, when the user desires to hear the surrounding environment, the vent mechanism can be opened to avoid undesired occlusion effects. Thus, the vent mechanism can enable fluid communication when open.
For example, in one or more exemplary earpieces, instead of having the vent path pass through the proximal end of the earpiece housing, the first set of first vent apertures may be located in a different place on the receiver housing. For example, the first set of first vent apertures can be in the outer surface of the earpiece housing. When the first set of first vent apertures are arranged in the outer surface of the earpiece housing, the vent apertures arranged in the dome can allow air to flow from the proximal side of the dome to the distal side of the dome from where it may enter the earpiece housing through the first set of first vent apertures in the outer surface of the earpiece housing.
The first primary vent aperture may in one or more example earpieces be proximal to the vent mechanism. In one or more exemplary earpieces, the first set of first vent apertures are located distal to the receiver. In one or more exemplary earpieces, the first set of first vent apertures are located proximal to the receiver. In one or more exemplary earpieces, the first set of first vent apertures are aligned with the receiver. In one or more exemplary earpieces, some of the first set of first vent apertures are proximal to the receiver and some are aligned with the receiver. In one or more exemplary earpieces, some of the first set of first vent apertures are proximal to the receiver and some are distal to the receiver. In one or more exemplary earpieces, some of the first set of first vent apertures are distal to the receiver and some are aligned with the receiver. In one or more exemplary earpieces, some of the first set of first vent apertures are proximal to the receiver, some are aligned with the receiver, and some are distal to the receiver.
In one or more exemplary earpieces, the outer surface includes one or more first primary vent aperture(s). For example, a plurality of first primary vent apertures may be spaced along an outer circumference of the outer surface. The outer surface can include multiple circumferential rows of the first primary vent apertures, with each row being longitudinally spaced apart. The first primary vent apertures may be randomly spaced on the outer surface.
In one or more exemplary earpieces, the first set of first apertures can include a primary vent aperture on the proximal end of the earpiece housing and on the outer surface. Thus, air can enter/exit the earpiece housing from multiple directions proximal to the vent mechanism.
Similar to above, the vent path can include a second set of second vent apertures, e.g., in the outer surface of the earpiece housing. Thus, the second set of second vent apertures can provide fluid communication (e.g., a vent path) between outside the earpiece housing and inside the earpiece housing. The second set of second vent apertures can include a second primary vent aperture. The second primary vent aperture may be distal to the vent mechanism. The second primary vent aperture may be circular and/or ovaloid.
The second primary vent aperture may be on the outer surface of the earpiece housing. In one or more exemplary earpieces, the outer surface can include one second primary vent aperture. In alternative earpieces, the outer surface can include a plurality of second primary vent apertures. For example, a plurality of second primary vent apertures may be spaced along an outer circumference of the outer surface. The outer surface can include multiple circumferential rows of the secondary primary vent apertures, with each row being longitudinally spaced apart. The secondary primary vent apertures may be randomly spaced on the outer surface.
In one or more exemplary earpieces, the second set of second vent apertures can be located on the distal end, such as on a distal part, of the earpiece housing. In one or more exemplary earpieces, the distal end can include one second primary vent aperture. In alternative earpieces, the distal end can include a plurality of second primary vent apertures.
In one or more exemplary earpieces, the second set of second vent apertures can be on the outer surface and the distal end. Thus, air can enter/exit the earpiece housing from multiple directions distal to the vent mechanism.
The hearing device may be configured for wireless communication with one or more devices, such as with another hearing device, e.g., as part of a binaural hearing system, and/or with one or more accessory devices, such as a smartphone and/or a smart watch. The hearing device optionally comprises an antenna for converting one or more wireless input signals, e.g., a first wireless input signal and/or a second wireless input signal, to antenna output signal(s). The wireless input signal(s) may origin from external source(s), such as spouse microphone device(s), wireless TV audio transmitter, and/or a distributed microphone array associated with a wireless transmitter. The wireless input signal(s) may origin from another hearing device, e.g., as part of a binaural hearing system, and/or from one or more accessory devices.
The hearing device optionally comprises a radio transceiver coupled to the antenna for converting the antenna output signal to a transceiver input signal. Wireless signals from different external sources may be multiplexed in the radio transceiver to a transceiver input signal or provided as separate transceiver input signals on separate transceiver output terminals of the radio transceiver. The hearing device may comprise a plurality of antennas and/or an antenna may be configured to be operate in one or a plurality of antenna modes. The transceiver input signal optionally comprises a first transceiver input signal representative of the first wireless signal from a first external source.
The hearing device comprises a set of microphones. The set of microphones may comprise one or more microphones. The set of microphones comprises a first microphone for provision of a first microphone input signal and/or a second microphone for provision of a second microphone input signal. The set of microphones may comprise N microphones for provision of N microphone signals, wherein N is an integer in the range from 1 to 10. In one or more exemplary hearing devices, the number N of microphones is two, three, four, five or more. The set of microphones may comprise a third microphone for provision of a third microphone input signal.
The hearing device optionally comprises a pre-processing unit. The pre-processing unit may be connected to the radio transceiver for pre-processing the transceiver input signal. The pre-processing unit may be connected to the first microphone for pre-processing the first microphone input signal. The pre-processing unit may be connected to the second microphone if present for pre-processing the second microphone input signal. The pre-processing unit may comprise one or more A/D-converters for converting analog microphone input signal(s) to digital pre-processed microphone input signal(s).
The hearing device comprises a processor for processing input signals, such as pre-processed transceiver input signal and/or pre-processed microphone input signal(s). The processor provides an electrical output signal based on the input signals to the processor. Input terminal(s) of the processor are optionally connected to respective output terminals of the pre-processing unit. For example, a transceiver input terminal of the processor may be connected to a transceiver output terminal of the pre-processing unit. One or more microphone input terminals of the processor may be connected to respective one or more microphone output terminals of the pre-processing unit.
The hearing device comprises a processor for processing input signals, such as pre-processed transceiver input signal(s) and/or pre-processed microphone input signal(s). The processor is optionally configured to compensate for hearing loss of a user of the hearing device. The processor provides an electrical output signal based on the input signals to the processor. Input terminal(s) of the processor are optionally connected to respective output terminals of the pre-processing unit. For example, a transceiver input terminal of the processor may be connected to a transceiver output terminal of the pre-processing unit. One or more microphone input terminals of the processor may be connected to respective one or more microphone output terminals of the pre-processing unit.
The exemplary microphone 5 shown in
In the exemplary earpiece of
The microphone 5 and the receiver 4 are arranged within the earpiece housing 8, such as within the second earpiece housing part 82. The exemplary earpiece 3 in
The exemplary earpiece 3 in
In the example earpiece 3 of
In the example earpiece 3 shown in
The example earpiece 3 shown in
The use of the terms “first”, “second”, “third” and “fourth”, “primary”, “secondary”, “tertiary” etc. does not imply any particular order, but are included to identify individual elements. Moreover, the use of the terms “first”, “second”, “third” and “fourth”, “primary”, “secondary”, “tertiary” etc. does not denote any order or importance, but rather the terms “first”, “second”, “third” and “fourth”, “primary”, “secondary”, “tertiary” etc. are used to distinguish one element from another. Note that the words “first”, “second”, “third” and “fourth”, “primary”, “secondary”, “tertiary” etc. are used here and elsewhere for labelling purposes only and are not intended to denote any specific spatial or temporal ordering.
Furthermore, the labelling of a first element does not imply the presence of a second element and vice versa.
It may be appreciated that
It is to be noted that the word “comprising” does not necessarily exclude the presence of other elements or steps than those listed.
It is to be noted that the words “a” or “an” preceding an element do not exclude the presence of a plurality of such elements.
It should further be noted that any reference signs do not limit the scope of the claims, that the exemplary embodiments may be implemented at least in part by means of both hardware and software, and that several “means”, “units” or “devices” may be represented by the same item of hardware.
Although features have been shown and described, it will be understood that they are not intended to limit the claimed invention, and it will be made obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the claimed invention. The specification and drawings are accordingly, to be regarded in an illustrative rather than restrictive sense. The claimed invention is intended to cover all alternatives, modifications, and equivalents.
Number | Date | Country | Kind |
---|---|---|---|
PA202070803 | Nov 2020 | DK | national |
Number | Name | Date | Kind |
---|---|---|---|
6748093 | Tøpholm | Jun 2004 | B2 |
9338539 | Chen | May 2016 | B2 |
10455311 | Magariyachi et al. | Oct 2019 | B2 |
11540041 | Kuipers et al. | Dec 2022 | B2 |
20010043707 | Leedom | Nov 2001 | A1 |
20020136421 | Topholm | Sep 2002 | A1 |
20090074220 | Shennib | Mar 2009 | A1 |
20150350762 | Birger et al. | Dec 2015 | A1 |
20160014493 | Chen | Jan 2016 | A1 |
20170164121 | Herscher et al. | Jun 2017 | A1 |
20170195766 | Magariyachi et al. | Jul 2017 | A1 |
20200288251 | Kuipers | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
2849461 | Mar 2015 | EP |
2947898 | Nov 2015 | EP |
3334179 | Jun 2018 | EP |
3471437 | Apr 2019 | EP |
WO 2007038712 | Apr 2007 | WO |
WO-2009023738 | Feb 2009 | WO |
WO 2013091724 | Jun 2013 | WO |
Entry |
---|
WO 2009/23738. Text version (Year: 2009). |
Extended European Search Report for EP Patent Appln. No. 21208722.5 dated Apr. 22, 2022. |
Foreign 1st Technical Examination Report for Danish Patent Appln. No. PA 2020 70803 dated Feb. 11, 2021. |
Foreign 2nd Technical Examination Report for Danish Patent Appln. No. PA 2020 70803 dated Sep. 1, 2021. |
Number | Date | Country | |
---|---|---|---|
20220174438 A1 | Jun 2022 | US |