The present invention relates to a hearing device having a signal processing unit for performing a processing algorithm. The present invention relates further to a corresponding method for performing a processing algorithm of a hearing device. What is in particular understood here by the term hearing device is a hearing aid, although other wearable acoustic devices are also encompassed within that term.
Hearing aids are wearable hearing devices that serve to assist hearing-impaired persons. Hearing aids exhibiting different structural designs such as behind-the-ear (BTE), in-the-ear (ITE) and concha hearing aids etc. are provided for meeting individual requirements that are many in number. The hearing aids cited by way of example are worn on the outer ear or in the auditory canal, but the market also offers bone-conduction, implantable and vibrotactile hearing aids in the case of which impaired hearing is stimulated either mechanically or electrically.
Hearing aids basically have as their essential components an input converter, an amplifier, and an output converter. The input converter is as a rule a sound receiver, for example a microphone, and/or an electromagnetic receiver, for example an induction coil. The output converter is implemented usually as an electroacoustic transducer, for example a miniature loudspeaker, or as an electromechanical converter, for example a bone-conduction earphone. The amplifier is customarily integrated in a signal processing unit. This basic structure is shown in
The interest in the present instance focuses on in-the-ear hearing aids where a plurality of microphones are employed for receiving sound signals. Using a plurality of microphones will ensure a directionality for the directional characteristic, which is to say a directional effect for the hearing aid.
Individually shaped shells of in-the-ear hearing aids can be produced especially quickly using what is termed rapid shell manufacturing (RSM) that employs electronic data indicating the shape of the shells. Microphones are for example positioned on a faceplate in the case of in-the-ear hearing aids. The necessary positioning data of the microphones, such as the distances between the microphone outputs, is made available to the RSM software. Because, though, a hearing aid shell is shaped individually and when worn is also oriented in a manner specific to the auditory canal, the faceplate is also oriented individually. How the microphones are positioned directly affects their directionality. The positioning data for any particular type of faceplate is, though, as a rule predefined on a non-customer-specific basis.
The publication DE 44 98 516 C2 discloses a gradient directional microphone system in which no more than three microphones are provided and a gradient order of an output signal referred to a common axis is at least two gradient orders higher than that of each of the microphones. In said gradient directional microphone system, a distance between two adjacent microphones is also taken into account.
The publication U.S. Pat. No. 6,879,697 B2 discloses a method for manufacturing a hearing aid including a hearing aid shell and a faceplate. The hearing aid is therein manufactured using CAD/CAM models.
The object of the present invention is hence to individually match the directional characteristic of a hearing device whose shell is manufactured in particular automatically.
Said object is achieved according to the invention by means of a hearing system having a hearing device including a signal processing unit for performing a processing algorithm, and by means of a production control device for providing at least one design-related parameter of the hearing device, with the signal processing unit performing the processing algorithm based on the at least one design-related parameter of the hearing device or on a control value obtained therefrom and with the at least one design-related parameter of the hearing device or the control value obtained therefrom having been made available to the signal processing unit by the production control device.
Also provided according to the invention is a method for performing a processing algorithm of a hearing device that includes a signal processing unit through a production control device's providing at least one design-related parameter of the hearing device, and through performing of the hearing device's processing algorithm by the signal processing unit based on the design-related parameter or on a control value obtained therefrom, with the at least one design-related parameter of the hearing device or the control value obtained therefrom being made available to the signal processing unit by the production control device.
Using design-related data or a control value obtained therefrom will advantageously enable a signal processing algorithm of the hearing device to be realized particularly quickly, precisely, and customer-specifically. It will in particular thereby be possible to perform specifically embodied processing algorithms which, but for the above parameters, could not be implemented at all or only by circuitous routes and by means of which the perceptibility of the sound signals can be significantly improved.
Preferably at least two microphones can receive a sound signal in the hearing device, with a distance between the at least two microphones as the design-related parameter of the hearing device or a control value obtained therefrom having been made available to the signal processing unit in order to perform preferably automated matching of a directional characteristic of the hearing device. That is because to achieve an optimum directional effect the distance between the microphones must be known to the algorithm since internal delays correlated therewith have to be set. Furthermore, for example the strength of the microphone noise occurring depends on the distance between the microphones, which in turn impacts on noise-suppression algorithms.
In a further advantageous embodiment variant an orientation angle of a straight line connecting the at least two microphones referred to a predefined straight line or plane as the design-related parameter of the hearing device or a control value obtained therefrom has been made available to the signal processing unit in order to perform matching of the hearing device's directional characteristic. The angle at which the microphones are arranged relative to the hearing device wearer's horizontal viewing direction allows conclusions to be drawn about the maximum achievable strength of the directional effect and hence likewise allows parameterizing that is optimally matched to that design-dependent angle.
Faster individual matching of the hearing device's directional characteristic is possible thanks to these advantageous embodiments of the inventive hearing device because its design-related parameters that are used for matching the directional characteristic will already have been made available before it is worn. Especially precise automated matching of the directional characteristic will furthermore be ensured owing to the design-related parameters such as the distance between the microphones and the orientation angle.
The preferred embodiment variants presented with reference to the inventive hearing device and the advantages they offer hold true analogously, as far as can be applied, for the inventive method also.
The present invention will now be explained in more detail with reference to the attached drawings, in which:
In an embodiment variant shown in
Spatial parameters of the microphone holes 25 must be known to the signal processing unit 3 for performing precise matching of the directional characteristic. Said spatial parameters which are different for each individually shaped hearing aid 22 are established during the development phase of the hearing aid 22 and stored in or for the RSM software 6. The basic idea here is to be able to perform precise, automated matching of the directional characteristic or of another algorithm of the hearing aid 22. For that purpose the spatial parameters of the microphone holes 25 as well as any further design-related parameters of the hearing aid 22 that are known to the RSM software 6 are stored in the hearing aid 22 and made available to the signal processing unit 3. The design-related parameters can hence be taken directly from the signal processing unit 3 of the hearing aid 22 for performing matching of the directional characteristic.
In another embodiment variant shown also in
According to
Number | Date | Country | Kind |
---|---|---|---|
10 2007 033 896 | Jul 2007 | DE | national |
The present application claims the benefit of a provisional patent application filed on Jul. 20, 2007, and assigned application No. 60/961,349. The present application also claims the benefit of a German application No. 10 2007 033 896.3 filed Jul. 20, 2007. Both of the applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5463694 | Bradley et al. | Oct 1995 | A |
6879697 | Tøpholm | Apr 2005 | B2 |
7010134 | Jensen | Mar 2006 | B2 |
7467022 | Bhagwat et al. | Dec 2008 | B2 |
7933423 | Baekgaard Jensen et al. | Apr 2011 | B2 |
7949145 | Bachler et al. | May 2011 | B2 |
20060233384 | Bachler | Oct 2006 | A1 |
20070014419 | Steele | Jan 2007 | A1 |
20070245721 | Colignon | Oct 2007 | A1 |
20080260189 | Schobben | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
44 98 516 | Jul 1997 | DE |
0065873 | Nov 2000 | WO |
WO 0228140 | Apr 2002 | WO |
WO 2007052185 | May 2007 | WO |
WO2007052185 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090022345 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60961349 | Jul 2007 | US |