The present invention relates to a hearing instrument including a power supply unit. In addition, the present invention relates to a power supply unit for a hearing instrument.
Hearing instruments may be designed as hearing aids. A hearing aid is used for providing a hearing-impaired person with acoustic ambient signals, which are processed and amplified in order to compensate for or to treat the respective hearing impairment. In principle, it comprises one or multiple input transducers, a signal processing device including an amplification device or an amplifier, and an output transducer. The input transducer is generally a sound receiver, for example, a microphone, and/or an electromagnetic receiver, for example, an induction coil. The output transducer is generally implemented as an electroacoustic converter, for example, a miniature loudspeaker, or as an electromechanical converter, for example, a bone conduction earpiece. It is also referred to as an earpiece or receiver. The output transducer generates output signals, which are routed to the ear of the patient and which generate auditory perception in the patient. The amplifier is generally integrated into the signal processing device. Currently, power is supplied to the hearing device via a battery which may be inserted into the hearing aid housing. The essential electronic components of a hearing aid are generally arranged on a printed circuit board acting as a circuit substrate, or connected thereto.
In addition to being designed as a hearing aid used to compensate for diminished hearing ability, which is usually referred to as hearing impairment, hearing instruments may also be designed as so-called tinnitus maskers. Tinnitus maskers are used for treating tinnitus patients. They generate acoustic output signals which may aid in reducing the perception of disturbing tinnitus or other ear noises, which acoustic output signals being a function of the respective hearing impairment and, depending on the operating principle, also being a function of ambient noise. The term “hearing instrument” is to be understood below also to mean tinnitus maskers and other such devices.
Hearing aids are known in various basic housing configurations. In the case of in-the-ear (ITE) hearing aids, a housing, which contains all functional components including a microphone and receiver, is worn mostly in the auditory canal. Completely-in-canal (CIC) hearing aids are similar to the ITE hearing aids, but are worn completely in the auditory canal. In the case of behind-the-ear (BTE) hearing devices, a housing including components such as a battery and a signal processing device is worn behind the ear, and a flexible sound tube, also referred to as a tube, routes the acoustic output signals of a receiver from the housing to the auditory canal. Receiver-in-canal behind-the-ear (RIC-BTE) hearing aids are similar to the BTE hearing aids, but the receiver is worn in the auditory canal, and instead of a sound tube which routes acoustic signals to an earpiece, a flexible cable, also referred to as an earpiece tube or earpiece connecting means, routes electrical signals to a receiver which is attached to the front of the cable.
In addition to excellent acoustic properties which are fostered, for example, via high-quality input transducers, output transducers, and a good signal processing device, aesthetic and cosmetic demands are increasingly being made on modern hearing instruments. In particular, hearing instruments should be as inconspicuous as possible when worn. Furthermore, there is often the risk of hearing instruments being damaged due to the entry of liquids, for example, sweat. Another requirement for a modern hearing instrument relates to the ease of operation of the devices, which are now equipped with many features. Ease of operation also means that hearing instruments should require little maintenance, for example, with respect to dealing with the power supply of the hearing instrument.
It is accordingly an object of the invention to provide a hearing instrument which overcomes the above-mentioned and other disadvantages of the heretofore-known devices and methods of this general type and which provides for a hearing instrument that requires little maintenance in comparison to conventional hearing instruments and which is well protected, in particular from sweat.
With the foregoing and other objects in view there is provided, in accordance with the invention, a hearing instrument, comprising:
a hearing instrument body housing;
at least one microphone and a receiver mounted on or in said housing;
an earpiece and an earpiece connector or a sound tube;
a signal processing unit connected to said at least one microphone and said receiver;
a power supply unit including a rechargeable power supply and a control and monitoring device;
a switching device configured to assume at least two switching states;
said control and monitoring device controlling a switched-off state of the hearing instrument as a function of a switching state of said switching device;
said switching device including a first part, which is arranged on a first component of the hearing instrument, and a second part which is arranged on a second component of the hearing instrument, and wherein the switching state of said switching device is changeable via a relative movement between the first component of the hearing instrument and the second component of the hearing instrument;
a sealing device and an activatable limiting device;
wherein, in an activated state, the relative movement between the first component of the hearing instrument and the second component of the hearing instrument is limited by said limiting device, and the switching device is sealed in an open switching state due to a limitation of the relative movement by said limiting device and by said sealing device; and
wherein said switching device is sealed in a closed switching state by said sealing device.
With the above and other objects in view there is also provided, in accordance with the invention, a hearing instrument, comprising:
a hearing instrument body housing, at least one microphone, a receiver, an earpiece connector or a sound tube, an earpiece, a power supply unit, and a signal processing unit;
a switching device configured to assume at least two switching states;
said power supply unit including a rechargeable power supply and a control and monitoring device, said control and monitoring device controlling a switched-off state of the hearing instrument as a function of the switching state of said switching device.
In other words, the objects of the invention are achieved by the hearing instruments, as summarized above, and also by a power supply unit as claimed.
One basic concept of the present invention is a hearing instrument including a power supply unit, comprising a hearing aid body housing, at least one microphone, a receiver, an earpiece connecting means or a sound tube, an earpiece, a power supply unit, and a signal processing unit. The power supply unit includes a rechargeable energy supply means and a control and monitoring device; the hearing instrument includes a switching device, wherein the switching device is designed to assume at least two switching states. The control and monitoring device is designed to control a switched-off state of the hearing instrument, as a function of the switching state of the switching device.
To achieve the object according to the present invention, this basic concept of the present invention includes a power supply unit having a rechargeable power supply and a control and monitoring device, and a switching device, in addition to components of a hearing instrument which are known per se, for example, a hearing aid body housing, at least one microphone, a receiver, an earpiece connecting means or a sound tube, an earpiece, and a signal processing unit. The switching device may assume at least two switching states, wherein the control and monitoring device may put the hearing instrument into a switched-off state, as a function of the switching state of the switching device. The maintenance of the hearing instrument may be simplified through the use of a rechargeable power supply, for example, a rechargeable battery, a rechargeable battery pack, or a capacitor, since the power supply may remain in the hearing instrument for charging. After they have delivered their electric power, commonly used non-rechargeable batteries must be replaced by new ones. For this purpose, a battery door which is integrated into the hearing aid body housing is normally opened, whereby dirt is able to enter the hearing instrument. Battery doors usually also perform the function of connecting the battery to, or disconnecting it from, the electronics of the hearing instrument. The hearing instrument which is operated by the rechargeable power supply has a control and monitoring device, which may also be referred to as a power management means or power management module, and it has the switching device, the state of which may be queried via the control and monitoring device. If the switching device is in a certain predefinable state, the control and monitoring device switches the hearing instrument into a switched-off state, which is characterized by no power consumption or very low power consumption by the hearing instrument. The signal processing unit may include all electronic functions, except possibly functions for power management.
It is conceivable that the rechargeable power supply of the hearing instrument is chargeable in the switched-off state.
For example, in the switched-off state, the hearing instrument may be placed into a charger and charged via an inductive charging method which is in particular controlled or regulated by the control and monitoring device.
Preferably, the control and monitoring device is designed for controlling at least one connection between the power supply and the signal processing unit, as a function of the switching state of the switching device.
“Control” may in particular mean breaking the connection between the power supply and the signal processing unit, so that no power consumption occurs.
In one advantageous refinement, the power supply unit is permanently arrangeable or arranged inside the hearing aid body housing for protection from contamination.
Here, “permanent” should be understood to mean the duration of multiple or many charge or operating cycles, or the service life or operating life of the power supply. A permanent duration is to distinguish from batteries which are disposed of when they are “empty.” A great advantage of rechargeable power supply over disposable batteries is that they do not have to be removed after discharging, and that a battery door is therefore also not required. Furthermore, terminals of the power supply may be laid inside the hearing aid body housing, or if necessary, only small-area contact surfaces may be accessible from the outside, thereby greatly reducing the risk of contamination of the interior of the hearing aid body housing.
In another advantageous embodiment, the switching device includes a means from the group including a pushbutton, a switch, a wired connection, and a switch which is influenceable by a magnetic field.
A pushbutton may, for example, include a type of flip-flop, so that an actuation of the pushbutton may be stored. Thus, pushing and releasing the pushbutton may define a first switching state, and pushing and releasing the pushbutton a second time may define a second switching state. As a result, the control and monitoring device may control the switched-off state of the hearing instrument, as a function of these switching states of the switching device. The switching device may be designed as a wired connection, via which a circuit may be closed or opened. A switch which may be influenced by a magnetic field is, for example, a reed switch or reed contact which is known per se, in which contact tongues made mostly of an iron-nickel alloy are magnetically actuated and thus establish a connection.
The switching device is particularly advantageously operable by a user. Via this feature, a user, for example, a hearing aid wearer, may actuate the switching device and put the hearing instrument into the switched-off state if the user, for example, does not need the hearing instrument.
It is provided that the switching device includes an openable door, wherein the surface of the door is adapted to the shape of the hearing aid body housing, in the closed state. That is, the shape of the door conforms to the housing.
Users of hearing instruments are accustomed to selecting a function of the hearing instrument, for example, by opening a battery door of a commercially available hearing instrument. Even if a battery door as such is no longer necessary due to one of the hearing instruments according to the present invention, it may, however, be advantageous to provide a battery door-like switching device, i.e., a switching device having an openable door, in order to maintain accustomed operation by opening and closing this door. A door having a surface adapted to the shape of the hearing aid body housing, i.e., a surface which is essentially adapted to the shape of the hearing aid body housing, is favorable and may help to avoid injuries and damage.
Another advantageous embodiment provides that, in the open state, the switching device has a switching state in which at least one line connection is broken (i.e., disconnected). A broken line connection is advantageous, since a high resistance may thereby be achieved, which facilitates a switched-off state having low power consumption.
In an alternative embodiment, the switching device is also designed for opening and closing at least one connection between the power supply and the signal processing unit.
An effective switched-off state may be achieved via a switching device, for example, a wire bridge which is able to break an electrical connection, for example, a connection to a positive operating voltage, between the power supply, for example, a rechargeable battery, and the signal processing unit, for example, an electronic circuit.
It is conceivable that the switching device is designed for opening and closing three or four connections, wherein two connections are designed for connecting the power supply to the signal processing unit and/or to the control and monitoring device.
In the case of three electrical connections, two electrical connections may relate to a positive and a negative operating voltage; the third electrical connection may, for example, be routed to a contact of the control and monitoring device, which controls the switched-off state of the hearing instrument. In the case of four electrical connections, two electrical connections may again relate to a positive and a negative operating voltage; the third and fourth electrical connections may, for example, connect two contacts of the control and monitoring device and thus control the switched-off state of the hearing instrument.
In one advantageous refinement of the present invention, the switching device includes a first component and a second component, wherein the first component of the switching device is arranged on a first component of the hearing instrument, and wherein the second component of the switching device is arranged on a second component of the hearing instrument. The switching state of the switching device may be changed via a relative movement between the first component of the hearing instrument and the second component of the hearing instrument.
In this embodiment of the present invention, the switching device is made up of two components or parts which are arranged on different objects or components of the hearing instrument, wherein the components may move relative to one other. For example, the switching device may be a contact pin which is insertable into a spring terminal, or a plug connector which is closable or openable via the relative movement. The components of the switching device may, for example, be arranged on the power supply unit, on or in the hearing aid body housing, or on or in a battery door-like door. The relative movement may be a translational movement or a rotational or tilting movement.
In an additional advantageous embodiment, the hearing instrument includes at least one sealing device. Via this sealing device, the switching device is sealable, at least in a closed switching state.
Via sealing rings or sealing caps containing silicone, the switching device may, for example, be protected from dirt, moisture, and sweat. If the switching device is designed having two parts, and if the closing process of the switching device is based on a relative movement of the two parts, the sealing effect, for example, during a closing process, may take place via a form-locking contact of the sealing ring with a part of the switching device.
In another advantageous embodiment, the hearing instrument includes at least one sealing device and an activatable limiting device. The relative movement between the first component of the hearing instrument and the second component of the hearing instrument is limited by the activated limiting device, and the switching device is sealed in an open switching state by the sealing device.
A limiting device limits a relative movement between the two components of the hearing instrument without impairing the switching action of the switching device. Via the feature of this embodiment, it is achieved that the sealing means even in the open switching state i.e., if the displacement of the relative movement is generally greater than in a closed switching state, the sealing action of the sealing device still exists. A limiting device may, for example, be a mechanical stop. The limiting device limits the relative movement only in an activated state. In an inactivated state, the relative movement of two components of the hearing instrument may therefore be greater, and the sealing action of the sealing device does not necessarily have to be maintained. Three states of the hearing instrument may thereby result: a first, in which the switching device is in a closed state, and the switching device is sealed by the sealing device; a second, in which the switching device is in an open state, and the switching device is sealed by the sealing device; and a third, in which the switching device is in an open state, and the switching device is not sealed by the sealing device.
It has proven to be advantageous if the power supply includes a rechargeable battery which contains lithium.
Rechargeable batteries containing lithium include, for example, lithium-ion rechargeable batteries and lithium-polymer rechargeable batteries. These batteries have a high energy density and a high charging efficiency; therefore, they are highly suitable for hearing instruments. It is disadvantageous that they are sensitive, for example, with respect to operation, in particular the discharge currents and the discharge cycle, and with respect to charging, in particular the end-of-charge voltage and amperage of the charging currents, and are therefore preferably monitored in these operating modes, for example, via a control and monitoring device. In particular, if a hearing instrument is not used for a longer period of time, for example, during storage before sale, one of the previously described hearing instruments according to the present invention is highly advantageous, since deep discharge, and thus degradation or even destruction of the rechargeable battery, may be prevented by putting the hearing instrument into the switched-off state.
A further basic idea of the present invention is a power supply unit for a hearing instrument, comprising a rechargeable power supply and a control and monitoring device, wherein the power supply unit, along with a hearing aid body housing, at least one microphone, a receiver, an earpiece connecting means or a sound tube, an earpiece, a signal processing unit, and a switching device, forms one of the previously described hearing instruments.
This basic idea of the present invention describes a power supply unit which is arrangeable in a hearing instrument, and which includes a rechargeable power supply, for example, a lithium-ion rechargeable battery, and which includes a control and monitoring device which is able to control a switched-off state of the hearing instrument by reading out a state of a switching device. Additional embodiments of this basic idea result from analogous assignments of features from the previously described embodiment variants of the hearing instruments according to the present invention.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a hearing instrument with a power supply unit, and a power supply unit for a hearing instrument, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
It is also conceivable that the rechargeable power supply 22 of the hearing instrument is chargeable in the switched-off state. For example, in the switched-off state, the hearing instrument may be placed into a charger and charged via an inductive charging method which is controlled in particular via the control and monitoring device 24.
In summary, other embodiments and advantages of the present invention are described. Hearing instruments having a power supply unit integrated into the instrument, for example, in the form of a so-called Li-ion power module, provide, for example, advantages for maintenance, since the power supply unit is embedded in a protected manner in the housing of the hearing instrument. Such a power supply unit advantageously has at least two operating modes: an active mode in which the hearing instrument is supplied by electrical energy, and a switched-off mode in which the power supply unit is more or less switched off and no current flows. The switched-off mode is in particular important for shelf life, in order to prevent a deep discharge of a rechargeable battery of the power supply unit. A user of the hearing instrument should be able to switch between these two operating modes. The present invention describes multiple alternatives of how control of the modes could be advantageously carried out.
In one embodiment of the present invention, the supply unit, also referred to as the power module, includes a rechargeable power supply, for example, a rechargeable battery, and a control and monitoring device which may be designed as an integrated electric circuit, for example, in the form of a power management IC. The power management IC may have a dedicated pin, the state of which decides, for example, as a function of a voltage value or a resistance value, whether the power supply unit and thus the hearing instrument is operated in the active mode or in the switched-off mode. In one exemplary embodiment, the power supply unit is placed inside a housing, similarly to a known battery holder, and a switching device has the form of a known battery door or a battery lid. Since the power supply unit does not have to be replaced like a battery, it may be sealed, apart from possible contacts, and is thus protected from sweat, moisture, and other contamination. If the switching device in the form of a battery door is opened slightly, there is no contact between the power supply unit and contact holders of the hearing instrument, whereby the dedicated pin of the control and monitoring device is also contactless and puts the power supply unit into the switched-off state. By closing the switching device in the form of a battery door, contacts of the power supply unit are pressed into the contact holders of the hearing instrument, whereby the dedicated pin of the control and monitoring device makes contact, and the power supply unit leaves the switched-off state.
Alternatively, an additional switch or a pushbutton may be arranged on the hearing instrument in order to put the power supply unit into a switched-off state.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 218 053 | Sep 2014 | DE | national |
This is a continuation application, under 35 U.S.C. § 120, of copending international application No. PCT/EP2015/070776, filed Sep. 10, 2015, which designated the United States; this application also claims the priority, under 35 U.S.C. § 119, of German patent application No. DE 10 2014 218 053.8, filed Sep. 10, 2014; the prior applications are herewith incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3475566 | Bauer | Oct 1969 | A |
5995636 | Topholm | Nov 1999 | A |
6410997 | Sjursen | Jun 2002 | B1 |
7522739 | Rass et al. | Apr 2009 | B2 |
7790702 | Hori et al. | Sep 2010 | B2 |
8023678 | Fischer | Sep 2011 | B2 |
20040081328 | Leedom et al. | Apr 2004 | A1 |
20080232625 | Koch | Sep 2008 | A1 |
20100260367 | Hasler et al. | Oct 2010 | A1 |
20120314892 | Cheng et al. | Dec 2012 | A1 |
20140321682 | Kofod-Hansen | Oct 2014 | A1 |
20150289068 | Sundberg | Oct 2015 | A1 |
20150295216 | Okuno | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1161001 | Oct 1997 | CN |
9415594 | Mar 1996 | DE |
19903090 | Aug 2000 | DE |
102004023049 | Dec 2005 | DE |
102007029375 | Nov 2008 | DE |
202008016880 | Apr 2009 | DE |
102011004966 | Mar 2012 | DE |
Number | Date | Country | |
---|---|---|---|
20170188162 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2015/070776 | Sep 2015 | US |
Child | 15455462 | US |