Heart shape preserving anchor

Information

  • Patent Grant
  • 11478351
  • Patent Number
    11,478,351
  • Date Filed
    Tuesday, July 21, 2020
    4 years ago
  • Date Issued
    Tuesday, October 25, 2022
    2 years ago
Abstract
Embodiments of a heart shape preserving anchor are disclosed herein. The heart shape preserving anchor can include a frame having one or more wings extending from a lower end of the frame. The frame can be sized and shaped to distribute forces over a large surface area thereby reducing pressures applied on the heart. The anchor can include a tether for coupling to a prosthesis, such as a replacement heart valve prosthesis. In some embodiments, the anchor can include a tether adjustment mechanism which can be wirelessly operated to adjust a length of the tether relative to the frame.
Description
BACKGROUND
Field

Certain embodiments disclosed herein relate generally to valve prostheses. In particular, certain embodiments relate to an anchoring system for use with replacement heart valves, such as for the mitral valve, wherein the anchoring system is configured to preserve the natural shape of the heart.


Background

Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow downstream, but block blood from flowing upstream. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation, which inhibit the valves' ability to control blood flow. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatuses to repair or replace impaired heart valves.


Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.


These replacement valves are often intended to at least partially block blood flow. However, a problem occurs when blood flows around the valve on the outside of the prosthesis. An additional challenge relates to the ability of such prostheses to be secured relative to intralumenal tissue, e.g., tissue within any body lumen or cavity, in an atraumatic manner.


SUMMARY

Embodiments of the present disclosure are directed to an anchoring system for a prosthesis, such as but not limited to a replacement heart valve. In some embodiments, an anchor for a replacement heart valve prosthesis can include a frame and a tether for attachment to a replacement heart valve prosthesis. The frame can have one or more wings extending upwardly from a lower end. The frame can have a generally conical shape to generally conform to the shape of the heart.


In some embodiments, a chordal replacement system can include a frame and a tether for attachment to a leaflet of a native mitral valve. The frame can have one or more wings extending upwardly from a lower end. The frame can have a generally conical shape to generally conform to the shape of the heart.


In some embodiments, a method of performing a procedure at a patient's heart can include delivering an anchor frame to an apex of the heart. The anchor frame can have one or more wings extending upwardly from a lower end. The frame can have a generally conical shape. The method can further include expanding the anchor frame, seating the lower end of the anchor frame against the apex of the heart, and applying tension to a tether connecting the anchor frame to a location within a chamber of the patient's heart, such as a replacement heart valve within a chamber of the patient's heart or native leaflets within a chamber of the patient's heart.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate embodiments of prostheses including embodiments of various components of these prostheses.



FIG. 1 is a side view of an embodiment of an anchoring system for a prosthesis.



FIG. 2 is a schematic of the anchoring system of FIG. 1 anchoring a prosthesis to the native mitral valve.



FIG. 3 side view of an embodiment of an anchoring system attached to an exterior of a heart.



FIGS. 4A-4E are a schematic representation of transapical deployment of an embodiment of a prosthesis having an anchoring system.



FIGS. 5A-5E are a schematic representation of transseptal deployment of an embodiment of a prosthesis having an anchoring system.



FIG. 6 is a side view of another embodiment of an anchoring system for a prosthesis.



FIG. 7 is a side view of another embodiment of an anchoring system for a prosthesis, the anchoring system having an adjustment system.



FIG. 8 is a schematic, side-oriented cross-section of the adjustment system of FIG. 7.



FIG. 9 is a schematic, top-oriented cross-section of the adjustment system of FIG. 7.



FIG. 10 is a schematic of a method of adjusting the adjustment system of FIG. 7.



FIG. 11 is a schematic, top-oriented cross-section of another embodiment of an adjustment system.



FIG. 12 is a schematic of an embodiment of a chordal replacement system.



FIG. 13 is a schematic of another embodiment of an anchoring system anchoring a prosthesis to the native mitral valve.



FIG. 14 is a schematic of another embodiment of an anchoring system anchoring a prosthesis to the native mitral valve.





DETAILED DESCRIPTION

The present specification and drawings provide aspects and features of the disclosure in the context of several embodiments of anchoring systems, prostheses, replacement heart valves, and methods that are configured for use in the vasculature of a patient, such as for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's mitral valve. However, it is to be understood that the features and concepts discussed herein can be applied to replacing other types of valves including, but not limited to, the aortic valve, the pulmonary valve, and the tricuspid valve. Moreover, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and/or securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within a vein, or the like. In addition, particular features of a prosthesis should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate.


Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “upward”, “downward”, “above”, “below”, “top”, “bottom” and similar terms refer to directions in the drawings to which reference is made. Terms such as “proximal”, “distal”, “radially outward”, “radially inward”, “outer”, “inner”, and “side”, describe the orientation and/or location of portions of the components or elements within a consistent but arbitrary frame of reference, which is made clear by reference to the text and the associated drawings describing the components or elements under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second”, and other such numerical terms referring to structures neither imply a sequence or order unless clearly indicated by the context.


In some embodiments, the term “proximal” may refer to the parts of the prostheses, or components thereof, which are located closer to the operator of the device and system (e.g., the clinician implanting the prosthesis). The term “distal” may refer to the parts of the prostheses, or components thereof, which are located further from the operator of the device and system (e.g., the clinician implanting the prosthesis). However, it is to be understood that this terminology may be reversed depending on the delivery technique utilized (e.g., a transapical approach as compared to a transseptal approach).


With reference first to FIGS. 1 and 2, an embodiment of an anchoring system 100 in an expanded configuration is illustrated. As shown in the illustrated embodiment, the anchoring system 100 can have frame 110 shaped to generally match the shape of the heart 10. For example, in some embodiments, the frame 110 can have a body with a generally conical shape to match the shape of the heart around the apex 20 of the left ventricle 22 of the heart 10 and/or the apex of the right ventricle 24. The frame 110 can include three wings or fingers 112a-c that extend upwardly from a lower end 113 of the frame 110 towards an upper end 115 of the frame 110. The wings or fingers 112a-c can form an angle with the tether 120. For example, the wings or fingers 112a-c can form an angle between about 20 degrees to about 90 degrees, between about 30 degrees to about 90 degrees, between about 40 degrees to about 90 degrees, any sub-range within these ranges, or other angles as desired. In some embodiments, the wings or fingers 112a-c can bend inwardly towards the tether 120. Although the frame 110 is shown with three wings or fingers 112a-c, it is to be understood that the frame 110 can have fewer or greater than three wings or fingers 112a-c. Moreover, although the wings or fingers 112a-c are shown equally spaced apart from each other, it is to be understood that the spacing between one or more of the wings or fingers 112a-c can differ. For example, the spacing between wings or fingers 112a-b can be less than the spacing between wings or fingers 112a and 112c.


As shown in the illustrated embodiment, the frame 110 can have a wireform shape bent to have one or more upper apices 114a-c and one or more lower apices 116a-c. The wireform shape of the frame 110 can advantageously allow the frame 110 to collapse into a small diameter during delivery to a target anchoring site. Moreover, the wireform shape of the frame 110 can allow parts of the frame 110 to deform without significantly affecting other parts of the frame 110. The wireform can be manufactured from metals such as nitinol or stainless steel, polymers such as polytetrafluoroethylene (PTFE), and/or other biocompatible materials. The wireform can include a covering (not shown) such as a soft biocompatible material, including but not limited to a fabric or polymer.


As shown in FIG. 2, the lower apices 116a-c of the frame 110 can be positioned at or proximate the apex 20 of the heart 10 and the frame 110. The wings or fingers 112a-c can extend upwardly and engage portions of the heart wall 12. In some embodiments, the frame 110 can extend along at least 10% the length of the heart, at least about 20% the length of the heart, at least about 30% the length of the heart, at least about 40% the length of the heart, or other lengths as desired. In some embodiments, the frame 110 can have a longitudinal length of at least about 4 cm, at least about 6 cm, at least about 8 cm, or other lengths as desired. The wings or fingers 112a-c can have a length of between about 2 cm to 10 cm, between about 4 cm to 8 cm, about 4 cm, any sub-ranges within these ranges, or other lengths as desired. Although the wings or fingers 112a-c are shown as having similar lengths, it is to be understood that one or more of the wings or fingers 112a-c can have different lengths.


The size, shape, and/or construction of the frame 110 helps ensure that the frame 110 distributes anchoring forces over a relatively large area on the heart 10, thereby reducing pressures applied to the heart 10. In some embodiments, the frame 110 can distribute anchoring forces along non-apical portions of the heart 10 in lieu of, or in addition to, anchoring forces along the apex 20 of the heart 10. This reduces the likelihood that the natural, conical shape of the heart 10 is deformed into a shape with reduced pumping performance. For example, the distribution of loads along non-apical portions of the heart 10 can reduce the likelihood that the apex is pulled inwardly, which can flatten the bottom of the ventricle. In some embodiments, the frame 110 can be deformable to better conform to the shape of the heart 10. As noted above, the frame 110 can be formed from a flexible wireform and/or covering, which can allow the frame 110 to better conform to the shape of the heart 10. This can be particularly advantageous since the heart 10 dynamically alters its shape throughout the cardiac cycle (e.g., diastole and systole). The deformable characteristic of the frame 110 can allow the frame 110 to maintain a substantial contact area with the heart 10 throughout these various phases. Moreover, the wire structure of the frame 110 and individual wings 112a-c can allow parts of the frame 110 to deform without substantially affecting other parts of the frame 110. This can enhance conformance of the frame 110 with the heart 10.


As shown in FIG. 2, the tether 120 is attached at one end to the frame 110 and at the other end to a prosthesis 130. The prosthesis 130 can include a flange 132 sized to contact an atrial surface of the native mitral valve. It is to be understood that prosthesis 130, and any other prosthesis described herein, may include features and concepts similar to those disclosed in U.S. Pat. Nos. 8,403,983, 8,414,644, 8,652,203, 9,681,951 and U.S. Publication Nos. 2011/0313515, 2014/0277390, 2014/0277427, and 2015/0328000, the entireties of each of which are hereby incorporated by reference and made a part of this specification. The lower end of the tether 120 is attached to each of the lower apices 116a-c and extends from a junction 122, which can be positioned along a longitudinal axis of the anchoring system 100. Due to the reduced likelihood that the natural, conical shape of the heart is deformed over time, the amount of tension applied by the tether to the prosthesis 130 can remain generally constant. This beneficially reduces the likelihood that the prosthesis 130 loosens over time.


With reference next to FIG. 3, an embodiment of an anchoring system 200 is illustrated. The shape and geometry of the anchoring system 200 can be similar to that of anchoring system 100 albeit enlarged. For example, the lower apices 216a-c of frame 210 can be positioned at or proximate an apex 20 of the heart 10. In some implementations, the first upper apex 214a can be positioned between the left anterior descending artery (LAD) 14 and the acute marginal artery (not shown) on the left anterolateral side of the left ventricle. The second upper apex 214b can be positioned between the acute marginal artery (not shown) and the posterior descending artery (not shown) on the posterolateral side of the left ventricle. The third upper apex 214c can be positioned on the right lateral side of the right ventricle, anterior or posterior to the obtuse marginal 16. As shown, the frame 210 significantly or wholly avoids contacting the coronary arteries, which can beneficially maintain blood flow through these arteries. Positioning of the anchor in this orientation can be performed using direct vision, fluoroscopy, or any other visualization mechanism. In some embodiments, the shape and/or spacing of the wings or fingers of frame 210 can be further tailored based on the patient's anatomy.


With reference next to FIGS. 4A-4E, an embodiment of a transapical delivery method is illustrated. While the method is described in connection with a native mitral valve, it is to be understood that the procedure can be utilized for other native heart valves, such as a tricuspid valve. As shown in FIG. 4A, a delivery instrument 300 can be advanced through an apex 20 of the heart 10 to the native mitral valve 30. A portion of the delivery instrument 300, such as a catheter or sheath, can be moved relative to the prosthesis 330 to expose the prosthesis 330 and allow the prosthesis 330 to partially expand. For example, the catheter or sheath can be retracted relative to the prosthesis 330. As shown in FIG. 4B, the catheter or sheath can be further moved relative to the prosthesis 330 to further expand the prosthesis. The prosthesis 330 can be pulled proximally to seat the prosthesis 330 against a portion of the native mitral valve, such as an atrial surface of the annulus. This can be performed by pulling on suture or tether 320. As shown in FIG. 4C, the sheath can be further moved relative to the prosthesis 330 such that a distal end of the catheter or sheath is positioned outside of the heart. As shown in FIG. 4D, the anchor frame 310 can be advanced through the catheter or sheath towards the heart 10. The anchor frame 310 can begin to expand as it extends beyond the sheath or catheter. As shown in FIG. 4E, the anchor frame 310 can be fully advanced through the catheter or sheath to deploy the anchor frame 310 against tissue of the heart 10. The anchor frame 310 can be seated against or proximate the apex 20 of the heart 10. In some embodiments, the length of the tether 320 can be modified at this stage, or any preceding stage, to apply a desired amount of tension to the prosthesis 330.


With reference next to FIGS. 5A-5E, an embodiment of a transseptal delivery method is illustrated. While the method is described in connection with a native mitral valve, it is to be understood that the procedure can be utilized for other native heart valves, such as a tricuspid valve. As shown in FIG. 5A, a delivery instrument 400 can be advanced through a femoral vein of a patient and into the left ventricle via an opening in the septum 40. As shown, a distal end 402 of the delivery instrument 400 can pass through an opening in the apex 20. As shown in FIG. 5B, relative movement between an anchor frame 410 and a portion of the delivery instrument 400, such as a catheter or sheath, can expose the anchor frame 410. For example, the anchor frame 410 can be advanced through the catheter or sheath and advanced outside of the distal end 402. As shown in FIG. 5C, further movement between the anchor frame 410 and the catheter or sheath can deploy the anchor frame 410. The anchor frame 410 can be pulled proximally to seat the anchor frame 410 against or proximate the apex 20 of the heart 10. This can be performed by pulling on suture or tether 420. As shown in FIG. 5D, the catheter or sheath can be moved relative to the prosthesis 430 to expose the prosthesis 430 and allow the prosthesis 430 to partially expand. For example, the catheter or sheath can be retracted relative to the prosthesis 430. As shown in FIG. 5E, the catheter or sheath can be further moved relative to the prosthesis 430 to further expand the prosthesis 430. In some embodiments, the length of the tether 420 can be modified at this stage, or any preceding stage, to apply a desired amount of tension to the prosthesis 430.


With reference next to FIG. 6, another embodiment of an anchoring system 500 in an expanded configuration is illustrated. As shown in the illustrated embodiment, the anchoring system 500 can have frame 510 shaped to generally match the shape of the heart. For example, in some embodiments, the frame 510 can have a body generally conical shape to match the apex of the heart. The frame 510 can be formed from a sheet and shaped to have one or more wings or fingers 512a-c extending from a base 511a. The sheet can be manufactured from metals such as nitinol or stainless steel, polymers such as polytetrafluoroethylene (PTFE), and/or other biocompatible materials. The wings or fingers 512a-c of frame 510 can allow parts of the frame 510 to deform without significantly affecting other parts of the frame 510. For example, deformation of wing or finger 512a can have little effect on the shape of wing or finger 512b. Moreover, the spacing between wings or fingers 512a-c can allow the frame 510 to be positioned to avoid parts of the native anatomy, such as coronary arteries.


In some embodiments, the frame 510 can include a covering, such as a soft biocompatible material, including but not limited to a fabric or polymer. The large surface area of the frame 510 can help ensure that the frame 510 distributes anchoring forces over a relatively large area on the heart, thereby reducing pressures applied to the heart. A tether (not shown) can extend from the base 511a.


With reference next to FIGS. 7-10, another embodiment of an anchoring system 600 in an expanded configuration is illustrated. With reference first to FIG. 7, the anchoring system 600 can include an anchor frame 610 similar to that described in connection with FIGS. 1 and 2; however, it is to be understood that the anchor frame 610 can include similar features and/or structures to frames 200, 510. The anchoring system 600 can include a tether 620 and a tether adjustment mechanism 630. As shown, the tether adjustment mechanism 630 can include a housing 632 and a piston 634 that can be moved relative to the housing. The housing 632 can be attached to lower apices of the frame 610 via one or more fasteners 636 including, but not limited to, mechanical and/or adhesive fasteners. The piston 634 can be attached to the tether 632. Relative movement between the piston 634 and the housing 632 can adjust the distance between tether 620 and the frame 610. This can beneficially allow a surgeon to adjust tension in the tether 620. In embodiments where the tether adjustment mechanism 630 is remotely operated, this can allow a surgeon to adjust tension without surgically accessing the anchor 610 and tether 620. This can advantageously allow the surgeon to adjust tension in the tether 620 days, months, or years after the surgical operation. This can be particularly beneficial in instances where tension on the tether 620 decreases over time. For example, the shape of the heart may gradually change leading to a reduced distance between a prosthesis (not shown) and the anchor 610, the prosthesis may seat differently, or the tether may stretch.


With reference next to FIGS. 8 and 9, schematic cross-sections of the tether adjustment mechanism 630 are illustrated. As shown in the illustrated embodiment, the height of the piston 634 can be adjusted via rotation of a screw drive 638. The screw drive 638 can be operated via a motor 640 having a worm gear 642. The tether adjustment mechanism 630 can include an electronic module 644 for operating the motor 640. The electronic module 644 can include a controller for converting drive commands to drive signals to the motor 640 and/or regulate power provided to the motor 640. The electronic module 644 can also include a wireless receiver to receive wireless signals, which can beneficially allow the tether adjustment mechanism to be remotely controlled. The tether adjustment mechanism 644 can include one or more antennas 646 to receive wireless signals. A unique passcode or security code can be implemented within the electronics module 644 to reduce the likelihood that the motor is driven by random electromagnetic fields rather than a signal provided by the surgeon. The unique passcode or security code can be included on a remote control device (648 in FIG. 10).


In some embodiments, the tether adjustment mechanism 630 can be wirelessly powered. For example, the tether adjustment mechanism 630 can allow for inductive power transfer. In some embodiments, a battery can be omitted thereby extending the usable lifespan of the tether adjustment mechanism 630; however, it is to be understood that a battery can be used in combination with, or in lieu of, inductive power transfer. Power can be transmitted inductively to the tether adjustment mechanism 630 via one or more antennas 646.


As shown in FIG. 10, the tether adjustment mechanism 630 can be wirelessly controlled with a remote control device 648. The surgeon can perform this operation under ultrasound echocardiography, or other visualization techniques, to ensure that the tether is being adjusted in an appropriate manner. In some embodiments, the wireless range between the tether adjustment mechanism 630 and the remote control device 648 can be relatively short in order to further reduce the likelihood of operation by random electromagnetic fields. For example, the wireless range can be less than 20 cm, less than 15 cm, less than 10 cm, or other wireless ranges as desired. However, it is to be understood that longer ranges can also be utilized.


With reference next to FIG. 11, another embodiment of an anchoring system 700 in an expanded configuration is illustrated. The anchoring system 700 can include an anchor frame 710 similar to that described in connection with FIGS. 1 and 2; however, it is to be understood that the anchor frame 710 can include similar features and/or structures to anchor frame 710. The anchoring system 700 can include a tether adjustment mechanism 730 with features similar to those of tether adjustment mechanism 630, such as a housing 732, piston (not shown), which can be attached to a tether (not shown), and a screw drive 738 for adjusting the height of the piston.


As shown in the illustrated embodiment, the tether adjustment mechanism 730 can be driven via an external magnetic field. A magnetic wheel 740 can be operated via a magnetic force supplied externally. For example, a remote controller can create a rotating magnetic field to rotate the wheel 740. The wheel 740 can include teeth 741 that engage complementary teeth of a sprocket or gear 742. The sprocket or gear 742 can rotatably drive a second sprocket or gear 744 having a worm gear. The worm gear can rotate the screw drive 738 to adjust the height of the piston. Use of a magnetically driven motor can beneficially reduce the amount of electronics contained within the tether adjustment mechanism. Although two sprockets 742, 744 are shown, the number of sprockets can be varied as desired.


With reference next to FIG. 12, an embodiment of a chordal replacement system 800 in an expanded configuration is illustrated. The system 800 can be used to support chordal replacement of a native valve, such as the native mitral valve 30. As shown in the illustrated embodiment, the system 800 can have frame 810 shaped to generally match the shape of the heart. For example, in some embodiments, the frame 810 can have the same features and/or characteristics of other frames described herein including, but not limited to, frame 110. The system 800 can include one or more tethers 820a, 820b that are tethered to mitral valve leaflets 32a, 32b. As such, the tethers 820a, 820b can function as a chordal replacement for the native mitral valve 30.


With reference next to FIGS. 13 and 14, in some embodiments the frame of the anchor can be positioned within the ventricle rather than outside the ventricle. With reference first to FIG. 13, a frame 910 of an anchoring system can be positioned within the left ventricle. The frame 910 can include one or more wings or fingers 912a, 912b extending upwardly. As shown, the tips of the wings or fingers 912a, 912b can engage a surface of the ventricle, such as a ventricular surface of the native mitral valve 30. The shape of the frame 910, along with contact along the tips of the wings or fingers 912a, 912b can inhibit movement of the frame 910 within the ventricle. In some embodiments, the frame 910 can be secured within the ventricle via engagement with other portions of the heart, such as chordae tendineae. A tether 920 can couple the frame 910 to a prosthesis 930.


With reference next to FIG. 14, a frame 1010 of an anchoring system can be positioned within the left ventricle. The frame 1010 can include one or more wings or fingers 1012a, 1012b extending upwardly. As shown, the tips of the wings or fingers 1012a, 1012b can extend a partial extent of the heart wall 12. The frame 1010 can be retained in position via an anchoring element 1022 that engages an exterior surface of the heart 10. The anchoring element 1022 can be coupled to the frame 1010 via a tether 1020 thereby inhibiting movement of the frame 1010 in a direction towards the left atrium. The same tether 1020 can couple the frame 1010 and the anchoring element 1022 to a prosthesis 1030. In other embodiments, a separate tether (not shown) can be used to couple the frame 1010 to the anchoring element 1022.


While the embodiments of anchoring systems described above can be maintained on the patient's heart permanently, or at least while the replacement valve remains in position, it is to be understood that components of the anchoring system, such as the frame or tether, can be temporary. In some embodiments, the frame and/or tether can be removed from the heart after the replacement valve is securely maintained in the native valve. For example, the replacement valve can be designed to allow tissue ingrowth to further secure the replacement valve to the native valve. The frame and/or tether can be removed after a desired amount of tissue ingrowth has occurred. This can further reduce the likelihood that the shape of the heart is affected due to contact with the frame and/or tether.


Other Embodiments

While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the systems and methods described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope of the disclosure. Accordingly, the scope of the present disclosure is defined only by reference to the claims presented herein or as presented in the future.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, or 0.1 degree.


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A system for replacing a native mitral valve, the system comprising: a replacement heart valve prosthesis;a frame shaped for placement on the exterior of a heart, the frame having a generally conical structure adapted for preserving a shape of the heart, the frame comprising two or more spaced-apart wings extending upwardly from a lower end of the frame; anda tether secured to the replacement heart valve prosthesis and slidably coupled to the frame,wherein the spaced-apart wings have a longitudinal length of between 4 cm and 10 cm and wherein the frame is shaped to extend upwardly from the lower end by at least 20 percent of a length of the heart.
  • 2. The system of claim 1, wherein the frame is formed from a wire.
  • 3. The system of claim 1, wherein at least some of the spaced-apart wings have different lengths.
  • 4. The system of claim 1, wherein the spaced-apart wings are circumferentially spaced for placement between arteries of the heart.
  • 5. The system of claim 1, wherein the anchor further comprises a tether adjustment mechanism configured to adjust a position of the tether relative to the frame, and wherein the tether adjustment mechanism is configured for wireless operation via a remote device.
  • 6. The system of claim 5, wherein the tether adjustment mechanism comprises an electronic motor.
  • 7. The system of claim 6, wherein the tether adjustment mechanism further comprises a piston configured to move relative to the frame, the tether being attached to the piston, wherein the electronic motor adjusts a position of the piston relative to the frame.
  • 8. The system of claim 7, wherein the tether adjustment mechanism further comprises a magnetic ring operably coupled to the piston.
  • 9. The system of claim 6, wherein the tether adjustment mechanism further comprises a receiver for receiving a wireless signal, wherein the wireless signal controls actuation of the electronic motor.
  • 10. The system of claim 1, wherein the frame is sized and shaped for the lower end to engage an apex of the heart and to distribute loads along non-apical portions of the heart.
  • 11. The system of claim 1, wherein the spaced-apart wings have a longitudinal length of at least 6 cm and wherein the frame is shaped to extend upwardly from the lower end by at least 30 percent of a length of the heart.
  • 12. A system for replacing a native mitral valve, the system comprising: a replacement mitral valve prosthesis;a frame for placement on the exterior of a heart, the frame having a substantially conical shape adapted for preserving a shape of the heart, the frame comprising two or more wings extending upwardly from a lower end of the frame; anda tether secured to the replacement heart valve prosthesis and slidably coupled to the frame, the tether configured to also be attached to a leaflet of a native mitral valve,wherein the two or more wings have a longitudinal length of at least 6 cm and wherein the frame is shaped to extend upwardly from the lower end by at least 30 percent of a length of the heart.
  • 13. The system of claim 12, wherein the frame is formed from a wire.
  • 14. The system of claim 12, wherein the two or more wings consist of three spaced-apart wings.
  • 15. The system of claim 14, wherein the three spaced-apart wings are circumferentially spaced for avoiding contact with coronary arteries of the heart.
  • 16. The system of claim 12, wherein the anchor further comprises a tether adjustment mechanism configured to adjust a position of the tether relative to the frame, and wherein the tether adjustment mechanism is configured for wireless operation via a remote device.
  • 17. The system of claim 16, wherein the tether adjustment mechanism includes a motor for adjusting a position of the tether.
  • 18. The system of claim 17, wherein the motor is operated by a wireless signal.
  • 19. The system of claim 12, wherein the frame is specifically tailored to conform to the patient's anatomy.
  • 20. The system of claim 12, wherein the frame is collapsible.
RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/US2019/014554, filed Jan. 22, 2019, which designates the United States and was published in English by the International Bureau on Jul. 25, 2019 as WO 2019/144121, which claims the benefit of U.S. Provisional Application No. 62/620,367, filed Jan. 22, 2018.

US Referenced Citations (168)
Number Name Date Kind
3671979 Moulopoulos Jun 1972 A
3689942 Rapp Sep 1972 A
3898701 La Russa Aug 1975 A
4306319 Kaster Dec 1981 A
4407271 Schiff Oct 1983 A
5167239 Cohen et al. Dec 1992 A
5332402 Teitelbaum Jul 1994 A
5397351 Pavcnik et al. Mar 1995 A
5554184 Machiraju Sep 1996 A
5607465 Camilli Mar 1997 A
5735842 Krueger et al. Apr 1998 A
5957949 Leonhardt et al. Sep 1999 A
5961440 Schweich, Jr. Oct 1999 A
6050972 Zadno-Azizi et al. Apr 2000 A
6210432 Solem et al. Apr 2001 B1
6214029 Thill Apr 2001 B1
6217567 Zadno-Azizi et al. Apr 2001 B1
6287334 Moll et al. Sep 2001 B1
6290674 Roue Sep 2001 B1
6312464 Navia Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6358277 Duran Mar 2002 B1
6482228 Norred Nov 2002 B1
6540782 Snyders Apr 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6605112 Moll et al. Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6709456 Langberg et al. Mar 2004 B2
6730121 Ortiz et al. May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6790231 Liddicoat et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6808483 Ortiz et al. Oct 2004 B1
6869444 Gabbay Mar 2005 B2
6875224 Grimes Apr 2005 B2
6994092 van der Burg et al. Feb 2006 B2
7004958 Adams et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7070616 Majercak et al. Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7160322 Gabbay Jan 2007 B2
7175656 Khairkhahan Feb 2007 B2
7217287 Wilson et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7252682 Seguin Aug 2007 B2
7291168 Macoviak et al. Nov 2007 B2
7303526 Sharkey Dec 2007 B2
7320665 Vijay Jan 2008 B2
7322957 Kletschka et al. Jan 2008 B2
7381220 Macoviak et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7559936 Levine Jul 2009 B2
7678145 Vidlund et al. Mar 2010 B2
7758596 Oz et al. Jul 2010 B2
7785366 Maurer et al. Aug 2010 B2
7815580 Viswanathan Oct 2010 B2
7854762 Speziali et al. Dec 2010 B2
7887477 Nikolic Feb 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
8007428 Vijay Aug 2011 B2
8052751 Aklog et al. Nov 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8092525 Eliasen et al. Jan 2012 B2
8133213 Lashinski Mar 2012 B2
8172856 Eigler et al. May 2012 B2
8216302 Wilson et al. Jul 2012 B2
8348963 Wilson Jan 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414644 Quadri et al. Apr 2013 B2
8449606 Eliasen et al. May 2013 B2
8460370 Zakay Jun 2013 B2
8486136 Maurer et al. Jul 2013 B2
8579967 Webler et al. Nov 2013 B2
8652203 Quadri et al. Feb 2014 B2
8758430 Ferrari et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8778017 Eliasen et al. Jul 2014 B2
8784482 Rahdert et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8888844 Eliasen et al. Nov 2014 B2
8932348 Solem et al. Jan 2015 B2
8968395 Hauser et al. Mar 2015 B2
9161837 Kapadia Oct 2015 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9259317 Wilson et al. Feb 2016 B2
9289297 Wilson et al. Mar 2016 B2
9474605 Rowe et al. Oct 2016 B2
9579199 Hauser et al. Feb 2017 B2
9636223 Khalil et al. May 2017 B2
9681951 Ratz et al. Jun 2017 B2
10583009 Hauser et al. Mar 2020 B2
20010021872 Bailey et al. Sep 2001 A1
20010037129 Thill Nov 2001 A1
20020013571 Goldfarb Jan 2002 A1
20020128708 Northrup et al. Sep 2002 A1
20020198594 Schreck Dec 2002 A1
20030050682 Sharkey Mar 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078654 Taylor et al. Apr 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030187494 Loaldi Oct 2003 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040092858 Wilson et al. May 2004 A1
20040098081 Landreville et al. May 2004 A1
20040117032 Roth Jun 2004 A1
20040143294 Corcoran Jul 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040193259 Gabbay Sep 2004 A1
20040225233 Frankowski et al. Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040267280 Nishide et al. Dec 2004 A1
20050038508 Gabbay Feb 2005 A1
20050038509 Ashe Feb 2005 A1
20050070999 Spence Mar 2005 A1
20050075719 Bergheim Apr 2005 A1
20050125032 Whisenant Jun 2005 A1
20050192627 Whisenant Sep 2005 A1
20050267524 Chanduszko Dec 2005 A1
20060058871 Zakay et al. Mar 2006 A1
20060135966 Schaller Jun 2006 A1
20060199995 Vijay Sep 2006 A1
20060201519 Frazier et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060293739 Vijay Dec 2006 A1
20070032821 Chin-Chen Feb 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070162071 Burkett et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070219627 Chu et al. Sep 2007 A1
20070255399 Eliasen et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20080077180 Kladakis Mar 2008 A1
20080195126 Solem Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20090048668 Wilson et al. Feb 2009 A1
20090054723 Khairkhahan Feb 2009 A1
20090069885 Rahdert et al. Mar 2009 A1
20090099596 McGuckin, Jr. Apr 2009 A1
20090137968 Rottenberg May 2009 A1
20100022948 Wilson et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20110077733 Solem Mar 2011 A1
20110098525 Kermode Apr 2011 A1
20110184512 Webler et al. Jul 2011 A1
20110224784 Quinn Sep 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20120143320 Eliasen et al. Jun 2012 A1
20130338763 Rowe et al. Dec 2013 A1
20140277390 Ratz et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140309732 Solem Oct 2014 A1
20150328000 Ratz et al. Nov 2015 A1
20160143736 Vidlund et al. May 2016 A1
20170079790 Vidlund Mar 2017 A1
20170312078 Krivoruchko Nov 2017 A1
Foreign Referenced Citations (24)
Number Date Country
1472996 Nov 2004 EP
2728457 Jun 1996 FR
9930647 Jun 1999 WO
0047139 Aug 2000 WO
02062236 Aug 2002 WO
03003949 Jan 2003 WO
03028558 Apr 2003 WO
03049619 Jun 2003 WO
03003949 Jan 2004 WO
2004012583 Feb 2004 WO
2004014258 Feb 2004 WO
2004021893 Mar 2004 WO
2004030568 Apr 2004 WO
2004045378 Jun 2004 WO
2005007036 Jan 2005 WO
2005027797 Mar 2005 WO
2005069850 Aug 2005 WO
2006032051 Mar 2006 WO
2006049629 May 2006 WO
2006111391 Oct 2006 WO
2006127509 Nov 2006 WO
2007050256 May 2007 WO
2011097355 Aug 2011 WO
2015012122 Jan 2015 WO
Related Publications (1)
Number Date Country
20200352718 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62620367 Jan 2018 US
Continuations (1)
Number Date Country
Parent PCT/US2019/014554 Jan 2019 US
Child 16934401 US