The disclosed technology includes an antenna for wireless communication. More specifically, the disclosure includes an antenna for a hearing device configured to communicate wirelessly.
Hearing devices are generally small and complex devices. Hearing devices can include a processor, microphone, speaker, memory, housing, and other electronical and mechanical components. Some example hearing devices are Behind-The-Ear (BTE), Receiver-Canal (RIC), In-The-Ear (ITE), Completely-In-Canal (CIC), and Invisible-In-The-Canal (IIC) devices. A user can prefer one of these hearing devices compared to another device based on hearing loss, aesthetic preferences, lifestyle needs, and budget.
As hearing device technology develops, users prefer hearing devices with more functionality. For example, users want hearing devices that are configured to communicate wirelessly. Wireless communication improves a user's experience and enables the user to access a network or other devices with their hearing device. Additionally, users want hearing devices that have a long battery life (e.g., several days or even weeks).
However, additional functionality may require changes to a hearing device. For example, hearing devices generally require a modified power supply (e.g., bigger or more efficient battery) to communicate wirelessly. Further, because hearing devices are small, it is difficult to find space for an antenna used in wireless communication on a hearing device. As the amount of available space for the hearing aid decreases, the size of the antenna decreases and that causes challenges in receiving a wireless communication of certain wavelengths. Accordingly, there are a number of challenges and inefficiencies created with additional functionality for hearing devices.
One solution for a hearing device with an antenna is disclosed in US Publication No. 20150201288. This publication discloses a loop antenna including a flex circuit on printed circuit board (PCB). Although this publication provides some technology for wireless connectivity for a hearing device, it has several shorting comings related to user friendliness, cost of manufacture, performance, and efficiency. Accordingly, a need exits to address the short comings of this publication and improve the antenna for hearing aid devices.
The disclosed technology and accompanying figures describe some implementations of the disclosed technology.
The drawings are not drawn to scale and have various viewpoints and perspectives. The drawings are some implementations and examples. Additionally, some components and/or operations may be separated into different blocks or combined into a single block for the purposes of discussion of some of the embodiments of the disclosed technology. Moreover, while the technology is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the technology to the particular implementations described. On the contrary, the technology is intended to cover all modifications, equivalents, and alternatives falling within the scope of the technology as defined by the appended claims.
The disclosed technology includes an antenna for a hearing device. For example, the disclosed technology includes a loop antenna for a BTE or RIC hearing device where the loop antenna is disposed horizontally on top of a hearing device so that traces for the antenna circumvent a microphone or switch for the hearing device. Using the antenna, the hearing device can wirelessly communicate over a range of frequencies (e.g., 2.39 to 2.485 GHz including Bluetooth™ at 2.4 GHz) to other devices. Other devices can include smart phones, TVs, computers, smart speakers, automobiles, and devices capable of implementing a wireless communication standard (e.g., ZigBee™, Bluetooth™, or other IEEE 802.11 standard).
In some implementations, the disclosed technology includes a loop antenna with a planar structure. For example, a flexible PCB board with three substantially planar sections between two bending axes can carry a loop antenna composed of metal traces. The PCB board can have bends, forming angles between 0 and 30 degrees, to maximize the length of the loop antenna inside the curvature of the hearing device housing. The planar structure of the loop antenna can improve (e.g., optimize) the performance of the antenna through increased reception and transmission.
In addition to the planar structure, the antenna can include a number of capacitors to improve (e.g., optimize) the accuracy of the resonance frequency of the antenna. For example, the antenna can include 5 to 20 capacitors in series, where each capacitor has a capacitance value between one to ten picofarads (pF) (e.g., 1 to 5 pF). In some implementations, it may be preferred to have capacitors with values between 2 to 3 pF based on the wavelength or frequency for wireless communication. The antenna can also include a serial arrangement of metallic traces connected through the capacitors, where the metallic traces are built on a flexible PCB and where the serial capacitors are soldered on. The serial capacitors provide resonance of the antenna on a frequency used for transmitting or receiving data wirelessly to external devices. For example, the antenna can transmit or receive data from a hearing aid placed on the opposite ear of a user. In some implementations, the capacitors are surface mount device (SMD) capacitors mounted on top a PCB board.
The disclosed technology can also include a shielding component that reduces (e.g., eliminates) electrical or magnetic interference between the antenna and the electronic equipment in a hearing device. For example, a shielding component can be positioned below the antenna and around the processor and other circuitry for a hearing aid. The shielding component can be spaced apart from the antenna by a shielding distance (e.g., 1 mm) such that the shielding component reduces (e.g., eliminates) interference with the operation of the antenna. The shielding component can be composed of sheet metal (e.g., copper), metal foam, or other composite. See
The disclosed technology also includes a method of manufacturing a hearing device configured to transmit and receive wireless communication signals. A method of manufacturing a hearing device, comprising: placing a radio circuit within a housing for a hearing device; looping a flexible circuit to form an aperture and electronically coupling the flexible circuit and the radio circuit, wherein looping the circuit includes looping the circuit around a first and second opening formed by flexible circuit; and soldering 5 or more capacitors in series on the flexible circuit, wherein the capacitors are soldered at a distance relative to each other to transmit and receive wireless communication in a frequency range of 2.39 to 2.5 GHz.
In some implementations, the disclosed technology has at least one benefit. For example, one benefit is that a user can easily access a control (e.g., button, input, switch) for the hearing device without touching or disturbing the antenna or microphone; additionally, the hearing device is designed such that the antenna is positioned on the opposite side of the processor and away from other components to reduce manufacturing cost, complexity, and electronical interference from a processor. Also, the hearing device can include shielding between the antenna and circuitry to reduce electrical or magnetic interference within the hearing device.
Here are some definitions of terminology that apply to this disclosed technology.
Beginning with a detailed description of the Figures,
The electronic device 145 can be a mobile phone, smart phone, tablet computer, laptop computer, desktop computer, mobile media device, mobile gaming device, virtual or augmented reality headset, vehicle-based computer, wearable computing device, or portable electronic device. In some implementations, the electronic device 145 includes software or a mobile application that controls or communicates with the hearing device 105. In some implementations, the hearing device 105 can communicate with the electronic device 145 using Bluetooth™ or Zigbee™, or any proprietary protocol where signals are propagated between the antenna 140 and the antenna 150 (e.g., bidirectional communication). The hearing devices 105 can also communicate with each other. Each component of the hearing devices 105 is described below in more detail.
The hearing device 105 can receive input from the user input 115. For example, a user can push the user input 115 to signal pairing (e.g., Bluetooth pairing™) the hearing device 105 with another device such as the electronic device 145. In some implementations, a user can also use the battery door 120 as user input, e.g., to pair the hearing device 115 with another device or trigger communication between the hearing device and another device. For example, a user can open and close the battery door 120 a single time or multiple times to send an input signal to the hearing device 105.
The processor 130 controls and processes information for the hearing device 105. The processor 130 can include special-purpose hardware such as application specific integration circuits (ASICS), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), programmable circuitry (e.g., one or more microprocessors microcontrollers), Digital Signal Processor (DSP), appropriately programmed with software and/or firmware, or a combination of special purpose hardware and programmable circuitry. In some implementations, the processor 130 is physically and electronically coupled to memory such as volatile memory, nonvolatile memory and dynamic memory.
The network 155 can be a single network, multiple networks, or multiple heterogeneous networks, such as one or more border networks, voice networks, broadband networks, service provider networks, Internet Service Provider (ISP) networks, and/or Public Switched Telephone Networks (PSTNs), interconnected via gateways operable to facilitate communications between and among the various networks. The network 155 can include communication networks such as a Global System for Mobile (GSM) mobile communications network, a code/time division multiple access (CDMA/TDMA) mobile communications network, a 3rd, 4th or 5th generation (3G/4G/5G) mobile communications network (e.g., General Packet Radio Service (GPRS/EGPRS)), Enhanced Data rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), or Long Term Evolution (LTE) network), or other communications network such as a Wireless Local Area Network (WLAN). In general, the network 155 enables the hearing devices 105 to send and receive information from the Internet via the electronic device 145. For example, the network 155 can be a Wi-Fi™ network or a networking implementing a IEEE 802.11 standard.
In order to wireless communicate with other devices, the hearing devices 105 use the antenna 140. The antenna 140 is described in more detail in
Schematically removing the housing from
As shown in
In Bluetooth™ communication when the hearing device is worn by a user on the user's ear, the folding angle 240 can be 10 degrees to improve (e.g., optimize) wireless communication such as the antenna 140 the antenna plane is substantially orthogonal to the user's head. Because the hearing device 105 includes the antenna 140 that bends at least at two points, the antenna 140 forms a plane that is substantially orthogonal to the user's head and ear while wearing the hearing device 105. By forming three substantially planar sections, the antenna 140 improves (e.g., optimizes) wireless communication, reception, and transmission of signals. In some implementations, substantially planar means each portion of the antenna is on a plane approximately (e.g., within a few degrees) perpendicular to a person's head wearing the hearing aid.
Rotating the perspective of
The antenna 140 can receive signals and these signals travel to the communication circuit 330 through the transmission line 325 or the communication circuit 330 can transmit signals through the transmission line 325 to the antenna 140 to propagate the signals over the air. In some implementations, the transmission line 325 have a characteristic impedance between 50 and 300 ohm (e.g., 140 ohm), wherein the transmission line is of parallel line type. In some implementations, the transmission line 325 is a bifilar transmission line because it is to attached the bifilar transmission line 325 to a PCB and also because the transmission line 325 is symmetrical. Similarly, the communication chip 330 can have a symmetrical radio frequency (RF) input/output (I/O) physically coupled to the antenna 140, which is also symmetrical.
The antenna 140 includes the PCB board 305 with the antennas lines 310 sitting on top of the PCB board 305. The PCB board can define the openings 315a-c, where the openings enable the user input 115 (
In some implementations, the antenna 140 has a metallic traces between ⅙ and ½ of a wavelength for operating of the wavelength for operating the antenna (e.g., traces with a length of 0.021 meters and 0.0625 meters). For example the metallic traces can be ¼ of a wavelength.
In some implementations, the filter shown in
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements; the coupling or connection between the elements can be physical, logical, electromagnetic, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The teachings of the technology provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various examples described above can be combined to provide further implementations of the technology. Some alternative implementations of the technology may include not only additional elements to those implementations noted above, but also may include fewer elements.
These and other changes can be made to the technology in light of the above detailed description. While the above description describes certain examples of the technology, and describes the best mode contemplated, no matter how detailed the above appears in text, the technology can be practiced in many ways. Details of the system may vary considerably in its specific implementation, while still being encompassed by the technology disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the technology should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the technology with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the technology to the specific examples disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the technology encompasses not only the disclosed examples, but also all equivalent ways of practicing or implementing the technology under the claims.
To reduce the number of claims, certain aspects of the technology are presented below in certain claim forms, but the applicant contemplates the various aspects of the technology in any number of claim forms. For example, while only one aspect of the technology is recited as a computer-readable medium claim, other aspects may likewise be embodied as a computer-readable medium claim, or in other forms, such as being embodied in a means-plus-function claim.
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of implementations of the disclosed technology. It will be apparent, however, to one skilled in the art that embodiments of the disclosed technology may be practiced without some of these specific details. While, for convenience, implementations of the disclosed technology are described with reference to hearing device by customizing aesthetic and functional features/content, implementations of the disclosed technology are equally applicable to various other electronic devices and wireless communication equipment. For example, the disclosed technology can be used in a smart phone, smart speaker, automobile, radio, or airplane.
The techniques introduced here can be embodied as special-purpose hardware (e.g., circuitry), as programmable circuitry appropriately programmed with software and/or firmware, or as a combination of special-purpose and programmable circuitry. Hence, embodiments may include a machine-readable medium having stored thereon instructions which may be used to program a computer (or other electronic devices) to perform a process. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, compact disc read-only memories (CD-ROMs), magneto-optical disks, ROMs, random access memories (RAMs), erasable programmable read-only memories (EPROMs), electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, flash memory, or other type of media/machine-readable medium suitable for storing electronic instructions. The machine-readable medium includes non-transitory medium, where non-transitory excludes propagation signals. For example, a processor can be connected to a non-transitory computer-readable medium that stores instructions for executing instructions by the processor.
Number | Date | Country | Kind |
---|---|---|---|
PCT/EP2016/081958 | Dec 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/070410 | 8/11/2017 | WO | 00 |