1. Field of the Invention
The invention relates a hearing instrument comprising a first part to be worn at least in part within the ear canal (typically designed as an ITE (“in-the-ear”) part) and a second part to be worn outside the ear canal at the concha (typically designed as a BTE (“behind-the-ear”) part), with the hearing instrument being suitable for wireless communication.
2. Description of Related Art
Hearing instruments may be designed for wireless communication with various devices, such as for communication with another hearing instrument that is located at the other ear of the user, a body worn relay device forwarding an audio signal to the hearing instrument, a remote control, a mobile phone, a TV set gateway, a wireless microphone, etc. Communication to different types of such devices may occur in different frequency bands: for example, communication between body worn devices typically takes place via an inductive link operating, for example, around 11 MHz, wherein communication to a mobile phone typically uses a Bluetooth link operating at 2.4 GHz.
U.S. Patent Application Publication 2012/0002830 A1 relates to a hearing instrument, such as a BTE, ITE, ITC (“in-the-canal”) or CIC (“completely-in-the-canal”) hearing aid comprising a high frequency radio using a first antenna and a low frequency radio using a second antenna; the high frequency radio may operate at 2.4 GHz, and the low frequency radio may operate at 30 MHz. It is also mentioned that hearing aids of the BTE type may comprise a receiver (loudspeaker) located in the ear channel; such devices are also known as “receiver-in-the-channel” (RIC) or “receiver-in-the-ear” (RITE) hearing aids.
International Patent Application Publication WO 2008/089784 A1 and corresponding U.S. Pat. No. 8,526,648 relate to a hearing assistance system comprising a wireless microphone for transmitting a voice signal captured by the microphone via a wireless link to a receiver unit connected to a hearing aid, with both the hearing aid and the receiver unit comprising an antenna. The antenna of the hearing aid may be designed for a digital link for binaural communication with a hearing aid worn at the other ear, and the antenna of the receiver unit may be designed for an analog frequency modulation audio link.
EP 1 389 891 A1 and corresponding U.S. Pat. No. 7,260,234 B2 relates to a hearing aid wherein an antenna coil is realized by windings around the electro-acoustic output transducer (loudspeaker) of the hearing aid in order to provide for a relatively large antenna coil.
Patent Application Publication 2012/0087506 A1 relates to a binaural hearing aid system wherein each hearing aid comprises an antenna suitable for establishing a Bluetooth link between the hearing aids; the hearing aids may be of the BTE type or the ITE type.
It lies in the nature of hearing aids that the daily time of use is relatively high in comparison to other hearing devices like communication devices. At the same time, their physical dimensions are generally very limited. The requirements regarding power consumption or electromagnetic emissions are therefore more challenging than for hearing instruments in general.
While Bluetooth technology is widely available, one disadvantage is the relatively high power consumption of a Bluetooth link between two hearing devices.
It is an object of the invention to provide for a hearing instrument having wireless communication capability, wherein communication with devices utilizing different frequency ranges should be optimized.
According to the invention, this object is achieved by a hearing instrument as described herein.
The invention is beneficial in that, by providing a first part of the hearing instrument with a first antenna to be located substantially within the ear channel and by providing a second part of the hearing instrument with a second antenna to be located outside the ear channel at the user's head, with the first antenna being operated in a first frequency range and the second antenna being operated in a second frequency range higher than the first frequency range, the adsorption of electromagnetic waves by human tissue reduces electromagnetic interaction between the two antennas, while quality and power efficiency of the respective wireless link to the respective external device is maintained or optimized; this makes use of the fact that low frequency radiation is less strongly adsorbed by human tissue than high frequency radiation.
Because of the strong interaction between human tissue and high frequency electromagnetic waves it might be desired to reduce the number of Bluetooth links in vicinity of the body for health reasons. The invention is beneficial because it allows the electromagnetic radiation near the human body to be reduced in comparison to other wireless solutions.
Preferably, the first frequency range is within a range of 5 to 30 MHz, which range is typically used in inductive links of body worn devices, such as HIBAN (“Hearing Instrument Body Area Network”) links, and the second frequency range preferably is centered at 2.4 GHz for enabling a Bluetooth connection.
Hereinafter, examples of the invention will be described with reference to the accompanying drawings.
A hearing instrument of the present invention comprises a first part to be located at least in part in the ear canal and comprising a first antenna to be located substantially within the ear canal and a second part to be worn outside the ear canal at the concha and comprising a second antenna to be located outside the ear canal; typically, the first part is designed as an ITE part and the second part is designed as a BTE part. However, the second part also may be positioned in front of the concha or be attached at the concha.
According to
The ITE part 18 comprises a first antenna 22, and the BTE part 16 comprises a second antenna 24. The first antenna 22 is located within the ear channel when the hearing instrument 10 is worn, and the second antenna 24 is located outside the ear channel at the user's head 14. The first antenna 22 is for being used in communication in a first frequency range and the second antenna 24 is for being used in communication in a second frequency range higher than the first frequency range. Typically, the first frequency range, i.e., the first communication band, is below 100 MHz, and preferably within a range of 5 MHz to 30 MHz. For example, the first frequency range may be centered at 11 MHz for use in a HIBAN. Typically, the first antenna 22 is constructed for an inductive connection and may be designed as a coil or a loop antenna.
In order to reduce the power consumption of the communication link of the hearing devices of a binaural hearing system the distance between their antennas should be minimized. It is therefore advantageous to place the first antenna near the ear drum. Preferably, the ITE part 18 is designed such that the distance of the first antenna 22 to the user's ear drum is less than 8 mm, when the ITE part 18 is inserted into the ear channel.
Typically, the first antenna is in communication with a device to be worn at the body of the user. In the example of
According to another example, the first antenna 22 may be used for communication with an accessory device 26, for example, a remote control.
The first antenna may be used for audio streaming within the HIBAN. Audio signals may be streamed between two hearing devices 10, 12 of a binaural hearing system or between a hearing device and the accessory device 26.
The second antenna 24 typically is for communication with an external device which is not part of the HIBAN and which may be located in proximity or remote from the user's body. Examples of external devices communicating with the hearing instrument via the second antenna 24 include telecommunication devices, such as mobile phones, audio devices, such as a wireless microphone, data processing devices, hearing instrument fitting devices or data network connecting devices, such as an internet connection.
Typically, the second frequency range is above 400 MHz, preferably above 0.9 GHz and more preferably above 1.8 GHz. For example, the second frequency range may be centered at 2.4 GHz, so that the second antenna 24 may be used in a Bluetooth connection or in any other high frequency (radio frequency) protocol. The second antenna may be, for example, a dipole antenna or a loop antenna or any other antenna suitable for working in the second frequency range. Preferably, the ratio of the center frequency of the second frequency range to the center frequency of the first frequency range is more than 10.
In
It is possible to establish Bluetooth links 34 and 36 at the same time in order to transmit signals, for example an audio signal, to both hearing instruments 10 and 12. A preferred operation mode however is, to establish just one Bluetooth link 34 to device 10 and to forward the signal from device 10 to device 12 using the HIBAN link 28. In this case the power consumption of hearing instrument 10 is higher than the power consumption of hearing instrument 12, but the total power consumption of the system is reduced. Depending on state of charge of the batteries of hearing instruments 10 or 12 or on other factors like the quality of link 34 in comparison with a potential quality of link 36 or the preference of a user the system may automatically or manually be switched to an operation mode in which the Bluetooth link 36 is active and the signal which is transmitted via link 36 to hearing instrument 12 is forwarded to hearing instrument 10 via HIBAN link 30. The information regarding state of charge of the batteries of hearing instruments 10, 12 or a quality of the link 34, 36 could be exchanged between the hearing instruments 10, 12 via the HIBAN link 28, 30.
In
An alternative example is shown in
A further alternative example is shown in
While three examples of the design of the ITE part and the BTE part are shown, alternative configurations are conceivable as well. For example, the processor 42 or part of its functions may be placed in the ITE part 18. In such case, the connection 20 would be used for exchanging digital data between the BTE part 16 and the ITE part 18. Also the transceiver 38 driving the second antenna 24 may be located in the ITE part 18. In general, the transceiver for driving an antenna may be located in the same part as the antenna or in the other part.
In case that the transceiver 46 of the first antenna 22 is located in the ITE part 18, the second antenna 22 may at least partially protrude outside the ear channel and may be combined for example with a pull-out wire. In any case, the first antenna 22 is placed at least substantially within the ear channel, i.e., at least half of the antenna is placed within the ear channel.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/074327 | 12/4/2012 | WO | 00 |