1. Field of the Invention
The present invention relates to an articulate heart stabilizer.
2. Background Information
Blockage of a coronary artery may deprive the heart of blood and oxygen required to sustain life. The blockage may be removed with medication or by an angioplasty. For severe blockage a coronary artery bypass graft (CABG) is performed to bypass the blocked area of the artery. CABG procedures are typically performed by splitting the sternum and pulling open the chest cavity to provide access to the heart. An incision is made in the artery adjacent to the blocked area. The internal mammary artery is then severed and attached to the artery at the point of incision. The internal mammary artery bypasses the blocked area of the artery to again provide a full flow of blood to the heart. Splitting the sternum and opening the chest cavity can create a tremendous trauma to the patient. Additionally, the cracked sternum prolongs the recovery period of the patient.
Computer Motion of Goleta, Calif. provides a system under the trademark ZEUS that allows a surgeon to perform a minimally invasive CABG procedure. The procedure is performed with instruments that are inserted through small incisions in the patient's chest. The instruments are controlled by robotic arms. Movement of the robotic arms and actuation of the instrument end effectors are controlled by the surgeon through a pair of handles and a foot pedal that are coupled to an electronic controller.
When performing a coronary procedure it is desirable to stabilize the heart. A heart stabilizer can be provided to limit the movement of the heart at the surgical site to reduce the complexity of performing the coronary procedure. To date there has not been developed a heart stabilizer that can be used in a minimally invasive procedure. A minimally invasive heart stabilizer must have enough dexterity to be maneuvered within the chest cavity of the patient.
There have been developed articulate retractors that are used in open-heart surgery. The articulate retractors have a pair of wrist joints that allow pivotally movement of a retractor relative to a handle shaft. The joints are spatially separated such that manipulation of the retractor is cumbersome and would be impractical for use in a minimally invasive procedure. It would therefore be desirable to provide a heart stabilizer that can be used in a minimally invasive procedure.
One embodiment of the present invention is a heart stabilizer that may include a wrist which couples an end effector to a first linkage. The end effector and wrist may be inserted through an incision in the chest of a patient to assist in performing a minimally invasive coronary procedure.
Referring to the drawings more particularly by reference numbers,
The system 10 can be used to perform a procedure on a patient 12 that is typically lying on an operating table 14. Mounted to the operating table 14 is a first articulate arm 16, a second articulate arm 18 and a third articulate arm 20. The articulate arms 16, 18 and 20 are preferably mounted to the table 14 so that the arms are at a same reference plane as the patient. Although three articulate arms are shown and described, it is to be understood that the system may have any number of arms.
The first and second articulate arms 16 and 18 each have a surgical instrument 22 and 24, respectively, coupled to a robotic arm 26, respectively. The third articulate arm 20 has an endoscope 28 that is held by a robotic arm 26. The instruments 22 and 24, and endoscope 28 are inserted through incisions cut into the skin of the patient. The endoscope has a c that is coupled to a television monitor 32 which displays images of the internal organs of the patient.
The first 16, second 18, and third 20 articulate arms are coupled to a controller 34 which can control the movement of the arms. The controller 34 is connected to an input device 36 such as a foot pedal that can be operated by a surgeon to move the location of the endoscope 28. The surgeon can view a different portion of the patient by depressing a corresponding button(s) of the pedal 36. The controller 34 receives the input signal(s) from the foot pedal 36 and moves the robotic arm 26 and endoscope 28 in accordance with the input commands of the surgeon. The robotic arms 26 may be devices that are sold by the assignee of the present invention, Computer Motion, Inc. of Goleta, Calif. under the trademark AESOP. The system is also described in U.S. Pat. No. 5,657,429 issued to Wang et al., which is hereby incorporated by reference. Although a foot pedal 36 is shown and described, it is to be understood that the system may have other input means such as a hand controller, or a speech recognition interface.
The instruments 22 and 24 of the first 16 and second 18 articulate arms, respectively, are controlled by a pair of master handles 38 and 40 that can be manipulated by the surgeon. The handles 38 and 40, and arms 16 and 18, have a master-slave relationship so that movement of the handles 38 and 40 produces a corresponding movement of the surgical instruments. The handles 38 and 40 may be mounted to a portable cabinet 42. A second television monitor 44 may be placed onto the cabinet 42 and coupled to the endoscope 28 so that the surgeon can readily view the internal organs of the patient. The handles 38 and 40 are also coupled to the controller 34. The controller 34 receives input signals from the handles 38 and 40, computes a corresponding movement of the surgical instruments, and provides output signals to move the robotic arms and instruments. The entire system may be a product marketed by Computer Motion under the trademark Zeus. The operation of the system is also described in U.S. Pat. No. 5,762,458 issued to Wang et al. and assigned to Computer Motion, which is hereby incorporated by reference. The system may also include a heart stabilizer 60 that is used to perform minimally invasive coronary procedures. The stabilizer 60 is typically inserted through an incision of the patient's chest. The stabilizer 60 can be held by a robotic arm or a static structure (not shown).
As shown in
Referring to
Each rigid tube 84 may be connected to a gear rack 88. Each gear rack 88 can move within corresponding channels 90 of the gear housing 78. The gear racks 90 may be coupled to corresponding pinion gears 92 attached to two of the universal joints 72 of the wrist 62. The universal joints 72 may be connected to a pair of drive shafts 94 that extend through the first linkage 66 as shown in
As shown in
As shown in
As shown in
As shown in
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
For example, although the medical device shown in
Number | Name | Date | Kind |
---|---|---|---|
5865730 | Fox et al. | Feb 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
6063021 | Hossain et al. | May 2000 | A |
6248062 | Adler et al. | Jun 2001 | B1 |