Heart regurgitation method and apparatus

Information

  • Patent Grant
  • 8597347
  • Patent Number
    8,597,347
  • Date Filed
    Thursday, November 15, 2007
    16 years ago
  • Date Issued
    Tuesday, December 3, 2013
    10 years ago
Abstract
A regurgitation implant may comprise a conduit or straw which may be coupled to a shaft. The shaft may be coupled to at least one anchor portion configured to couple the regurgitation implant to native coronary tissue. At least a portion of the conduit may be configured to be disposed proximate a mitral valve such that the regurgitation implant may interact and/or cooperate with at least a portion of the native mitral valve to induce a controlled amount of regurgitation through the conduit and therefore through the mitral valve. The regurgitation through the conduit and the mitral valve may cause the heart to dilute in a manner that is generally consistent with advanced disease of the heart. The amount of regurgitation may therefore be adjusted depending on the desired condition of the heart.
Description
FIELD

The present disclosure relates to diagnosing dysfunctional heart valves, and more particularly pertains to heart regurgitation methods and apparatus.


BACKGROUND

A human heart has four chambers, the left and right atrium and the left and right ventricles. The chambers of the heart alternately expand and contract to pump blood through the vessels of the body. The cycle of the heart includes the simultaneous contraction of the left and right atria, passing blood from the atria to the left and right ventricles. The left and right ventricles then simultaneously contract forcing blood from the heart and through the vessels of the body. In addition to the four chambers, the heart also includes a check valve at the upstream end of each chamber to ensure that blood flows in the correct direction through the body as the heart chambers expand and contract. These valves may become damaged, or otherwise fail to function properly, resulting in their inability to properly close when the downstream chamber contracts. Failure of the valves to properly close may allow blood to flow backward through the valve resulting in decreased blood flow and lower blood pressure.


Mitral regurgitation is a common variety of heart valve dysfunction or insufficiency. Mitral regurgitation occurs when the mitral valve separating the left coronary atrium and the left ventricle fails to properly close. As a result, upon contraction of the left ventricle blood may leak or flow from the left ventricle back into the left atrium, rather than being forced through the aorta. Any disorder that weakens or damages the mitral valve can prevent it from closing properly, thereby causing leakage or regurgitation. Mitral regurgitation is considered to be chronic when the condition persists rather than occurring for only a short period of time.


Regardless of the cause, mitral regurgitation may result in a decrease in blood flow through the body (cardiac output). Correction of mitral regurgitation typically requires surgical intervention. Surgical valve repair or replacement is carried out as an open heart procedure. The repair or replacement surgery may last in the range of about three to five hours, and is carried out with the patient under general anesthesia. The nature of the surgical procedure requires the patient to be placed on a heart-lung machine. Because of the severity/complexity/danger associated with open heart surgical procedures, corrective surgery for mitral regurgitation is typically not recommended until the patient's ejection fraction drops below 60% and/or the left ventricle is larger than 45 mm at rest.


Although mitral regurgitation is present in a many human patients throughout the world, there are far less known instances of the disease in typical animal test species. As such, there is no known reliable sources for naturally occurring congestive heart failure animal models for the purposes of testing efficacy of a given therapy. Most efficacy test models rely on some type of surgical intervention to compromise the heart function of the test specimen prior to application of the test therapy and these interventions introduce many co-morbidities into the experiments as a result of the initial surgery.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantage of the claimed subject matter will be apparent from the following description of embodiments consistent therewith, which description should be considered in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of one embodiment of a regurgitation implant;



FIG. 2 depicts another embodiment of a regurgitation implant including a plurality of conduits;



FIG. 3 depicts yet another embodiment of a regurgitation implant;



FIG. 4 depicts one embodiment of a regurgitation implant implanted within a heart in an open position; and



FIG. 5 depicts the regurgitation implant of FIG. 4 implanted within a heart in a closed position;





DESCRIPTION

Referring to FIG. 1, a perspective view of one embodiment of a regurgitation implant 10 for inducing a controlled regurgitation in a heart valve (for example, a mitral heart valve) is shown. The regurgitation implant 10 may generally include a conduit or straw 12 which may be coupled to a shaft 14. The shaft 14 may be coupled to at least one anchor portion 16 configured to couple, attach, and/or otherwise secure the regurgitation implant 10 to native coronary tissue. In general, at least a portion of the conduit 12 may be configured to be disposed proximate a mitral valve such that the regurgitation implant 10 may interact and/or cooperate with at least a portion of the native mitral valve to induce a controlled amount of regurgitation through the conduit 12 and therefore through the mitral valve. The regurgitation through the conduit 12 and the mitral valve may cause the heart to dilute in a manner that is generally consistent with advanced disease of the heart. The amount of regurgitation may therefore be adjusted depending on the desired condition of the heart.


The conduit or straw 12 may be configured to provide at least one opening or passageway through the heart valve when the heart valve is in the closed position in order to provide the desired amount of regurgitation. According to one embodiment, the conduit or straw 12 may define a passageway 18 having at least a first and a second end 20, 22 configured to extend between a first chamber of the heart, through a heart valve, and into a second chamber of the heart. For example, the passageways 18 may be configured to extend from the left atrium, through the mitral valve, and into the left ventricle. According to another embodiment, the regurgitation implant 10 may include a plurality of passageways 18 as generally shown in FIG. 2. The diameter of the passageways 18 may be selected to provide the desired amount of regurgitation flow through the heart valve when the heart valve is in the closed position.


At least a portion of the conduit or straw 12 may be constructed from a synthetic and/or biological material depending on the application and the patient condition and may include a plurality of layers. For example, the conduit or straw 12 may include an open or closed cell foam substrate (for example, but not limited to, Invalon polyvinyl) and an outer layer of a material that is biologically acceptable. The outer layer may also include a material that is soft and/or deformable (either permanently or resiliently deformable) that may reduce and/or eliminate further scarring and/or damage to the leaflets of the valve. According to one aspect, the substrate of the conduit or straw 12 may be coated with or formed substantially from a silicone urethane composite such as, but not limited to, Elasteon or the like.


According to one embodiment, the conduit or straw 12 may include a stent-like structure. For example, the conduit or straw 12 may include a frame (for example, a helical frame, braided frame, interconnecting row frame, or hatched frame) that may define a generally cylindrical structure configured to provide at least one opening through the heart valve when the heart valve is in the closed position. The conduit or straw 12 may optionally include a substrate such as, but not limited to, polytetrafluoroethylene (PTFE), disposed about at least a portion of the frame of the conduit or straw 12. The substrate may also include a coating or layer (for example, a coating or layer of PTFE) disposed about the inner and/or outer surfaces of the conduit or straw 12. According to another embodiment, the conduit or straw 12 may include a generally tube-like structure. For example, the conduit or straw 12 may include a generally tube-like structure made from PTFE.


At least a portion of the conduit or straw 12 may be collapsible and/or expandable. The conduit or straw 12 may be configured to fit through the lumen of a catheter or the like when collapsed to facilitate delivery of the regurgitation implant 10 to the heart. According to one embodiment, the conduit or straw 12 may include a self-expanding metallic stent (SEMS). The SEMS may include a shape-memory alloy such as, but not limited to, copper-zinc-aluminum, copper-aluminum-nickel, and nickel-titanium (NiTi) alloys, polyurethane, and polyethylene. The shape-memory alloy may include either one-way or two-way shape memory and may be introduced in to the delivery catheter lumen (not shown) having a shape which does not exceed the interior dimensions of the delivery catheter lumen. The conduit or straw 12 may also include a plastic self-expanding stent (such as, but not limited to, Polyflex® made by Boston Scientific). The conduit or straw 12 may also be expandable through use of a balloon or the like. For example, one or more fluids (gases and/or liquids) may be provided to inflate the conduit or straw 12 from the collapsed position to the expanded position.


The conduit or straw 12 may be mounted, coupled, or otherwise secured to at least part of the shaft 14. For example, the conduit or straw 12 may be generally disposed along a portion of the shaft 14 as shown in FIGS. 1 and 2. The shaft 14 may extend beyond the ends 20, 22 of the conduit or straw 12 as generally shown in FIG. 1 and may optionally include bushing or the like 24 disposed about the distal-most end of the shaft 14. The bushing 24 may optionally include a driver configured to engage with a clamping mechanism as generally described in co-pending U.S. patent application Ser. No. 11/940,694, which is fully incorporated herein by reference. According to another embodiment, the shaft 14 may terminate at or before the distal-most end of the conduit or straw 12 as generally shown in FIGS. 2 and 3.


The conduit or straw 12 may be coupled to at least a portion of the shaft 14 by way of an adhesive or cement (such as, but not limited to, a biologically acceptable adhesive or cement), bonding/molding (such as, but not limited to, overmolding and the like), or welding (such as, but not limited to, ultrasonic welding or the like). The conduit or straw 12 may also be coupled to at least a portion of the shaft 14 using a fastening mechanism. The fastening mechanism may substantially fix the position of one or more of the conduit or straw 12 with respect to the regurgitation implant 10 (and specifically with respect to the shaft 14). According to another aspect, the fastening mechanism may allow one or more of the conduits or straws 12 to move relative to the shaft 14. For example, the fastening mechanism may allow the one or more of the conduits or straws 12 to move generally along the longitudinal axis and/or radially with respect to the shaft 14.


Turning now to FIG. 4, one embodiment of a heart 60 is shown in a condition in which the pressure of blood within the left atrium 62 is at equal to, or higher than, the pressure of blood within the left ventricle 64, e.g., during contraction of the left atrium 62. As shown, when the pressure of blood within the left atrium 62 is greater than or equal to the pressure of blood within the left ventricle 64, blood may flow from the left atrium 62 into the left ventricle 64. In the open position, the pressure differential causes a flow of blood from the left atrium 62 to the left ventricle 64. Additionally, the flow of blood from left atrium 62 to the left ventricle 64 may cause the mitral valve 61 to flare and/or expand outwardly away from the mitral valve implant 10. The regurgitation implant 10 may provide sufficient clearance between the mitral valve 61 and the conduit or spacer 12 to permit adequate blood flow from the left atrium 62 to the left ventricle 64. Some of the blood may also flow through the regurgitation implant 10 as generally indicated by the arrows.


As the left ventricle 64 contracts, the pressure of blood in the left ventricle 64 may increase such that the blood pressure in the left ventricle 64 is greater than the blood pressure in the left atrium 62. Additionally, as the pressure of the blood in the left ventricle 64 initially increases above the pressure of the blood in the left atrium 62, blood may begin to flow towards and/or back into the left atrium 62.


In the closed position as shown in FIG. 5, at least a portion of the conduit or straw 12 may interact with, engage, and/or be positioned adjacent to at least a portion of the mitral valve 61. For example, at least a portion of at least one cusp 63 of the mitral valve 61 may contact at least a portion of the conduit or straw 12. Engagement between the conduit or straw 12 and the mitral valve 61 may generally restrict the flow of blood from the left ventricle 64 back into the left atrium 62. In addition to restricting the flow of blood from the left ventricle 64 to the left atrium 62, the regurgitation implant 10 may induce a controlled amount of regurgitation through the conduit or straw 12 and therefore through the mitral valve 61 as generally indicated by the arrows. The inducement of regurgitation through the mitral valve 61 may cause the heart 60 to dilate in a manner that is generally consistent with heart disease.


The regurgitation implant 10 may be inserted in the heart 60 percutaneously (for example, by way of a catheter-based delivery system as generally described in co-pending U.S. patent application Ser. No. 11/258,828, entitled “Heart Valve Implant” filed on Oct. 26, 2005, U.S. patent application Ser. No. 11/748,147, entitled “Safety for Mitral Valve Plug” filed on May 14, 2007, U.S. patent application Ser. No. 11/748,138, entitled “Solid Construct Mitral Spacer” filed on May 14, 2007, and U.S. patent application Ser. No. 11/748,121, entitled “Balloon Mitral Spacer” filed on May 14, 2007, all of which are hereby incorporated by reference. The use of the catheter-based delivery system may spare the recipient (for example, an animal) from the collateral damage that may be caused by surgical or drug induced techniques. The regurgitation implant 10, in and of itself, may not alter the anatomy of the valve, but may serve to create a heart output insufficiency that may cause the heart to naturally remodel in a manner the same as or similar to a heart (such as a human heart) suffering from valvular regurgitation.


The regurgitation implant 10 herein has been disclosed above in the context of a mitral valve implant. An regurgitation implant 10 consistent with the present disclosure may also suitably be employed in other applications, e.g., as an implant associated with one of the other valves of the heart, etc. The present disclosure should not, therefore, be construed as being limited to use for reducing and/or preventing regurgitation of the mitral valve.


According to one aspect, the present disclosure features an implant comprising a shaft, at least one anchor coupled to a first end region of the shaft, and at least one conduit coupled to the shaft. The conduit is configured to interact with at least a portion of at least one cusp of a heart valve to induce a controlled amount of regurgitation through the heart valve in a closed position.


According to another aspect, the present disclosure features a regurgitation implant comprising a shaft, at least one anchor coupled to an end region of the shaft, and at least one conduit coupled to the shaft configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through the heart valve in a closed position. The conduit defines at least one passageway configured to extend through the heart valve and induce a controlled amount of regurgitation through the heart valve in the closed position.


According to yet another aspect, the present disclosure features a method of inducing regurgitation. The method comprises providing a regurgitation implant including at least one anchor portion and conduit coupled to a shaft. The implant is percutaneously inserted into a heart and secured within the heart such that the conduit interacts with at least a portion of at least one cusp of a heart valve to define at least one passageway through the heart valve configured to induce a controlled amount of regurgitation through the heart valve in a closed position.


As mentioned above, the present disclosure is not intended to be limited to a system or method which must satisfy one or more of any stated or implied object or feature of the present disclosure and should not be limited to the preferred, exemplary, or primary embodiment(s) described herein. The foregoing description of a preferred embodiment of the present disclosure has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the present disclosure to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiment was chosen and described to provide the best illustration of the principles of the present disclosure and its practical application to thereby enable one of ordinary skill in the art to utilize the present disclosure in various embodiments and with various modifications as is suited to the particular use contemplated. All such modifications and variations are within the scope of the present disclosure as determined by the claims when interpreted in accordance with breadth to which they are fairly, legally and equitably entitled.

Claims
  • 1. An implant comprising: a shaft;at least one anchor coupled to a first end region of said shaft; andat least one conduit coupled to said shaft and configured to engage against at least a portion of a heart valve between a first and a second heart chamber when said implant is extended through said heart valve, wherein said at least one conduit includes a first and a second open end configured to be disposed within said first and said second heart chambers, respectively such that a controlled amount of regurgitation flows into said first open end, through said heart valve, and out said second open end when said heart valve is in a closed position.
  • 2. The implant of claim 1, wherein said at least one conduit comprises a stent.
  • 3. The implant of claim 1, wherein said at least one conduit comprises a frame.
  • 4. The implant of claim 3, wherein at least a portion of said frame comprises a layer of polytetrafluoroethylene.
  • 5. The implant of claim 1, wherein at least a portion of said conduit is expandable.
  • 6. The implant of claim 5, wherein said expandable portion comprises an inflatable bladder.
  • 7. The implant of claim 5, wherein said expandable portion comprises a shape memory material configured to recoverably deform.
  • 8. The implant of claim 1 comprising a plurality of conduits defining a plurality of passageways configured to induce regurgitation through said heart valve in said closed position.
  • 9. The implant of claim 1, wherein a second end region of said shaft generally opposite from said first end region extends beyond a distal-most end region of said conduit.
  • 10. The implant of claim 9, wherein said second end region of said shaft comprises a driver configured to engage a clamping mechanism of a delivery system.
  • 11. The implant of claim 1, wherein a portion of said conduit extends beyond a second end region of said shaft generally opposite from said first end region.
  • 12. The implant of claim 1, wherein said anchor portion include at least one helical screw.
  • 13. A regurgitation implant comprising: a shaft;at least one anchor coupled to an end region of said shaft; andat least one conduit coupled to said shaft configured to engage against at least a portion of at least one cusp of a heart valve when said device is extended through said heart valve, so as to at least partially restrict a flow of blood through said heart valve when said heart valve is in a closed position, wherein said at least one conduit defines at least one passageway configured to extend through said heart valve and including a first open end configured to be disposed within a first heart chamber and a second open end configured to be disposed within a second heart chamber such that a controlled amount of regurgitation flows into said first open end, through said heart valve, and out said second open end when said heart valve is in said closed position.
  • 14. The regurgitation implant of claim 13, wherein at least a portion of said conduit is expandable.
  • 15. The regurgitation implant of claim 14, wherein said expandable portion comprises an inflatable bladder.
  • 16. The regurgitation implant of claim 14, wherein said expandable portion comprises a shape memory material configured to recoverably deform.
  • 17. A method according to claim 14, wherein percutaneously inserting said at least partially collapsed regurgitation implant comprises inserting said regurgitation implant into a lumen of a catheter and delivering said regurgitation implant to said left ventricle via said catheter.
  • 18. A method of inducing regurgitation comprising: providing a regurgitation implant comprising at least one anchor portion and conduit coupled to a shaft;percutaneously inserting said regurgitation implant into a heart; andsecuring said regurgitation implant within said heart such that said at least one conduit extends through a heart valve between two heart chambers and engages against at least a portion of at least one cusp of said heart valve to define at least one passageway through said heart valve configured to induce a controlled amount of regurgitation through said heart valve in a closed position.
  • 19. The method of claim 18 further comprising: at least partially collapsing said regurgitation implant;percutaneously delivering said at least partially collapsed regurgitation implant proximate said heart; andexpanding said at least partially collapsed regurgitation implant.
US Referenced Citations (198)
Number Name Date Kind
2549731 Wattley Apr 1951 A
2625967 Stull Jan 1953 A
3197788 Segger Aug 1965 A
3445916 Schulte May 1969 A
3551913 Shiley et al. Jan 1971 A
3586029 Evers Jun 1971 A
3589392 Meyer Jun 1971 A
3671979 Moulopoulos Jun 1972 A
3689942 Rapp Sep 1972 A
3714671 Edwards et al. Feb 1973 A
3739402 Cooley et al. Jun 1973 A
3983581 Angell et al. Oct 1976 A
4079468 Liotta et al. Mar 1978 A
4084268 Ionescu et al. Apr 1978 A
4259753 Liotta et al. Apr 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4439185 Lundquist Mar 1984 A
4535757 Webster, Jr. Aug 1985 A
4597767 Lenkei Jul 1986 A
4865030 Polyak Sep 1989 A
4960424 Grooters Oct 1990 A
5002067 Berthelsen et al. Mar 1991 A
5217484 Marks Jun 1993 A
5222973 Sharpe et al. Jun 1993 A
5261916 Engelson Nov 1993 A
5304195 Twyford, Jr. et al. Apr 1994 A
5308357 Lichtman May 1994 A
5318589 Lichtman Jun 1994 A
5350397 Palermo et al. Sep 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5462527 Stevens-Wright et al. Oct 1995 A
5509428 Dunlop Apr 1996 A
5582607 Lackman Dec 1996 A
5611800 Davis et al. Mar 1997 A
5634936 Linden et al. Jun 1997 A
5638827 Palmer et al. Jun 1997 A
5649949 Wallace et al. Jul 1997 A
5653712 Stern Aug 1997 A
5665100 Yoon Sep 1997 A
5776075 Palmer Jul 1998 A
5792179 Sideris Aug 1998 A
5797958 Yoon Aug 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5891130 Palermo et al. Apr 1999 A
5895391 Farnholtz Apr 1999 A
5928224 Laufer Jul 1999 A
5957865 Backman et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5989242 Saadat et al. Nov 1999 A
5993474 Ouchi Nov 1999 A
6090096 St. Goar et al. Jul 2000 A
6152144 Lesh et al. Nov 2000 A
6168614 Andersen et al. Jan 2001 B1
6190373 Palermo et al. Feb 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6283127 Sterman et al. Sep 2001 B1
6283995 Moe et al. Sep 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6332893 Mortier et al. Dec 2001 B1
6358277 Duran Mar 2002 B1
6415693 Simon et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6440132 Jackson Aug 2002 B1
6454798 Moe Sep 2002 B1
6461382 Cao Oct 2002 B1
6482228 Norred Nov 2002 B1
6508825 Selmon et al. Jan 2003 B1
6592606 Huter et al. Jul 2003 B2
6652578 Bailey et al. Nov 2003 B2
6673100 Diaz et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6746404 Schwartz Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6805711 Quijano et al. Oct 2004 B2
6821297 Snyders Nov 2004 B2
6830584 Sequin Dec 2004 B1
6830585 Artof et al. Dec 2004 B1
6849081 Sepetka et al. Feb 2005 B2
6869444 Gabbay Mar 2005 B2
6896700 Lu et al. May 2005 B2
6911043 Myers et al. Jun 2005 B2
6971998 Rosenman et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
7018406 Sequin et al. Mar 2006 B2
7056286 Ravenscroft et al. Jun 2006 B2
7070618 Streeter Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7160322 Gabbay Jan 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7344553 Opolski et al. Mar 2008 B2
7374572 Gabbay May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7657326 Bodner et al. Feb 2010 B2
7678145 Vidlund et al. Mar 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7785366 Maurer et al. Aug 2010 B2
8092525 Eliasen et al. Jan 2012 B2
8216302 Wilson et al. Jul 2012 B2
8486136 Maurer et al. Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
20010007956 Letac et al. Jul 2001 A1
20010010017 Cribier et al. Jul 2001 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020058995 Stevens May 2002 A1
20020077566 Laroya et al. Jun 2002 A1
20020081553 Tramonte Jun 2002 A1
20020183838 Liddicoat et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20030033009 Gabbay Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030139751 Evans et al. Jul 2003 A1
20030144574 Heilman et al. Jul 2003 A1
20030181945 Opolski et al. Sep 2003 A1
20030199975 Gabbay Oct 2003 A1
20030208203 Lim et al. Nov 2003 A1
20030212453 Mathis et al. Nov 2003 A1
20040034366 van der Burg et al. Feb 2004 A1
20040044402 Jung et al. Mar 2004 A1
20040088047 Spence et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040122512 Navia et al. Jun 2004 A1
20040127981 Rahdert et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040181256 Glaser Sep 2004 A1
20040210304 Sequin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20050021056 St. Goar et al. Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038508 Gabbay Feb 2005 A1
20050038509 Ashe Feb 2005 A1
20050065591 Moberg et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090824 Shluzas et al. Apr 2005 A1
20050131451 Kleshinski et al. Jun 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050222488 Chang et al. Oct 2005 A1
20050288786 Chanduszko Dec 2005 A1
20060025855 Lashinski et al. Feb 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060084943 Rosenman et al. Apr 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060149368 Spence Jul 2006 A1
20060155326 Aranyi Jul 2006 A1
20060178700 Quinn Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060195185 Lane et al. Aug 2006 A1
20060199995 Vijay Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060253072 Pai et al. Nov 2006 A1
20060293698 Douk Dec 2006 A1
20070049980 Zielinski et al. Mar 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070118151 Davidson May 2007 A1
20070167981 Opolski et al. Jul 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070198050 Ravenscroft et al. Aug 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070213578 Khairkhahan et al. Sep 2007 A1
20070232981 Ravenscroft et al. Oct 2007 A1
20070239154 Shaolian et al. Oct 2007 A1
20070255399 Eliasen et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070293943 Quinn Dec 2007 A1
20080125860 Webler et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080183105 Greenhalgh et al. Jul 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080288061 Maurer et al. Nov 2008 A1
20090043382 Maurer et al. Feb 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090105814 Groothuis et al. Apr 2009 A1
20090131880 Speziali et al. May 2009 A1
20090132033 Maurer et al. May 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090240326 Wilson et al. Sep 2009 A1
20100022948 Wilson et al. Jan 2010 A1
20100324668 Maurer et al. Dec 2010 A1
20120143320 Eliasen et al. Jun 2012 A1
Foreign Referenced Citations (17)
Number Date Country
0125393 Nov 1984 EP
1323438 Feb 2003 EP
1264472 Feb 1972 GB
1268484 Mar 1972 GB
1388064 Mar 1975 GB
03049619 Jun 2003 WO
WO2006032051 Mar 2006 WO
2006064490 Jun 2006 WO
2006091597 Aug 2006 WO
2006111391 Oct 2006 WO
2006127509 Nov 2006 WO
2007064810 Jun 2007 WO
2007078772 Jul 2007 WO
2007100409 Sep 2007 WO
2007140470 Dec 2007 WO
2008079828 Jul 2008 WO
2009053952 Apr 2009 WO
Non-Patent Literature Citations (253)
Entry
Extended European search report dated Nov. 30, 2010 issued in European Patent Application No. 08850467.5, 6 pages.
Extended European search report dated Nov. 30, 2010 issued in European Patent Application No. 08755418.4, 7 pages.
Extended European search report dated Nov. 30, 2010 issued in European Patent Application No. 08849442.2, 6 pages.
Glenn et al., “The Surgical Treatment of Mitral Insufficiency with Particular Reference to the Application of a Vertically Suspended Graft” Jul. 1956 (pp. 59-77).
Glover, et al., “The Fate of Intracardiac Pericardial Grafts as Applied to the Closure of Septal Defects and to the Relief of Mitral Insufficiency” 1952 (pp. 178-185).
Harken et al., “The Surgical Correction of Mitral Insufficienty” Surgical Forum 1954 (pp. 4-7).
Harken et al, “The Surgical Correction of Mitral Insufficiency” The Journal of Thoracic Surgery 1954 (pp. 604-627).
Henderson et al., “The Surgical Treatment of Mitral Insufficiency” Jun. 1953 (pp. 858-868).
International Search and Written Opinion mailed May 11, 2007 filed in corresponding PCT patent application PCT/US06/39011(8 pages).
Johns et al., Mitral Insufficiency: the Experimental Use of a Mobile Polyvinyl sponge Prosthesis: Sep. 1954 (pp. 335-341).
Moore, et al., “Unsuitability of Transventricular Autogenous Slings for Diminishing Valvular Insufficiency” Feb. 1953 (pp. 173-182).
“PVA Datasheet”, www.sponge-pva.com/data.htm, Dec. 20, 2006, 2 pages.
“PVA Sponge W (wet) & D (dry)”, Ceiba Technologies, http://www.ceibatech.com/PVASpongeW&D.htm, Dec. 20, 2007 5 pages.
Sakakibara, “A Surgical Approach to the Correction of Mitral Insufficienty” Aug. 1955 (pp. 196-203).
SPI-Chem™ Vinylec® (Formvar®) Resins, http://www.2spi.com/catalog/submat/formvar-resins.shtml, Dec. 20, 2006, 5 pages.
Trippel et al, “Reinforced Ivalon Sponge as an Aortic Prosthesis”, Annals of Surgery, Feb. 1960, vol. 151, No. 2, pp. 216-224.
“Vinylec® Resins”, http://www.2spi.com/catalog/submat/vinylec-physical.html, Dec. 20, 2006, 1 page.
Fukuda et al., Maintenance of Geometric Alterations Associated with Percutaneous Mitral Valve Repair: Real-Time Three-Dimensional Echocardiographic Assessment in an Ovine Model, J. Heart Valve Dis, May 2008, vol. 17, No. 3, 276-282.
Pai et al., Effect of Atrial Fibrillation on the Dynamics of Mitral Annular Area, J. Heart Valve Dis., Jan. 2003, vol. 12, No. 1, 31-37.
Palacios et al., Safety and Feasibility of Acute Percutaneous Septal Sinus Shortening: First-In-Human Experience, Catheterization and Cardiovascular Interventions, 2007, vol. 69, 513-518.
Paniagua et al., First Human Case of Retrograde Transcatheter Implantation of an Aortic Valve Prosthesis, Texas Heart Institute Journal, Transcatheter Aortic Valve Prosthesis, 2005, vol. 32, No. 3, 393-398.
Rodés-Cabau et al., Feasibility and Initial Results of Percutaneous Aortic Valve Implantation Including Selection of the Transfemoral or Transapical Approach in Patients With Severe Aortic Stenosis, The American Journal of Cardiology, 2008, 1240-1246.
Satpathy et al., Delayed Defibrillator Lead Perforation: An Increasing Phenomenon, Pace, Jan. 2008, vol. 31, 10-12.
Schofer, Percutaneous MVR: Clinical Evaluation—The Carillon Experience, EuroPCR 2007, Barcelona, Spain, May 22-25, 2007, 35 pages.
Schwammenthal et al., Dynamics of Mitral Regurgitant Flow and Orifice Area—Physiologic Application of the Proximal Flow Convergence Method: Clinical Data and Experimental Testing, Circulation, Jul. 1994, vol. 90, No. 1, 307-322.
Spencer, Viacor, Inc. Announces First Patient Treated in PTOLEMY-2 Study, http://www.viacorinc.com/viacor—news.html, Nov. 14, 2008, downloaded Feb. 24, 2009, 2 pages.
Sterliński et al., Subacute cardiac perforations associated with active fixation leads, Clinical Research Leads and Lead Extraction, Europace, 2009, vol. 11, 206-212.
Turakhia et al., Rates and severity of perforation from implantable cardioverter-defibrillator leads: A 4-year study, J Interv Card Electrophysiol, 2009, vol. 24, 47-52.
Vahanian, The Cardiologist's Perspective on the Future of Percutaneous Mitral Valve Repair, Euro PCR07, 53 pages.
Vahanian, Coronary Sinus and Direct Annuloplasty Percutaneous Mitral Valve Repair, Innovations in Cardiovascular Interventions, Dec. 7-9, 2008, Tel-Aviv, Israel, 45 pages.
Vahanian, Edwards MONARC system—Evolution Interim Results, 31 pages.
Vahanian, Overview on Percutaneous Mitral Valve Technology, Euro PCR07, Transcatheter Valve Symposium, Barcelona, May 22-25, 2007, 29 pages.
Van Gelder et al., Diagnosis and Management of Indavertently Placed Pacing and ICD Leads in the Left Ventricle: A Multicenter Experience and Review of the Literature, Pace, May 2000, vol. 23, 877-883.
Vranckx et al., The TandemHeart®, percutaneous transseptal left ventricular assist device: a safeguard in high-risk percutaneous coronary interventions. The six-year Rotterdam experience, Clinical research EuroInterv., 2008, vol. 4, 331-337.
Wolf et al., Solid and gaseous cerebral micorembolization after biologic and mechanical aortic valve replacement: Investigation with multirange and multifrequency transcranial Doppler ultrasound, The Journal of Thoracic and Cardiovascular Surgery, Mar. 2008, vol. 135, No. 3, 512-520.
Xiangming et al., In Vivo Characterization of Attachment Safety Between Cardiac Pacing Lead and Canine Heart Muscle, Acta Mechanica Solida Sinica, Sep. 2007, vol. 20, No. 3, 189-197.
Yamaura et al., Geometrical Demonstration and Three-Dimensional Quantitative Analysis of the Mitral Valve With Real-Time Three-Dimensional Echocardiography: Novel Anatomical Image Creation System, J Echocardiogr, 2004, vol. 2, No. 4, 99-104.
Yosefy et al., Proximal Flow Convergence Region as Assessed by Real-time 3-Dimensional Echocardiography: Challenging the Hemispheric Assumption, Journal of the American Society of Echocardiography, Apr. 2007, vol., No. 4, 389-396.
U.S. Office Action dated Jun. 2, 2010 issued in U.S. Appl. No. 12/209,686, 15 pages.
U.S. Office Action dated Jun. 28, 2010 issued in U.S. Appl. No. 11/258,828, 14 pages.
Notice of Allowance dated Jul. 1, 2010 issued in U.S. Appl. No. 11/940,674, 6 pages.
International Search Report and Written Opinion dated Jul. 6, 2010 issued in PCT Patent Application No. PCT/US2010/032764, 9 pages.
U.S. Office Action dated Jul. 20, 2010 issued in U.S. Appl. No. 11/748,147, 15 pages.
Ryhänen et al., In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness, Muscle and Perineural Tissue Response to Nitinol, Jan. 19, 1998, pp. 481-488.
Kerensky, Complications of Cardiac Catheterization and Strategies to Reduce Risks, Diagnostic and Therapeutic Cardiac Catheterization, 1998, Chapter 8, 91-105.
Koertke et al., INR Self-Management Permits Lower Anticoagulation Levels After Mechanical Heart Valve Replacement, downloaded from circ.ahajournals.org, Aug. 26, 2008, II-75-II-78.
Kratz et al., St. Jude Prosthesis for Aortic and Mitral Valve Replacement: A Ten-Year Experience, The Society of Thoracic Surgeons, 1993, 462-8, 56.
Kron et al., Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation, The Society of Thoracic Surgeons, 2002, 600-1, 74.
Kuwahara et al., Mechanism of Recurrent/Persistent Ischemic/Functional Mitral Regurgitation in the Chronic Phase After Surgical Annuloplasty—Importance of Augmented Posterior Leaflet Tethering, Circulation, Jul. 4, 2006, I-529-I-534.
Laskey et al., Multivariable Model for Prediction of Risk of Significant Complication During Diagnostic Cardiac Catheterization, Catheterization and Cardiovascular Diagnosis, 1993, 185-190, 30.
Lee et al., Mitral Valve Reconstruction: Experience Related to Early and Late Mortality and Reoperation, J Heart Valve Dis, Nov. 2005, 715-721, vol. 14, No. 6.
Liddicoat et al., Percutaneous Mitral Valve Repair: A Feasibility Study in an Ovine Model of Acute Ischemic Mitral Regurgitation, Catheterization and Cardiovascular Interventions, 2003, 410-416, 60.
Lim et al., Percutaneous Transthoracic Ventricular Puncture for Diagnostic and Interventional Catheterization, Catheterization and Cardiovascular Interventions, 2008, 915-918, 71.
Lin et al., Severe Symptomatic Tricuspid Valve Regurgitation Due to Permanent Pacemaker or Implantable Cardioverter-Defibrillator Leads, Journal of the American College of Cardiology, May 17, 2005, 1672-5, vol. 45, No. 10.
Lozonschi et al., Transapical Mitral Valved Stent Implantation, The Society of Thoracic Surgeons, 2008, 745-8, 86.
Mack, Percutaneous Therapies for Mitral Regurgitation: Where Do We Stand and Where Are We Going? Do Current Devices Really Represent a Step Forward Compared to Surgery?, 2007 Heart Valve Summit, Jun. 7, 2007, 59 pages.
Maleki et al., Intracardiac Ultrasound Detection of Thrombus on Transseptal Sheath: Incidence, Treatment, and Prevention, Journal of Cardiovascular Electrophysiology, Jun. 2005, 561-565, vol. 16, No. 6.
Maniu et al., Acute and Chronic Reduction of Functional Mitral Regurgitation in Experimental Heart Failure by Percutaneous Mitral Annuloplasty, Journal of the American College of Cardiology, Oct. 19, 2004, 1652-61, vol. 44, No. 8.
McGee et al., Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation, Surgery for Acquired Cardiovascular Disease, The Journal of Thoracic and Cardiovascular Surgery, Dec. 2004, 916-924.e4, vol. 128, No. 6.
Mehra et al., Surgery for Severe Mitral Regurgitation and Left Ventricular Failure: What Do We Really Know?, Journal of Cardiac Failure, Mar. 2008, 145-150. vol. 14, No. 2.
Menicanti et al., Functional Ischemic Mitral Regurgitation in Anterior Ventricular Remodeling: Results of Surgical Ventricular Restoration with and Without Mitral Repair, Heart Failure Reviews, 2004, 317-327, 9.
Messas et al., Efficacy of Chordal Cutting to Relieve Chronic Persistent Ischemic Mitral Regurgitation, Circulation, Sep. 9, 2003, II-111-II-115.
Meurin et al., Thromboembolic events early after mitral valve repair: Incidence and predictive factors, International Journal of Cardiology, 2008, 45-52, 126.
Mirable et al., What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery?, The European Society of Cardiology, 2007, 1358-65, 28.
Mitchell et al., Complications, Cardiac catheterization and coronary intervention, Chapter 9, 2008, 238-270.
Mishra et al., Coapsys Mitral Annuloplasty for Chronic Functional Ischemic Mitral Regurgitation: 1-Year Results, The Society of Thoracic Surgeons, 2006, 42-46, 81.
Morgan et al., Left Heart Catheterization by Direct Ventricular Puncture: Withstanding the Test of Time, Catheterization and Cardiovascular Diagnosis, 1989, 87-90, 16.
Murday et al., A Prospective Controlled Trial of St. Jude Versus Starr Edwards Aortic and Mitral Valve Prostheses, The Society of Thoracic Surgeons, 2003, 66-74, 76.
Nifong et al., Robotic mitral valve surgery: A United States multicenter trial, The Journal of Thoracic and Cardiovascular Surgery, Jun. 2005, 1395-1404, vol. 129, No. 6.
Noto et al., Cardiac Catheterization 1990: A Report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I), Catheterization and Cardiovascular Diagnosis, 1991, 75-83, 24.
Ohlow et al., Incidence and outcome of femoral vascular complications among 18,165 patients undergoing cardiac catheterisation, International Journal of Cardiology, 2008, 1-6.
Piazza et al., Transcatheter Mitral Valve Repair for Functional Mitral Regurgitation: Coronary Sinus Approach, Journal of Interventional Cardiology, 2007, 495-508, vol. 20, No. 6.
Pedersen et al., iCoapsys Mitral Valve Repair System: Percutaneous Implantation in an Animal Model, Catheterization and Cardiovascular Interventions, 2008, 125-131, 72.
Prifti et al., Ischemic Mitral Valve Regurgitation Grade II-III: Correction in Patients with Impaired Left Ventricular Function undergoing Simultaneous Coronary Revascularization, J Heart Valve Dis, Nov. 2001, 754-762, vol. 10, No. 6.
Richardson et al., Is a port-access mitral valve repair superior to the sternotomy approach in accelerating postoperative recovery?, Interactive CardioVascular and Thoracic Surgery, Downloaded from icvts.ctsnetjournals.org, Aug. 26, 2008, 670-683, 7.
Ruiz, New Percutaneous Approaches for Mitral Regurgitation, Lenox Hill Heart and Vascular Institute of New York, May 13-16, 2008, 26 pages.
Rumel et al., Section on Cardiovascular Diseases—The Correction of Mitral Insufficiency With a Trans-Valvular Polyvinyl Formalinized Plastic (Ivalon) Sponge Prosthesis, American College of Chest Physicians, Apr. 1958, Downloaded from chestjournal.org, Jul. 23, 2008, 401-413.
Seeburger et al., Minimal invasive mitral valve repair for mitral regurgitation: results of 1339 consecutive patients, European Journal of Cardio-thoracic Surgery, 2008, 1-6.
Southard et al., Current Catheter-Based Treatments of Functional Mitral Regurgitation, Cardiac Interventions Today, Jun. 2007, 41-44.
Svensson et al., United States Feasibility Study of Transcatheter Insertion of a Stented Aortic Valve by the Left Ventricular Apex, The Society of Thoracic Surgeons, 2008, 46-55, 86.
Toledano et al., Mitral regurgitation: Determinants for referral for cardiac surgery by Canadian cardiologists, Can J. Cardiol, Mar. 1, 2007, 209-214, vol. 23, No. 3.
Tops et al., Percutaneous Valve Procedures: An Update, Curr Probl Cardiol, Aug. 2008, 417-426.
Walther et al., Transapical minimally invasive aortic valve implantation; the initial 50 patients, European Journal of Cardio-thoracic Surgery, 2008, 983-988, 33.
Webb et al., Percutaneous Mitral Annuloplasty With the MONARC System: Preliminary Results From the Evolution Trial, TCT-103, The American Journal of Cardiology, Oct. 22-27, 2006, 49M.
Webb et al., Percutaneous Transvenous Mitral Annuloplasty—Initial Human Experience with Device Implantation in the Coronary Sinus, downloaded from circ.ahajournals.org, Aug. 26, 2008, 851-855.
Webster et al., Impact of transvenous ventricular pacing leads on tricuspid regurgitation in pediatric and congenital heart disease patients, J Interv Card Electrophysiol, 2008, 65-68, 21.
Ye et al., Six-month outcome of transapical transcatheter aortic valve implantation in the initial seven patients, European Journal of Cardio-thoracic Surgery, 2007, 16-21, 31.
Yoshida, et al., Assessment of Left-to-Right Atrial Shunting After Percutaneous Mitral Valvuloplasty by Transesophageal Color Doppler Flow-Mapping, Circulation, Dec. 1989, 1521-1526, vol. 80, No. 6.
Zhou et al., Thromboembolic Complications of Cardiac Radiofrequency Catheter Ablation: A Review of the Reported Incidence, Pathogenesis and Current Research Directions, Journal of Cardiovascular Electrophysiology, Apr. 1999, 611-620, vol. 10, No. 4.
Bailey et al, “Surgical Repair of Mitral Insufficiency” Feb. 1951 (pp. 125-137 ).
Bailey et al, “Closed Intracardiac Tactile Surgery” Jul. 1952 (pp. 1-24).
Bailey et al., “The Surgical Correction of Mitral Insufficiency by the Use of Pericardial Grafts” Dec. 1954 (pp. 551-627).
Benichoux et al., “A Method of Surgical Correction of Mitral Insufficiency” 1955 (pp. 148-158).
Blalock, “A Consideration of Some of the Problems in Cardiovascular Surgery” Jun. 1951 (pp. 543-571).
Borrie, “Mitral Insufficiency: Experimental Circular Suture Around the Artioventricular Ring” 1955 (pp. 687-697).
Carter et al. “Surgical Treatment of Mitral Insufficiency” 1953 (pp. 574-583).
European Search Report dated Jul. 12, 1984 cited in EP0125393.
“French catheter scale chart” http://en.wikipedia.org/wiki/French—catheter—scale—chart, Dec. 20, 2006, 1 page.
“General Physical Properties of PVA Sponge (values are not guaranteed)”, Ceiba Technologies, http://www.ceibatech.com/PVASpongeDate.htm, Dec. 20, 2006 3 pages.
Glenn et al., “The Implantation of a Vascularized Graft in the Chambers of the Heart” 1954 (pp. 5-11).
Glenn et al, “The Surgical Treatment of Mitral Insufficiency: the Fate of Vascularized Transchamber Intracardiac Graft” Apr. 1955 (pp. 510-518).
U.S. Office Action dated Aug. 30, 2010 issued in U.S. Appl. No. 11/748,138, 9 pages.
U.S. Office Action dated Aug. 31, 2010 issued in U.S. Appl. No. 11/748,121, 11 pages.
International Search Report and Written Opinion dated Sep. 21, 2010 issued in PCT Patent Application No. PCT/US2010/043360, 9 pages.
Acar et al., AREVA: Multicenter Randomized Comparison of Low-Dose Versus Standard-Dose Anticoagulation in Patients With Mechanical Prosthetic Heart Valves, Circulation, Nov. 1, 1996, 2107-12, vol. 94, No. 9.
Acker et al., Mitral valve surgery in heart failure: Insights from the Acorn Clinical Trial, Surgery for Acquired Cardiovascular Disease, The Journal of Thoracic and Cardiovascular Surgery, Sep. 2006, 568-577.e4, vol. 132, No. 3.
Babaliaros et al., Emerging Applications for Transseptal Left Heart Catheterization—Old Techniques for New Procedures, Journal of the American College of Cardiology, Jun. 3, 2008, 2116-22, vol. 51, No. 22.
Kuck et al., Best of Structural Heart Disease Abstracts, TCT-124, The American Journal of Cardiology, Oct. 20-25, 2007, 58L.
Rinaldi et al., Best of Structural Heart Disease Abstracts, TCT-123, The American Journal of Cardiology, Oct. 20-25, 2007, 57L.
Siminiak et al., Best of Structural Heart Disease Abstracts, TCT-125, The American Journal of Cardiology, Oct. 20-25, 2007, 58L.
B-Lundqvist et al., Transseptal Left Heart Catheterization: A Review of 278 Studies, Clin. Cardiol., Jan. 1986, 21-26, vol. 9.
Bonow et al., ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease: Executive Summary, Circulation—Journal of the American Heart Association, Downloaded from circ.ahajournals.org, Jul. 31, 2008, 449-527.
Braunberger et al., Very Long-Term Results (More Than 20 Years) of Valve Repair With Carpentier's Techniques in Nonrheumatic Mitral Valve Insufficiency, Downloaded from circ.ahajournals.org, Aug. 26, 2008, I-8-I-11.
Bryan et al., Prospective randomized comparison of CarboMedics and St. Jude Medical bileaflet mechanical heart valve prostheses: Ten-year follow-up, The Journal of Thoracic and Cardiovascular Surgery, Mar. 2007, 614-622.e2, vol. 133, No. 3.
Burkhoff et al., A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock, American Heart Journal, Sep. 2006, 469.e1-469.e8, vol. 152, No. 3.
Byrne et al., Percutaneous Mitral Annular Reduction Provides Continued Benefit in an Ovine Model of Dilated Cardiomyopathy, Downloaded from circ.ahajournals.org, Aug. 26, 2008, 3088-92.
Carpentier et al., Reconstructive surgery of mitral valve incompetence Ten-year appraisal, The Journal of Thoracic and Cardiovascular Surgery, Mar. 1980, 338-348, vol. 79, No. 3.
Casselman et al., Mitral Valve Surgery Can Now Routinely Be Performed Endoscopically, Downloaded from circ.ahajoumals.org, Aug. 26, 2008, II-48-II-54.
Cauchemez et al., High-Flow Perfusion of Sheaths for Prevention of Thromboembolic Complications During Complex Catheter Ablation in the Left Atrium, Journal of Cardiovascular Electrophysiology, Mar. 2004, 276-283, vol. 15, No. 3.
ClinicalTrials.gov, Aachen Safety and Efficacy of the Percutaneous Transvenous Mitral Annuloplasty Device to Reduce Mitral Regurgitation (PTOLEMY), http://clinicaltrials.gov/ct2/show/NCT00572091?term=mitral+regurgitation&rank=2, Aug. 25, 2008, 1-3.
ClinicalTrials.gov, Feasibility Study of a Percutaneous Mitral Valve Repair System., http://clinicaltrials.gov/ct2/show/NCT00209339?term=mitral+valve&rank=3, Aug. 25, 2008, 1-4.
ClinicalTrials.gov, Montreal Safety and Efficacy of the Percutaneous Transvenous Mitral Annuloplasty Device (PTOLEMY), http://clinicaltrials.gov/ct2/show/NCT00571610?term=mitral+regurgitation&rank=13, Aug. 25, 2008, 1-4.
ClinicalTrials.gov, Pivotal Study of a Percutaneous Mitral Valve Repair System, http://clinicaltrials.gov/ct2/show/NCT00209274?term=mitral+valve&rank=1, Aug. 25, 2008, 1-4.
ClinicalTrials.gov, RESTOR-MV: Randomized Evaluation of a Surgical Treatment for Off-Pump Repair of the Mitral Valve, http://clinicaltrials.gov/ct2/show/NCT00120276?term=myocor&rank=1, Aug. 25, 2008, 1-5.
ClinicalTrials.gov, Safety and Efficacy of the Percutaneous Transvenous Mitral Annuloplasty Device to Reduce Mitral Regurgitation (PTOLEMY), http://clinicaltrials.gov/ct2/show/NCT00568230?term=mitral+valve&rank=53, Aug. 25, 2008, 1-3.
ClinicalTrials.gov, VIVID—Valvular and Ventricular Improvement Via iCoapsys Delivery—Feasibility Study, http://clinicaltrials.gov/ct2/show/NCT00512005?term=mitral+valve&rank=12, Aug. 25, 2008, 1-4.
Crabtree et al., Recurrent Mitral Regurgitation and Risk Factors for Early and Late Mortality After Mitral Valve Repair for Functional Ischemic Mitral Regurgitation, The Society of Thoracic Surgeons , 2008, 1537-43, 85.
Criber et al., Early Experience With Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients With Calcific Aortic Stenosis, Journal of the American College of Cardiology, Feb. 18, 2004, 698-703, vol. 43, No. 4.
De Bonis et al., Similar long-term results of mitral valve repair for anterior compared with posterior leaflet prolapse, The Journal of Thoracic and Cardiovascular Surgery, Feb. 2006, 364-370, vol. 131, No. 2.
Deloche et al., Valve repair with Carpentier techniques the second decade, The Journal of Thoracic and Cardiovascular Surgery, Jun. 1990, 990-1002, vol. 99, No. 6.
De Simone et al., A clinical study of annular geometry and dynamics in patients with ischemic mitral regurgitation: new insights into asymmetrical ring annuloplasty, European Journal of Cardio-thoracic Surgery, 2006, 355-361, 29.
Detaint et al., Surgical Correction of Mitral Regurgitation in the Elderly—Outcomes and Recent Improvements, Downloaded from circ.ahajournals.org, Aug. 26, 2008, 265-272.
Dubreuil et al., Percutaneous Mitral Valve Annuloplasty for Ischemic Mitral Regurgitation: First in Man Experience With a Tempory Implant, Catheterization and Cardiovascular Interventions, 2007, 1053-61, 69.
Duffy et al., Feasibility and Short-Term Efficacy of Percutaneous Mitral Annular Reduction for the Therapy of Funcitonal Mitral Regurgitation in Patients With Heart Failure, Catheterization and Cardiovascular Interventions, 2006, 205-210, 68.
Epstein et al, Gross and Microscopic Pathological Changes Associated With Nonthoracotomy Implantable Defibrillator Leads, Downloaded from circ.ahajournals.org, Jul. 23, 2008, 1517-24.
Epstein et al., Embolic Complications Associated With Radiofrequency Catheter Ablation, The American Journal of Cardiology, Mar. 15, 1996, 655-658, vol. 77.
Fagundes et al., Safety of Single Transseptal Puncture for Ablation of Atrial Fibrillation: Retrospective Study from a Large Cohort of Patients, Journal of Cardiovascular Electrophysiology, Dec. 2007, 1277-81, vol. 18, No. 12.
Feldman et al., Patient selection for percutaneous mitral valve repair: insight from early clinical trial applications, Nature Clinical Practice Cardiovascular Medicine, Feb. 2008, 84-90, vol. 5, No. 2.
Feldman et al., Percutaneous Mitral Valve Repair Using the Edge-to-Edge Technique—Six-Month Results of the EVEREST Phase I Clinical Trial, Journal of the American College of Cardiology, Dec. 6, 2005, 2134-40, vol. 46, No. 11.
Fernandez et al., Early and late-phase events after valve replacement with the St. Jude Medical prosthesis in 1200 patients, The Journal of Thoracic and Cardiovascular Surgery, Feb. 1994, 394-407, vol. 107, No. 2.
Gillinov et al., Durability of Mitral Valve Repair for Degenerative Disease, The Journal of Thoracic and Cardiovascular Surgery, Nov. 1998, 734-743, vol. 116, No. 5.
Grossi et al., Intraoperative Effects of the Coapsys Annuloplasty System in a Randomized Evaluation (RESTOR-MV) of Functional Ischemic Mitral Regurgitation, The Society of Thoracic Surgeons, 2005, 1706-11, 80.
Grossi et al., Late Results of Mitral Valve Reconstruction in the Elderly, The Society of Thoracic Surgeons, 2000, 1224-6, 70.
Grossi et al., Minimally Invasive Mitral Valve Surgery: A 6-Year Experience With 714 Patients, The Society of Thoracic Surgeons, 2002, 660-4, 74.
Hendren et al., Mitral Valve Repair for Ischemic Mitral Insufficiency, The Society of Thoracic Surgeons, 1991, 1246-52, 52.
Heupler et al., Infection Prevention Guidelines for Cardiac Catheterization Laboratories, Catheterization and Cardiovascular Diagnosis, 1992, 260-263, 25.
Hvass et al., Papillary Muscle Sling: A New Functional Approach to Mitral Repair in Patients With Ischemic Left Ventricular Dysfunction and Functional Mitral Regurgitation, The Society of Thoracic Surgeons, 2003, 809-11, 75.
Ibrahim et al., The St. Jude Medical prosthesis—A thirteen-year experience, The Journal of Thoracic and Cardiovascular Surgery, Aug. 1994, 221-230, vol. 108, No. 2.
Iskandar et al., Tricuspid Valve Malfunction and Ventricular Pacemaker Lead: Case Report and Review of the Literature, Echocardiography: A Jrnl of CV Ultrasound & Allied Tech., 2006, 692-697, vol. 23, No. 8.
Kasegawa et al., Mitral Valve Repair for Anterior Leaflet Prolapse With Expanded Polytetrafluoroethylene Sutures, The Society of Thoracic Surgeons, 2006, 1625-31, 81.
Kaye et al., Feasibility and Short-Term Efficacy of Percutaneous Mitral Annular Reduction for the Therapy of Heart Failure-Induced Mitral Regurgitation, Downloaded from circ.ahajournals.org, Aug. 26, 2008, 1795-97.
International Search Report and Written Opinion dated Sep. 22, 2008 issued in PCT Application No. PCT/US08/63560, 11 pages.
International Search Report and Written Opinion dated Sep. 29, 2008 issued in PCT Application No. PCT/US08/63568, 12 pages.
Matthews, Anatomy of the Heart, Definitions Cardiology Explained and Presented by Robert Matthews, MD, http://www.rjmatthewsmd.com/Definitions/anatomy—ofthe—heart.htm, printed Jul. 28, 2008, 265 pages.
Mullens, Vascular access, Cardiac Catheterization in Congenital Heart Disease; Pediatric and Adult, 2006, Chapter 4, pp. 115-117, 5 pages, Blackwell Futura, USA.
Mullens, Aortic valve dilation, Cardiac Catheterization in Congenital Heart Disease; Pediatric and Adult, 2006, Chapter 19, pp. 487-489, 5 pages, Blackwell Futura, USA.
Mullens, Foreign body removal, Cardiac Catheterization in Congenital Heart Disease; Pediatric and Adult, 2006, Chapter 12, pp. 350-377, 30 pages, Blackwell Futura, USA.
Mullens, Flow directed catheters (“floating” balloon catheters), Cardiac Catheterization in Congenital Heart Disease; Pediatric and Adult, 2006, Chapter 7, pp. 213-221, 9 pages, Blackwell Futura, USA.
Balzer et al., Real-time transesophageal three-dimensional echocardiography for guidance of percutaneous cardiac interventions: first experience, Clinical Research in Cardiology, May 29, 2008, 565-574, vol. 97, No. 9.
Carlson et al., Lead Perforation: Incidence in Registries, Pace Industry Viewpoint, Jan. 2008, 13-15, vol. 31.
Clinical Trials.gov, Comparing the Effectiveness of a Mitral Valve Repair Procedure in Combination With Coronary Artery Bypass Grafting (CABG) Versus CABG Alone in People with Moderate Ischemic Mitral Regurgitation, http://clinicaltrials.gov/ct2/show/record/NCT00806988?term=mitral+repair&rank=7, Feb. 24, 2009, 1-3.
Clinical Trials.gov, Safety and Efficacy Study of the PTMA Device to Reduce Mitral Valve Regurgitation in Patients With Heart Failure (PTOLEMY2Canada), http://clinicaltrials.gov/ct2/show/study/NCT00815386?term=Viacor&rank=3, 1-3.
Clinical Trials.gov, Study of Safety and Efficacy of the Percutaneous Reduction of Mitral Valve Regurgitation in Heart Failure Patients (PTOLEMY-2), http://clinicaltrials.gov/ct2/show/NCT00787293?term=Viacor&rank=5, 1-2.
Cohen, Trans-Septal Technique for Tandemheart Insertion, Lenox Hill Heart and Vascular Institute of New York, Barcelona May 22-25, 2007, 18 pages.
Corbisiero et al., Does Size Really Matter? A Comparison of the Riata Lead Family Based on Size and Its Relation to Performance, Pace, Jun. 2008, vol. 31, 722-726.
Criber et al., Treatment of Calcific Aortic Stenosis With the Percutaneous Heart Valve—Mid-Term Follow-Up From the Initial Feasibility Studies: The French Experience, Journal of the American College of Cardiology, Mar. 21, 2006, vol. 47, No. 6, 1241-1223.
Danik et al., Timing of delayed perforation with the St. Jude Riata lead: A single-center experience and a review of the literature, Heart Rhythm Society, Dec. 2008, vol. 5, No. 12, 1667-1672.
Del Valle-Fernández et al., Transcatheter heart valves for the treatment of aortic stenosis: state-of-the-art, Minerva Cardioangiologica, Oct. 2008, vol. 56, No. 5, 543-556.
Douthitt, Cardiac Dimensions® Inc. Receives CE Mark for CARILLION™ Mitral Contour System™, Cardiac Dimensions—News, htpp://www.cardiacdimensions.com/usa/press-release-2-4-09.html, downloaded Feb. 24, 2009, 1-2.
Dvorin, Endovalve Inc., Pioneering percutaneous mitral valve replacement., Start-Up Windhover's Review of Emerging Medical Ventures, Jun./Jul. 2006, vol. 11, No. 7, 1-2.
Eltchaninoff, Clinical results of percutaneous aortic valve implantation, Euro PCR07, Cribier-Edwards, 30 pages.
Evalve reports 1st MitraClip treatments in the Netherlands, Medical Device Daily, Feb. 19, 2009, vol. 13, No. 32, 2 pages.
A first for MiCardia's Dynoplasty, Medical Device Daily, Feb. 19, 2009, vol. 13, No. 32, 1 page.
Fitts et al. , Fluoroscopy-Guided Femoral Artery Puncture Reduces the Risk of PCI-Related Vascular Complications, Journal of Interventional Cardiology, vol. 21, No. 3, 2008, 273-278.
Gelsomino et al., Left ventricular diastolic function after restrictive mitral ring annuloplasty in chronic ischemic mitral regurgitation and its predictive value on outcome and recurrence of regurgitation, International Journal of Cardiology, vol. 132, 2009, 419-428.
Geyfman et al., Cardiac Tamponade as Complication of Active-Fixation Atrial Lead Perforations: Proposed Mechanism and Management Algorithm, PACE, Apr. 2007, vol. 30, 498-501.
Gorman et al., Surgical Therapy for Mitral Regurgitation: The Key to Preventing Heart Failure?, Prevention of Heart Failure After Myocardial Infarction, 2008, 211-215.
Harper, Evalve Announces Enrollment Completion of the Everest Randomized Study, http://www.evalveinc.com/europe/press/l7.html, downloaded Feb. 24, 2009, 1-3.
Harper, Two-Year Follow-Up Data Demonstrates Preservation of Adequate Mitral Valve Area in Patients Treated with the MitraClip®-system, http://www.evalveinc.com/europe/press/21.html, downloaded Feb. 24, 2009, 1-3.
Hung et al., 3D Echocardiography: A Review of the Current Status and Future Directions, ASE Position Paper, Journal of the American Society of Echocardiography, Mar. 2007, 213-233.
Hung et al., Mechanism of Dynamic Regurgitant Orifice Area Variation of Functional Mitral Regurgitation—Physiologic Insights From the Proximal Flow Convergence Technique, Journal of the American College of Cardiology, Feb. 1999, vol. 33, No. 2, 538-545.
Hung et al., A Novel Approach for Reducing Ischemic Mitral Regurgitation by Injection of a Polymer of Reverse Remodel and Reposition Displaced Papillary Muscles, Circulation—Journal of the American Heart Association, Sep. 30, 2008, Downloaded from circ.ahajournals.org at National Insthealth Lib on Feb. 25, 2009, S262-S269.
Hytowitz, First U.S. Patients Enrolled in the Realism Continued Access Study, evalve, http://www.evalveinc.com/europe/press/22/html, downloaded Feb. 24, 2009, 2 pages.
International Search Report and Written Opinion dated Feb. 25, 2009 issued in PCT Application No. PCT/US08/83570, 13 pages.
International Search Report and Written Opinion dated Apr. 2, 2009 issued in PCT Application No. PCT/US08/83574, 8 pages.
Jilaihawi et al., Percutaneous Aortic Valve Replacement in Patients with Challenging Aortoiliofemoral Access, Catheterization and Cardiovascular Interventions, 2008, vol. 72, 885-890.
Jovin et al., Atrial Fibrillation and Mitral Valve Repair, Pace, Aug. 2008, vol. 31, 1057-1063.
Kahlert et al., Direct Assessment of Size and Shape of Noncircular Vena Contracta Area in Functional Versus Organic Mitral Regurgitation Using Real-Time Three-Dimensional Echocardiography, Valvular Heart Disease, Journal of the American Society of Echocardiography, Aug. 2008, vol. 21, No. 8, 912-921.
Kempfert et al., Minimally invasive off-pump valve-in-a-valve implantation: the atrial transcatheter approach for re-operative mitral valve replacement, European Heart Journal, 2008, vol. 29, 2382-2387.
Kerensky, Complications of Cardiac Catheterization and Strategies to Reduce Risks, Diagnostic and Therapeutic Cardiac Catheterization—Third Edition—Chapter 8, 1998, 17 pages.
Kodali et al., Transcatheter Valve Repair and Replacement, Downloaded from arjournals.annualreviews.org by National Institute of Health Library on Feb. 25, 2009, 14 pages.
Kwan et al., Geometric Differences of the Mitral Apparatus Between Ischemic and Dilated Cardiomyopathy With Significant Mitral Regurgitation—Real-Time Three-Dimensional Echocardiography Study, Circulation, Mar. 4, 2003, 1135-1140.
Leung et al., Percutaneous Mitral Valve Repair—An overview of the current devices and techniques, Coronory/Cardiac Interventions—Endovascular Today, Oct. 2006, 26-33.
Levine et al., Mechanistic Insights into Functional Mitral Regurgitation, Valvular Heart Disease, 2009, 125-129.
Little et al., Three-Dimensional Ultrasound Imaging Model of Mitral Valve Regurgitation: Design and Evaluation, Ultrasound in Medicine and Biology, 2008, vol. 34, No. 4, 647-654.
Llaneras et al., Large Animal Model of Ischemic Mitral Regurgitation, The Society of Thoracic Surgeons—Ischemic Mitral Insufficiency, 1994, vol. 57, 432-439.
Magne et al., Ischemic Mitral Regurgitation: A Complex Multifaceted Disease, Cardiology, 2009, vol. 112, 244-259.
McClure et al., Early and late outcomes in minimally invasive mitral valve repair: An eleven-year experience in 707 patients, Acquired Cardiovascular Disease, The Journal of Thoracic and Cardiovascular Surgery, Jan. 2009, vol. 137, No. 1, 70-75.
Modi et al., Minimally invasive mitral valve surgery: a systematic review and meta-analysis, European Journal of Cardio-Thoracic Surgery, 2008, vol. 34, 943-952.
Myers, Jr., et al., Color Doppler Velocity Accuracy Proximal to Regurgitant Orifices: Influence of Orifice Aspect Ratio, Ultrasound in Medicine and Biology, 1999, vol. 25, No. 5, 771-792.
Ning et al., Live three-dimensional transesophageal echocardiography in mitral valve surgery, Chinese Medical Journal, 2008, vol. 121, No. 20, 2037-2041.
Nötzold et al., Microemboli in aortic valve replacement, Future Drugs Ltd, Expert Rev. Cardiovasc. Ther., vol. 4, No. 6, 2006, 853-859.
Onundarson et al., Warfarin anticoagulation intensity in specialist-based and in computer-assisted dosing practice, International Journal of Laboratory Hematology, 2008, vol. 30, 382-389.
Otsuji et al., Insights From Three-Dimensional Echocardiography Into the Mechanism of Functional Mitral Regurgitation—Direct In Vivo Demonstration of Altered Leaflet Tethering Geometry, Circulation, Sep. 16, 1997, vol. 96, No. 6, 1999-2008.
Eisenhauer et al., Closure of Prosthetic Paravalvular Mitral Regurgitation With the Gianturco-Grifka Vascular Occlusion Device, Catheterization and Cardiovascular Interventions, 2001, 5 pages,vol. 54.
Hourihan et al., Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks, American College of Cardiology, Nov. 15, 1992, 7 pages, vol. 20, No. 6.
Moscucci et al., Coil Embolization of a Periprosthetic Mitral Valve Leak Associated With Severe Hemolytic Anemia, Images in Cardiovascular Medicine, American Heart Association, Inc., 2001, 2 pages, vol. 104.
Rashkind et al. Nonsurgical closure of patent ductus arteriosus: clinical application of the Rashkind PDA Occluder System, Therapy and Prevention—Congenital Heart Disease, Mar. 1987, 10 pages, vol. 75, No. 3.
Ryhänen et al., Invivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness, Muscle and Perineural Tissue Response to Nitinol, Received Aug. 11, 1997; accepted Jan. 19, 1998, 8 pages.
International Search Report and Written Opinion dated Jan. 16, 2009 issued in PCT Application No. PCT/US08/83497, 10 pages.
U.S. Office Action dated Dec. 15, 2009 issued in U.S. Appl. No. 11/258,828, 12 pages.
U.S. Office Action dated Jan. 8, 2010 issued in U.S. Appl. No. 11/748,147, 63 pages.
U.S. Office Action dated Jan. 14, 2010 issued in U.S. Appl. No. 11/940,674, 59 pages.
U.S. Office Action dated Jan. 25, 2010 issued in U.S. Appl. No. 11/748,121, 9 pages.
U.S. Office Action dated Feb. 4, 2010 issued in U.S. Appl. No. 11/748,138, 58 pages.
U.S. Office Action dated Jul. 8, 2009 issued in U.S. Appl. No. 11/258,828, 7 pages.
International Search Report and Written Opinion dated Aug. 11, 2009 issued in PCT Application No. PCT/US2009/046995, 11 pages.
U.S. Office Action dated Sep. 29, 2009 issued in U.S. Appl. No. 12/209,686, 9 pages.
Extended European Search Report dated Dec. 1, 2010 issued in European Patent Application No. 08755426.7, 6 pages.
Extended European Search Report dated Dec. 14, 2010 issued in European Patent Application No. 06816336.9, 7 pages.
U.S. Office Action dated Mar. 21, 2011 issued in U.S. Appl. No. 11/258,828, 22 pages.
U.S. Office Action dated Mar. 29, 2011 issued in U.S. Appl. No. 11/748,121, 14 pages.
European Examination Report dated Aug. 4, 2011 issued in European Patent No. 06 816 336.9, 3 pages.
U.S. Office Action dated Aug. 29, 2011 issued in U.S. Appl. No. 11/940,694, 11 pages.
European Examination Report dated Aug. 11, 2011 issued in European Patent No. 08 755 418.4, 3 pages.
Canadian Office Action dated Sep. 18, 2012 issued in Canadian Patent Application No. 2,627,517, 2 pages.
Intent to Grant dated Jan. 2, 2013 issued in European Patent Application No. 06816336.9, 7 pages.
Notice of Allowance dated Jan. 9, 2013 issued in U.S. Appl. No. 11/748,121, 7 pages.
Notice of Allowance dated Oct. 31, 2011 issued in U.S. Appl. No. 11/258,828, 10 pages.
Preliminary Report on Patentability dated Nov. 1, 2011 issued in PCT Patent Application No. PCT/US2010/032764, 4 pages.
U.S. Office Action dated Nov. 3, 2011 issued in U.S. Appl. No. 12/872,228, 8 pages.
Notice of Allowance dated Dec. 14, 2011 issued in U.S. Appl. No. 12/431,399, 12 pages.
U.S. Office Action dated Dec. 21, 2011, issued in U.S. Appl. No. 11/748,121, 9 pages.
U.S. Office Action dated Jun. 20, 2012 issued in U.S. Appl. No. 11/940,694, 9 pages.
U.S. Office Action dated Jun. 21, 2012 issued in U.S. Appl. No. 11/748,147, 29 pages.
Notice of Allowance dated Jul. 20, 2012 issued in U.S. Appl. No. 11/748,121, 10 pages.
U.S. Office Action dated Sep. 19, 2012, issued in U.S. Appl. No. 12/510,929, 10 pages.
U.S. Office Action dated Oct. 9, 2012, issued in U.S. Appl. No. 12/872,228, 7 pages.
U.S. Notice of Allowance dated Nov. 21, 2012, issued in U.S. Appl. No. 11/748,121, 8 pages.
European Intent to Grant dated Feb. 22, 2013 issued in European Patent Application No. 08 755 418.4, 7 pages.
European Search Report dated Mar. 6, 2013 issued in European Patent Application No. 10804952.9, 8 pages.
Notice of Allowance dated Mar. 8, 2013 issued in U.S. Appl. No. 11/748,138, 9 pages.
Final Office Action dated Mar. 13, 2013 issued in U.S. Appl. No. 11/748,147, 10 pages.
Final Office Action dated Mar. 22, 2013 issued in U.S. Appl. No. 12/510,929, 13 pages.
Notice of Allowance dated Apr. 11, 2013 issued in U.S. Appl. No. 13/545,927, 12 pages.
Supplemental Notice of Allowability dated May 2, 2013 issued in U.S. Appl. No. 13/545,927, 5 pages.
International Preliminary Report on Patentability dated Jan. 31, 2012 issued in PCT Patent Application No. PCT/US2010/043360, 7 pages.
U.S. Office Action dated Feb. 15, 2012 issued in U.S. Appl. No. 11/940,694, 9 pages.
U.S. Notice of Allowance dated Mar. 8, 2012 issued in U.S. Appl. No. 12/872,228, 7 pages.
Notice of Allowance dated Jul. 8, 2013 issued in Canadian Patent Application No. 2,627,517, 1 page.
Notice of Allowance dated Jun. 3, 2013 issued in U.S. Appl. No. 12/872,228, 7 pages.
Final Office Action dated Jun. 19, 2013 issued in U.S. Appl. No. 11/748,147, 10 pages.
Notice of Allowance dated Aug. 1, 2013 issued in U.S. Appl. No. 12/510,929, 10 pages.
Related Publications (1)
Number Date Country
20090131849 A1 May 2009 US