This disclosure relates generally to prosthetic valves and delivery systems for prosthetic valves. More specifically, this disclosure relates to delivery systems for implantation of prosthetic valves and methods thereof.
The native heart valves (the tricuspid valve, pulmonary valve, mitral valve, and aortic valve) play an important role in regulating flow of blood through the cardiovascular system. However, the native heart valves may become damaged or impaired, such as due to cardiovascular diseases, infections, or congenital malformations, thus limiting the ability of the native heart valves to regulate blood flow. This deficiency may result in reduced cardiovascular function or even death.
To treat these conditions, prosthetic heart valves may be implanted at or near the site of a damaged or impaired native valve. A prosthetic heart valve may assist or replace the functionality of an impaired native valve, leading to better regulation of blood flow and improved cardiovascular function. However, many existing prosthetic heart valves require implantation via an open heart procedure, which is highly-invasive and may cause life-threatening complications. Other prosthetic valves may be collapsed within a prosthetic valve delivery system and advanced into the heart, at which point the prosthetic valve may be removed from the delivery system and expanded at the native valve site. However, many of these prosthetic valves are large in size and therefore difficult to deliver into the heart without causing damage to healthy tissue along the implantation route. In addition, once these prosthetic valves are situated within the heart, they may be difficult to securely implant at the native valve site due to their complex structure and the limited maneuverability of existing prosthetic valve delivery systems within the heart. Moreover, many prosthetic valves are so large that they may protrude several centimeters into surrounding heart chambers once they are implanted, impairing cardiac filling and causing injury to the anatomy within the heart.
Thus, there remains a need for prosthetic heart valves that are smaller in size yet still configured to assist or replace the functionality of a diseased or damaged native heart valve. In addition, there remains a need for prosthetic heart valves that are more easily maneuvered into the heart and securely implanted at the site of a native heart valve. Moreover, there remains a need for improved prosthetic heart valve delivery systems that are configured to securely implant a prosthetic heart valve at an implantation site. The present disclosure provides prosthetic heart valves with a reduced axial length such that the prosthetic heart valves may be more easily delivered into the heart and may exhibit lower protrusion into the chambers of the heart. The present disclosure also provides improved prosthetic heart valve delivery systems and methods of implanting prosthetic heart valves therewith, such that prosthetic heart valves may be securely anchored at the implantation site.
Disclosed herein are systems and methods for implantation of prosthetic valves by prosthetic valve delivery systems. Particular examples of the disclosure may pertain to a prosthetic valve delivery system having multiple adjustable flexure radii and a capsule configured to retain a prosthetic valve therein.
According to an exemplary embodiment of the present disclosure, a heart valve delivery system is provided. The heart valve delivery system includes at least a first catheter, a second catheter, and a third catheter arranged in a telescoping configuration. The first catheter is movable relative to the second catheter and the third catheter. The first catheter extends from the distal end of the second catheter by a variable distance of between 0 and 20 centimeters. The second catheter is movable relative to the third catheter and extends from the distal end of the third catheter. The heart valve delivery system includes a first adjustable flexure radius associated with the second catheter, the first flexure radius being located within five centimeters of the distal end of the second catheter. The heart valve delivery system includes a second adjustable flexure radius associated with the third catheter, the second flexure radius configured to be adjusted independently of the first flexure radius. The heart valve delivery system includes a capsule secured to the first catheter and an ejector associated with the capsule. The heart valve delivery system includes at one control handle assembly configured to permit at least two of the catheters to rotate together, to independently adjust the first and second flexure radii, to cause relative axial movement between the catheters, and to permit the ejector to cause relative movement between a heart valve and the capsule.
In some embodiments, the capsule includes an atrial capsule portion and a ventricular capsule portion, the atrial capsule portion and the ventricular capsule portion being configured for relative longitudinal movement. The ventricular capsule portion is configured to retain an annular valve body of the heart valve and a plurality of ventricular anchoring legs of the heart valve therein. The atrial capsule portion is configured to retain a plurality of atrial anchoring arms of the heart valve therein. The capsule includes a valve anchor configured to engage the annular valve body of the heart valve, the ejector being configured to release the annular valve body from engagement with the valve anchor. The ejector is further configured to effect movement between the capsule and the plurality of ventricular anchoring legs while the annular valve body remains engaged with the valve anchor.
In some embodiments, an axial length of the ventricular capsule portion is at least twice as long as an axial length of the atrial capsule portion. The control handle assembly is configured to assume a capsule lock configuration in which the ejector is prevented from moving the ventricular capsule portion beyond a pre-determined location, and a capsule release configuration in which the ejector is permitted to move the ventricular capsule portion beyond the pre-determined location.
In some embodiments, the ejector is situated at least partially within the first catheter. The control handle assembly includes a guide actuator configured to effect movement of the second catheter, a sheath actuator configured to effect movement of the third catheter, and a capsule handle configured to control the ejector. The guide actuator, the sheath actuator, and the capsule handle are configured for relative longitudinal movement. The capsule handle includes a first release actuator configured to control relative movement between a first portion of the capsule and the heart valve, while the heart valve remains longitudinally fixed relative to the first catheter. The capsule handle includes a second release actuator configured to control release of the heart valve from the capsule by the ejector. The capsule handle is configured to assume an anchoring configuration in which the second release actuator is prevented from controlling the ejector to release the heart valve from the capsule, and a final release configuration in which the second release actuator is permitted to control the ejector to release the heart valve from the capsule. The second release actuator is configured to control relative movement between a second portion of the capsule and the heart valve while the capsule handle is in the anchoring configuration. The capsule handle includes a slide lock configured to assume a locked position in which longitudinal movement of the first catheter is prevented, the capsule being configured for longitudinal movement relative to the first catheter when the slide lock is in the locked position.
In some embodiments, the control handle assembly is further configured to prevent relative longitudinal movement between the first catheter and the second catheter. The control handle assembly is further configured to steer the first catheter independently of adjustment of the first and second flexure radii. The second flexure radius is configured to remain substantially straightened while the first flexure radius is adjusted. The first flexure radius and the second flexure radius are each configured to be adjusted by an angle greater than 90°. In some embodiments, the first flexure radius and the second flexure radius are each configured to be adjusted by 120°. In some embodiments, the first flexure radius and the second flexure radius are configured to bend the first catheter by an angle greater than 180°. In some embodiments, the first catheter is configured to advance the heart valve within a heart chamber while the second catheter and third catheter remain stationary relative to the heart chamber.
Additional features and advantages of the disclosed embodiments will be set forth in part in the description that follows, and in part will be obvious from the description, or may be learned by practice of the disclosed embodiments. The features and advantages of the disclosed embodiments will be realized and attained by the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory only and are not restrictive of the disclosed embodiments as claimed.
The accompanying drawings constitute a part of this specification. The drawings illustrate several embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosed embodiments as set forth in the accompanying claims.
Exemplary embodiments are described with reference to the accompanying drawings. In the figures, which are not necessarily drawn to scale, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. Wherever convenient, the same reference numbers are used throughout the drawings to refer to the same or like parts. While examples and features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible without departing from the spirit and scope of the disclosed embodiments. Also, the words “comprising,” “having,” “containing,” and “including,” and other similar forms are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It should also be noted that as used in the present disclosure and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
In some embodiments of the present disclosure, an “atrial direction” may refer to a direction extending towards an atrium of the heart. For example, from a location within the left ventricle or the mitral valve, an atrial direction may refer to a direction extending towards the left atrium. Additionally, from a location within an atrium (e.g., the left atrium), an atrial direction may refer to a direction extending away from an adjacent atrioventricular valve (e.g., the mitral valve) and further into the atrium. For example, in
In some exemplary embodiments of the present disclosure, a “ventricular direction” may refer to a direction extending towards a ventricle of the heart. From a location within the left atrium or the mitral valve, a ventricular direction may refer to a direction extending towards the left ventricle. Additionally, from a location within a ventricle (e.g., the left ventricle), a ventricular direction may refer to a direction extending away from an adjacent atrioventricular valve (e.g., the mitral valve) and further into the ventricle. For example, in
Exemplary embodiments generally relate to prosthetic valves for implantation within a native valve and methods for implanting prosthetic valves within a native valve. In addition, exemplary embodiments generally relate to systems and methods for implantation of prosthetic valves by prosthetic valve delivery systems. While the present disclosure provides examples relating to prosthetic heart valves, and in particular prosthetic mitral valves, as well as delivery systems for prosthetic heart valves, it should be noted that aspects of the disclosure in their broadest sense are not limited to a prosthetic heart valve. Rather, the foregoing principles may be applied to other prosthetic valves as well. In various embodiments in accordance with the present disclosure, the term prosthetic valve refers generally to an implantable valve configured to restore and/or replace the functionality of a native valve, such as a diseased or otherwise impaired native heart valve.
An exemplary prosthetic valve may include a prosthetic valve configured to render a native valve structure non-functional, and may thus replace the function of the native valve. For example, an exemplary prosthetic valve may have a size and shape similar to the valve being replaced and may include a number of leaflet-like structures to regulate fluid flow and prevent backflow of blood through the valve. Additionally, or alternatively, an exemplary prosthetic valve may also include a prosthetic valve configured to leave the native valve structure intact and functional. An exemplary prosthetic valve may include a mitral valve, tricuspid valve, aortic valve, or pulmonary valve, as well as a valve outside of the heart, such as a venous valve, lymph node valve, ileocecal valve, or any other structure configured to control and/or regulate fluid flow in the body. An exemplary prosthetic valve may additionally or alternatively be configured to replace a failed bioprosthesis, such as a failed heart valve prosthesis.
Annular outer frame 1200 may include an outer frame tubular portion 1220, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the outer frame tubular portion 1220. Annular outer frame 1200 may also include at least one ventricular anchoring leg 1240, which may be configured to extend radially outward from the outer frame tubular portion and which may contact, or otherwise engage, tissue within or near the native valve to anchor the prosthetic valve within the native valve. In some embodiments, exemplary valve frame 1000 may include twelve ventricular anchoring legs 1240, which may be configured to engage ventricular tissue of a native atrioventricular valve.
Inner frame 1400 may include an inner frame tubular portion 1420, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the inner frame tubular portion 1420. Inner frame 1400 may also include at least one atrial anchoring arm 1440, which may be configured to extend radially outward from the inner frame tubular portion and which may contact, or otherwise engage, tissue within or near the native valve to anchor the prosthetic valve within the native valve. In some embodiments, exemplary valve frame 1000 may include twelve atrial anchoring arms 1440, which may be configured to engage atrial tissue of a native atrioventricular valve.
Outer frame tubular portion 1220 and inner frame tubular portion 1420 may together form an annular valve body 1020 of the prosthetic valve, which may have at least one opening and from which the ventricular anchoring legs 1240 and atrial anchoring arms 1440 may extend. Annular valve body 1020 may include an axial lumen 1022 extending through the annular valve body 1020 along a longitudinal axis 1800 of the prosthetic valve. In some embodiments, annular valve body 1020 may be configured to receive a flow control device, such as one or more prosthetic leaflets, within axial lumen 1022. Optionally, annular valve body 1020 may include one or more atrial end delivery posts 1027 along an atrial end (i.e., top end) of the annular valve body and/or one or more ventricular end delivery posts 1028 along a ventricular end (i.e., bottom end) of the annular valve body. Delivery posts 1027 and 1028 may be configured to removably engage a delivery device of the prosthetic valve, for example, to assist with placement of frame 1000 within or near a native valve.
Annular outer frame 2200 may include an outer frame tubular portion 3605, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the outer frame tubular portion 3605. For example, as illustrated in
Inner frame 2400 may include an inner frame tubular portion 3005, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the inner frame tubular portion 3005. For example, as illustrated in
Outer frame tubular portion 3605 and inner frame tubular portion 3005 may together form an annular valve body 2020 of the prosthetic valve, which may have at least one opening and from which the ventricular anchoring legs 2240 and atrial anchoring arms 2440 may extend. Annular valve body 2020 may include an axial lumen 2022 extending through the annular valve body 2020 along a longitudinal axis 2800 of the prosthetic valve. Annular valve body 2020 may have an atrial end 2024, a ventricular end 2025 opposite the atrial end, and an intermediate portion 2026 extending between the atrial and ventricular ends. In some embodiments, the atrial end may refer to the portion of the annular valve body configured to be situated at a location within the atrium that is furthest from an adjacent ventricle, when the prosthetic valve is implanted in a native valve. Similarly, the ventricular end may refer to the portion of the annular valve body configured to be situated at a location within the ventricle that is furthest from an adjacent atrium, when the prosthetic valve is implanted in a native valve. The intermediate portion 2026 may extend between the atrial end 2024 and ventricular end 2025. In some embodiments, annular valve body 2020 may include one or more ventricular end delivery posts 1028 along the ventricular end 2025 of the annular valve body. Axial lumen 2022 may include an inlet opening 2032 at the atrial end of the annular valve body, as well as an outlet opening 2036 at the ventricular end of the annular valve body.
In some embodiments, prosthetic valve 6000 may additionally include a protective sleeve 6102 wrapped around the rim 6800 of the ventricular outlet opening of annular valve body 2020; protective sleeve 6102 may be secured to annular valve body 2020 by stitching 6108. Additionally, or alternatively, prosthetic valve 6000 may include at least one liner 6310 extending around an external surface of the ventricular anchoring legs 2240, with at least one protective layer 6330 positioned around the distal leg ends 2244 and at least one protective covering 6320 wrapped around the proximal leg ends 3622. In some embodiments, the at least one protective covering 6320 may be secured to the skirt layer 6100 via stitching 6322.
Control handle assembly 7100 may include an outer sheath control handle 7120 having a steering knob 7122 configured to steer an outer sheath 7210 of the telescoping catheter assembly 7200. Control handle assembly 7100 may also include a guide catheter control handle 7140 having a steering knob 7142 configured to steer a guide catheter 7220 of the telescoping catheter assembly 7200.
Control handle assembly 7100 may also include an implant catheter control handle 7160 having a steering knob 7168 configured to steer an implant catheter 8100 of the telescoping catheter assembly 7200. Implant catheter control handle 7160 may also include a proximal capsule portion slider 7162, a distal capsule portion knob 7170, and a distal capsule portion knob lock 7172 configured to control release of the prosthetic valve 6000 from within delivery capsule 7300. Implant catheter control handle 7160 may also include a slide lock 7166 configured to lock the implant catheter control handle 7160 at a position within track 7420 of stand 7400.
Control handle assembly 7100 may also include a cradle 7180, which may be secured to stand 7400 via a locking mechanism that can be released by actuated of release button 7184. Cradle 7180 may include a rotation knob 7182 configured to control rotation of the outer sheath 7210 and guide catheter 7220. Cradle 7180 may also include a rotation knob 7186 configured to control rotation of the implant catheter 8100. Cradle 7180 may also include a knob 7188 configured to control relative axial movement between outer sheath control handle 7120 (which may be secured to outer sheath 7210) and guide catheter control handle 7140 (which may be secured to guide catheter 7220).
In the embodiment illustrated in
In
In
Various embodiments of the present disclosure relate to heart valve delivery systems. While the present disclosure provides examples of heart valve delivery systems, it should be noted that aspects of the disclosure in their broadest sense, are not limited to heart valve delivery systems. Rather, it is contemplated that aspects of the present disclosure may be applied to delivery systems for other prosthetic or implantable devices as well and are not limited to delivery systems for heart valves, prosthetic valves, or cardiac valves. Prosthetic valve delivery system 7000 illustrated in
An exemplary heart valve delivery system in accordance with the present disclosure may include one or more catheters configured to approach the heart transfemorally, transapically, transatrially, transseptally, or transjugularly. The one or more catheters may be configured to position the heart valve, which may be retained within the delivery system, in or near the native valve orifice such that the heart valve may be released from the delivery system within or near the native valve. As used herein, the term “catheter” may denote an elongated, tubular structure that may be selectively flexible along a length of the elongated structure. The one or more catheters can be manufactured from a variety of suitable, biocompatible materials, some non-limiting examples including silicone, Pebax, rubber, nylon, polyurethane, polyethylene terephthalate (PET), latex, thermoplastic elastomers, silicone, and polyimides. The one or more catheters may be sufficiently flexible such that they may be configured to pass through tortuous anatomy (e.g., blood vessels and heart chambers) without sustaining damage or injuring the native tissue during delivery of the catheter to the implantation site. The one or more catheters of the exemplary heart valve delivery system may be at least long enough to extend from a location outside of a patient's body to a site within the heart. The one or more catheters may be configured as a one-size-fits all, a range of sizes depending on the size of the patient or may be fully customizable. Exemplary sizes of the one or more catheters may include between 6 French (Fr) and 40 Fr, between 20 Fr and 35 Fr, or between 27 Fr and 33 Fr. The one or more catheters may have any appropriate length, for example between 1 millimeter (mm) and 1 meter (m), between 1 mm and 2 m, between 1 mm and 3 m, or longer, such that the one or more catheters are at least long enough to extend from a location outside of the patient's body to a site within the heart.
In some embodiments, the one or more catheters of the exemplary heart valve delivery system may include at least a first catheter, a second catheter, and a third catheter, which may be arranged in a telescoping configuration. In some embodiments, the first catheter may be the inner-most catheter of the delivery system. Alternatively, the first catheter may receive another catheter or tubular structure therein. In some embodiments, the first catheter may be coaxially arranged within the second catheter. Additionally, or alternatively, the second catheter may be coaxially arranged within the third catheter, and the third catheter may be the outer-most catheter of the delivery system. Alternatively, the third catheter may be received within another catheter or tubular structure. The term “telescoping configuration” may refer to the coaxial arrangement of the first, second, and third catheters, where the first catheter is coaxially arranged within the second catheter, and the second catheter is coaxially arranged within the third catheter, thereby creating the exemplary telescoping configuration.
In some embodiments, the first catheter may be movable relative to one or both of the second catheter and the third catheter. The term “movable” may refer to the ability for one or both of longitudinal movement and rotation of the first catheter relative to one or both of the second catheter and the third catheter and may constitute movement away from and/or towards the second catheter and the third catheter. For example, the first catheter may selectively move longitudinally away (i.e., in the distal direction) from the second catheter and the third catheter.
In an exemplary heart valve delivery system, the first catheter may be configured to extend from the distal end of the second catheter by a variable distance of between zero (0) and twenty (20) centimeters. In some embodiments, the first catheter may extend to any distance between 0 and 20 centimeters; accordingly, the first catheter may extend to a distance of 20 centimeters from the distal end of the second catheter and may extend to any distance until the first catheter reaches 20 centimeters. Alternatively, the first catheter may be configured to assume a pre-determined number of discrete longitudinal positions with respect to the distal end of the second catheter; for example, relative longitudinal movement between the first catheter and the distal end of the second catheter may be affected by a rack and pinion transmission, which may provide a number of discrete stops for the first catheter relative to the second catheter.
In some embodiments, the second catheter is movable relative to the third catheter and extends from the distal end of the third catheter. Accordingly, the second catheter may move longitudinally relative to the third catheter and may constitute movement away from and/or towards the third catheter. For example, the second catheter may selectively move longitudinally away (i.e., in the distal direction) from the distal end of the third catheter.
In some embodiments, the heart valve delivery system may include a first adjustable flexure radius associated with the second catheter. The first flexure radius may be located a distance of between 0.5 centimeters and 8 centimeters from the distal end of the second catheter. Without limitation, for example, the first flexure radius may be located a distance of 0.5 centimeters, 1.0 centimeters, 1.5 centimeters, 2.0 centimeters, 2.5 centimeters, 3.0 centimeters, 3.5 centimeters, 4.0 centimeters, 4.5 centimeters, 5.0 centimeters, 5.5 centimeters, 6.0 centimeters, 6.5 centimeters, 7.0 centimeters, 7.5 centimeters, or 8 centimeters from the distal end of the second catheter. As used herein, the term “adjustable flexure radius” may refer to a portion of a catheter (e.g., the second catheter) configured to bend relative to the rest of the catheter. As used herein, the term “bend” may refer to the shaping or forcing a catheter (e.g., the second catheter) from a straight configuration into a curved or angled configuration, or from a curved or angled configuration to a straight configuration or into a different curved or angled configuration. In some embodiments, the adjustable flexure radius of the second catheter may be configured to bend in a single direction from the straight configuration thereof (e.g., from a straight configuration of the adjustable flexure radius towards a left-hand side, but not towards a right-hand side; referred to hereafter as “unidirectional bending”). In other embodiments, the adjustable flexure radius of the second catheter may be configured to bend in two opposite directions from the straight configuration thereof (e.g., both to the left-hand side and the right-hand side from the straight configuration; referred to hereafter as “bidirectional bending”). In some embodiments, the first flexure radius may be located within 5 centimeters of the distal end of the second catheter such that the first flexure radius may be configured to angle the distal end of the second catheter relative to portions of the second catheter proximal of the first flexure radius. Alternatively, the first flexure radius may be located another suitable distance from the distal end of the second catheter. In some further embodiments, the second catheter may include two or more flexure radii, each of which may be configured for unidirectional bending or bidirectional bending. Bending portion 7225 illustrated in
In some embodiments, the heart valve delivery system may include a second adjustable flexure radius associated with the third catheter, the second flexure radius may be configured to be adjusted independently of the first flexure radius. In some embodiments, the second adjustable flexure radius of the third catheter may be configured for unidirectional bending. In other embodiments, the second adjustable flexure radius of the third catheter may be configured for bidirectional bending. In some further embodiments, the third catheter may include two or more adjustable flexure radii, each of which may be configured for unidirectional bending or bidirectional bending. Bending portion 7215 illustrated in
In some embodiments, the exemplary heart valve delivery system may include a capsule. In some embodiments, at least a portion of the capsule may be connected to or otherwise secured to the distal end of the first catheter, such that the portion of the capsule and the distal end of the first catheter are secured against relative longitudinal movement. Alternatively, the first catheter may not be secured relative to a portion of the capsule. The capsule may be a hollow structure, such as a vessel, container, receptacle, or the like, which can be configured to hold the heart valve at least partially therein. The capsule may have multiple parts configured to move relative to each other so as to selectively retain and release the valve. For example, in some embodiments the capsule may include an atrial capsule portion and a ventricular capsule portion situated distal to the atrial capsule portion. The atrial and ventricular capsule portions may each be hollow structures and may be drawn together to form a receptacle in which the heart valve may be held. In some embodiments, the outer diameter of the atrial capsule portion may be equal to the outer diameter of the ventricular capsule portion. In some alternative embodiments, the outer diameter of the atrial capsule portion may be larger than or smaller than the outer diameter of the ventricular capsule portion. In some embodiments, the capsule may be positioned distal to the distal ends of the first and second catheters. The capsule may be configured to retain a heart valve therein and to deliver the heart valve through the anatomy (e.g., vasculature) to the heart valve implantation site. That is, the capsule may be configured to retain the heart valve therein during transvascular advancement of the capsule. In some embodiments, the capsule may be configured to retain the heart valve in a radially-contracted configuration, such that the heart valve may easily pass through the anatomy during delivery to the implantation site. In some embodiments, the capsule may be constructed from a variety of suitable, biocompatible materials, some non-limiting examples including plastics, metals, silicone, Pebax, rubber, nylon, polyurethane, polyethylene terephthalate (PET), latex, thermoplastic elastomers, silicone, and polyimides. Additionally, or alternatively, the exemplary capsule may include one or more radiopaque markers and/or a radiopaque coating, such that the capsule location may be tracked during advancement of the capsule through the body. In the example depicted in
In some embodiments, the heart valve delivery system may include an ejector associated with the capsule. The ejector may be configured to release the heart valve from within the capsule. In some embodiments, the ejector may be configured to move different portions of the capsule proximally and distally (relative to the first, second, and third catheters and relative to the heart valve) so as to release the heart valve from within the capsule. For example, the ejector may be connected to the different portions of the capsule and may be configured to effect longitudinal movement of the different capsule portions relative to the other portions of the exemplary heart valve delivery system. In some embodiments, the ejector may include one or more features situated at least partially inside the capsule and configured to drive movement of portions of the capsule relative to the heart valve. Additionally, or alternatively, the ejector may include one or more features situated outside of the capsule and configured to drive movement of portions of the capsule relative to the heart valve.
In the example illustrated in
In the example illustrated in
An exemplary heart valve delivery system may include a control handle assembly configured to control different components of the heart valve delivery system. For example, the control handle assembly may include one or more control mechanisms that may be actuated by a user to effect movement of different components of the heart valve delivery system, such as the first catheter, second catheter, third catheter, flexure radii, capsule, and/or ejector. In some embodiments, the control handle assembly may be configured to permit at least two of the first catheter, second catheter, and third catheter to rotate together. That is, the control handle assembly may be configured to cause synchronized rotation of at least two of the catheters. In some embodiments, the control handle assembly may be configured to cause rotation of all three of the catheters. For example, the control handle assembly may include any suitable control mechanism, including a knob, lever, rotatable cuff, slider, or any other structure capable of causing rotation of two or more catheters together. The control handle assembly may be connected to the two or more catheters (e.g., by welding, adhesive, interference fit, over molding, threading, barbs, or any other suitable connection mechanism) to as to control rotational movement of the two or more catheters.
Additionally, or alternatively, the exemplary control handle assembly may be configured to independently adjust the first and second flexure radii. For example, the control handle assembly may include a second catheter steering mechanism that may be configured to control bending of the first flexure radius of the second catheter, and the control handle assembly may also include a third catheter steering mechanism that may be configured to control bending of the second flexure radius of the third catheter. The second catheter steering mechanism and third catheter steering mechanism may be actuated individually such that the first and second flexure radii may be adjusted individually. The control handle assembly may include any appropriate steering mechanisms, examples of which include, but are not limited to, a rotatable knob, a wheel, a joystick, a touchpad, and combinations thereof, among other steering mechanisms capable of effecting bending of the second and third catheters at the first and second flexure radii. Feature(s) of the control handle assembly configured to adjust the flexure radii (e.g., a second catheter steering mechanism and a third catheter steering mechanism) may have similar or the same structure or could take different forms. In some embodiments, the second catheter steering mechanism and third catheter steering mechanism may be independently actuated by a user to effect bending of the first flexure radius of the second catheter and the second flexure radius of the third catheter. For example, exemplary control handle assembly 7100 depicted in
Additionally, or alternatively, the exemplary control handle assembly may be configured to cause relative axial movement between the first catheter, the second catheter, and the third catheter. For example, the control handle assembly may include one or more control handle portions that may be connected to the first catheter, the second catheter, and the third catheter (e.g., by welding, adhesive, interference fit, over molding, threading, barbs, or any other suitable connection mechanism), and may be configured to cause relative longitudinal movement between them. The control handle portions may be configured to move longitudinally relative to each other (e.g., on a slider, a rod, a rail, a track, or any suitable guide structure) to control relative axial movement between the catheters. For example, axial movement of the control handle portions may be controlled by rotatable knobs, wheels, joysticks, touchpads, sliders, or any other suitable mechanism for controlling axial movement.
In the example illustrated in
Additionally, or alternatively, the exemplary control handle assembly may be configured to permit the ejector to cause relative movement between the heart valve and the capsule. For example, the control handle assembly may be configured to control movement of the ejector, and thus, may be configured to control movement of the different portions of the capsule, such as atrial and ventricular capsule portions, to release the heart valve from the capsule. The control handle assembly may have a first component configured to control component of the ejector that moves the ventricular capsule portion, and the control handle assembly may have a second component configured to control the component of the ejector that moves the atrial capsule portion. The first and second components of the control handle assembly may be mechanisms such as a rotatable knob, a slider, a wheel, a lever, a rotatable cuff, a slider, or any other suitable structure configured to control the components of the ejector.
For example,
In some embodiments, the capsule may include one or both of an atrial capsule portion and a ventricular capsule portion, which may be configured for relative longitudinal movement. The ventricular capsule portion may refer to a portion of the capsule configured to contain the ventricular end of the heart valve; the ventricular capsule portion may correspond with the distal end of the capsule. Similarly, the atrial capsule portion may refer to a portion of the capsule configured to contain the atrial end of the heart valve; the atrial capsule portion may correspond with the proximal end of the capsule. The atrial and ventricular capsule portions may be configured for axial movement away from and towards the other. For example,
In some embodiments, the ventricular capsule portion may be configured to retain an annular valve body of the heart valve within the ventricular capsule portion. The annular valve body may be a ring-shaped structure of the heart valve having at least one opening within the annular valve body. The at least one opening may extend longitudinally along the entire length of the annular valve body. For example, annular valve body 2020 illustrated in
Additionally, or alternatively, the ventricular capsule portion may be configured to retain ventricular anchoring legs of the heart valve within the ventricular capsule portion. In some embodiments, the ventricular anchoring legs may be configured to engage ventricular tissue of a native atrioventricular valve (e.g., a mitral valve) to anchor the heart valve within the native atrioventricular valve. For example,
In some embodiments, the atrial capsule portion may be configured to retain a plurality of atrial anchoring arms of the heart valve within the atrial capsule portion. Exemplary atrial anchoring arms may be configured to engage atrial tissue of a native atrioventricular valve (e.g., a mitral valve) to anchor the heart valve within the native atrioventricular valve. For example,
In some embodiments, the capsule may include a valve anchor configured to engage the annular valve body of the heart valve. The valve anchor may be located within the capsule (e.g., within the ventricular capsule portion) and may selectively prevent longitudinal movement of the heart valve relative to the capsule. In some embodiments, the valve anchor may directly engage the heart valve to secure the heart valve against longitudinal movement. For example, the valve anchor may include one or more recesses positioned around its circumference that may be configured to receive and retain a portion of the heart valve. The recesses in the valve anchor may include slots, holes, hooks, openings, or any suitable receptacle configured to receive at least a portion of the heart valve, such as one or more ventricular end delivery posts. For example,
In some embodiments, the ejector may be configured to release the annular valve body from engagement with the valve anchor and from retention within the capsule. As discussed above, the annular valve body may be constrained within, and thus prevented from axially expanding by, the ventricular capsule portion. The ejector may include a portion thereof configured to axially move the ventricular capsule portion relative to the rest of the capsule (for example, torque shaft 8300, which may be controlled by distal capsule portion knob 7170). The ejector (specifically, torque shaft 8300) may release the annular valve body 2020 from the valve anchor disc 8200 by moving the ventricular capsule portion 7340 in the distal direction relative to implant catheter 8100 and valve anchor disc 8200 until the entire annular valve body 2020 is free from constraining force exerted on it by the ventricular capsule portion 7340. The annular valve body 2020 may radially expand due to its shape memory properties, thus releasing the ventricular end delivery posts 2028 from engagement with the valve anchor recesses 8205.
In some embodiments, the ejector may be configured to effect movement between the capsule and the plurality of ventricular anchoring legs while the annular valve body remains engaged with the valve anchor. In some embodiments, the annular valve body and ventricular anchoring legs may be received and constrained within the ventricular capsule portion, with the annular valve body portioned distal to (i.e., in a ventricular direction from) the ventricular anchoring legs.
The ejector may be configured to further move the ventricular capsule portion in the ventricular, distal direction until the annular valve body is no longer contained within the ventricular capsule portion. At such a point, the annular valve body may be free from radially-constraining forces and may expand radially outward (e.g., due to its shape-memory properties). As a result, the annular valve body may be freed from engagement with the valve anchor (e.g., due to radial movement of ventricular end delivery posts 2028 out of the recesses 8205 of the valve anchor disc 8200).
In some embodiments, an axial length of the ventricular capsule portion may be at least twice as long as an axial length of the atrial capsule portion. In some embodiments, the axial length of the ventricular capsule portion may include the axial length of a flexible protective feature secured to the distal end of the ventricular capsule portion (such as nose cone 7360 illustrated in
In some embodiments, the control handle assembly may be configured to assume a capsule lock configuration in which the ejector may be prevented from moving the ventricular capsule portion beyond a pre-determined location. Specifically, in the capsule lock configuration, the ejector may be prevented from moving the ventricular capsule portion in a ventricular, distal direction beyond the pre-determined location. In some embodiments, when the control handle assembly is in the capsule lock configuration, the portion of the control handle assembly configured to control movement of the ventricular capsule portion may be prevented from moving beyond a predetermined axial and/or rotational position associated with placement of the ventricular capsule portion at the pre-determined location. In the example depicted in
In some embodiments, the pre-determined location of the ventricular capsule portion may correspond to a position of the ventricular capsule portion in which the ventricular anchoring legs may be released from the ventricular capsule portion and in which the annular valve body may remain constrained within the ventricular capsule portion (e.g., the arrangement depicted in
In some embodiments, the control handle assembly may also be configured to assume a capsule release configuration in which the ejector is permitted to move the ventricular capsule portion beyond the pre-determined location. For example, in the capsule release configuration, the ejector may move the ventricular capsule portion in the ventricular, distal direction beyond the pre-determined location. In some embodiments, when the control handle assembly is in the capsule release configuration, the portion of the control handle assembly configured to control movement of the ventricular capsule portion by the ejector may be configured to move beyond the axial and/or rotational position thereof which is associated with the pre-determined location of the ventricular capsule portion. In the example depicted in
In some embodiments, the ejector may be situated at least partially within the first catheter. For example, a portion of the ejector may be configured to be positioned at least partially within the first catheter and may be configured for axial movement relative to the catheter. For example,
In some embodiments, the control handle assembly may include a guide actuator configured to effect movement of the second catheter. Additionally, or alternatively, the control handle assembly may include a sheath actuator configured to effect movement of the third catheter. In some embodiments, an “actuator” may be a handle structure with one or more control mechanisms to effect movement of a catheter. For example,
In some embodiments, one or both of the guide actuator and sheath actuator may be configured to effect proximal and distal movement of the second and third catheters, respectively. For example, guide catheter control handle 7140 (i.e., the exemplary guide actuator) may be configured to move the second catheter proximally and distally via engagement with rotating knob 7188. Additionally, or alternatively, one or both of the guide actuator and sheath actuator may be configured to effect bending of the second and third catheters, respectively. For example, outer sheath control handle 7120 (i.e., the exemplary sheath actuator) and guide catheter control handle 7140 may be connected to, or otherwise associated with, one or more pull wires connected to and configured to cause bending of the third catheter and the second catheter, respectively. In some embodiments, the pull wires may be operably connected with steering knobs 7142 and 7122 to control bending of the first and second adjustable flexure radii, respectively. In some embodiments, the sheath actuator and the guide actuator may include other mechanisms suitable for effecting catheter bending.
In some embodiments, outer sheath control handle 7120 (i.e., the exemplary sheath actuator) and guide catheter control handle 7140 (i.e., the exemplary guide actuator) may be mounted upon a cradle 7180, which may in turn be secured to a stand 7400. For example, cradle 7180 may be locked to stand 7400 and may be configured to be released therefrom by actuation of release button 7184. In some embodiments, outer sheath control handle 7120 may be secured to cradle 7180 (for example, in a separable manner) such that relative longitudinal movement between handle 7120 and cradle 7180 is prevented. In addition, and as discussed above, guide catheter control handle 7140 may be configured to move longitudinally relative to cradle 7180 due to rotation of knob 7188. In some embodiments, cradle 7180 may include an outer sheath rotation knob 7182 configured to engage and rotate outer sheath 7210 (i.e., the exemplary third catheter) and guide catheter 7220 (i.e., the exemplary second catheter) about their respective longitudinal axes. In some embodiments, outer sheath rotation knob 7182 may also rotate implant catheter 8100 (i.e., the exemplary first catheter) about its longitudinal axis. In alternative embodiments, implant catheter 8100 may be secured against rotation caused by rotation knob 7182 and may instead be rotated about its longitudinal axis by rotation knob 7186, which may also be included within cradle 7180.
In some embodiments, the control handle assembly may include a capsule handle configured to control the various components of the ejector. For example, the capsule handle may be secured to, or otherwise operably connected to, the various components of the ejector such that the control handle assembly may be configured to control longitudinal movement of the ventricular and atrial capsule portions via the ejector. The capsule handle may include any suitable control mechanism for controlling the various components of the ejector. For example,
In some embodiments, the guide actuator, the sheath actuator, and the capsule handle may be configured for longitudinal movement relative to each other. For example, at least two of the guide actuator, sheath actuator, and capsule handle may be configured for longitudinal movement relative to the control handle assembly. In some embodiments, the control handle assembly may include elements configured to guide longitudinal movement of the guide actuator, sheath actuator, and/or capsule handle, such as a slider, a rod, a rail, a track, or any other suitable structure. In the example illustrated in
In some embodiments, the capsule handle may include a first release actuator configured to control relative movement between a first portion of the capsule and the heart valve, while the heart valve remains longitudinally fixed relative to the first catheter. In some embodiments, the first portion of the capsule may include the atrial capsule portion. For example, the first release actuator may be configured to effect longitudinal movement of the atrial capsule portion relative to the heart valve, which may be secured against longitudinal movement relative to the first catheter due to the heart valve's engagement with the valve anchor. For example, in
In some embodiments, the capsule handle may additionally or alternatively include a second release actuator configured to control release of the heart valve from the capsule by the ejector. For example, the second release actuator may be configured to control the portion of the ejector that, in turn, is configured to control movement of the ventricular capsule portion. For example, in
In some embodiments, the capsule handle may be configured to assume an anchoring configuration in which the second release actuator is prevented from controlling the ejector to release the heart valve from the capsule. For example, in the anchoring configuration, the second release actuator may be prevented from moving the ejector and, by extension, the ventricular capsule portion beyond a pre-determined location in which the annular valve body of the heart valve is released from the ventricular capsule portion. In some embodiments, the second release actuator may be configured to control relative movement between a second portion of the capsule and the heart valve while the capsule handle is in the anchoring configuration. That is, when the capsule handle is in in the anchoring configuration, the second release actuator may be configured to effect ventricular, distal movement of the ejector and, by extension, the ventricular capsule portion (which may constitute the second portion of the capsule) relative to the heart valve to the pre-determined location, beyond which further distal movement of the ventricular capsule portion may be prevented. In the example depicted in
In some embodiments, the capsule handle may additionally or alternatively be configured to assume a final release configuration in which the second release actuator is permitted to control the ejector to release the heart valve from the capsule. For example, in the final release configuration, the second release actuator may be configured to control the ejector to freely move the ventricular capsule portion distally and proximally, including to a position of the ventricular capsule portion in which the annular valve body, and thus the heart valve, are released from the valve anchor and from the capsule. In some embodiments, when the capsule handle is in the final release configuration, the second release actuator may be configured to assume positions which the second release actuator was prevented from assuming when the capsule handle was in the anchoring configuration. In the example depicted in
In some embodiments, the capsule handle may include a slide lock configured to assume a locked position in which longitudinal movement of the first catheter may be prevented and an unlocked position in which the first catheter may be configured to move proximally and distally. For example, in
In some embodiments, at least a portion of the capsule may be configured for longitudinal movement relative to the first catheter when the slide lock is in the locked position. For example, one or both of the atrial and ventricular capsule portions may be configured for longitudinal movement relative to the first catheter when the slide lock is in the locked position. In some embodiments, the first and second release actuators may be configured to effect longitudinal movement of the atrial and ventricular capsule portions, even when the capsule handle is secured against longitudinal movement by the slide lock. For example, in
In some embodiments, the control handle assembly may be configured to prevent relative longitudinal movement between the first catheter and the second catheter. In some embodiments, for example, the control handle assembly may be configured to prevent relative longitudinal movement between the first catheter, the second catheter, and the third catheter. For example, the control handle assembly may be configured to secure the sheath actuator, the guide actuator, and the capsule handle against longitudinal movement, thus securing the first, second, and third catheters against longitudinal movement. The catheters and/or their corresponding control handles may be secured against longitudinal movement by any suitable mechanism, such as a knob, clip, lever, tab, rotatable cuff, slider, friction fit, threaded lock, toothed gear lock, snap fit lock, spring-actuated lock, or any other structure capable of securing the catheters and/or the control handles of the catheter.
For example, in
In some embodiments, the control handle assembly may be configured to steer the first catheter independently of adjustment of one or both of the first and second flexure radii. For example, the control handle assembly may include a first catheter steering mechanism configured to control bending of the first catheter. In some embodiments, the first catheter may include one or more bending portions configured for unidirectional bending or bidirectional bending. In some embodiments, the first catheter may include a bending portion within five centimeters of its distal end. For example, and without limitation, the first catheter may include a bending portion within five centimeters, four centimeters, three centimeters, two centimeters, or one centimeter of its distal end. The control handle assembly may include a first catheter steering mechanism (for example, within the capsule handle) configured to control bending of the one or more bending portions of the first catheter. In some embodiments, the first catheter steering mechanism may be actuated independently of the second catheter steering mechanism associated with the second catheter and the third catheter steering mechanism associated with the third catheter. Accordingly, a user may cause bending of the first catheter using the first catheter steering mechanism independently from the use of the second catheter steering mechanism and third catheter steering mechanism that control the first flexure radius and the second flexure radius, respectively. In the example illustrated in
In some embodiments, one or both of the guide actuator and the sheath actuator may be connected to, or otherwise associated with, one or more pull wires connected to and configured to cause bending of the first flexure radius and the second flexure radius, respectively. For example, the second catheter may include one or more pull wires connected to a portion of the second catheter, and the third catheter may include one or more pull wires connected to a portion of the third catheter. For example, a pull wire may be connected to the distal end of the second catheter and/or of the third catheter. Additionally, or alternatively, one or more pull wires may be connected in proximity to one or both of the first and second flexure radii (e.g., distal to the flexure radius). According to such embodiments, the pull wires may be actuated to bend the first and second flexure radii. Alternatively, other suitable steering mechanisms may be incorporated within the exemplary delivery system to effect bending of one or both of the first and second flexure radii.
In some embodiments, the second flexure radius may be configured to remain substantially straightened while the first flexure radius is adjusted. In some embodiments, the bending portion of the second catheter can extend beyond the distal end of the third catheter, where bending of the bending portion of the second catheter (that is, the first flexure radius) does not cause bending of the bending portion of the third catheter (that is, the second flexure radius). The phrase “substantially straightened” may refer to a configuration of the third catheter in which the entire length of the third catheter, including flexure radii thereof, may be straight and unbent. For example, in
In some embodiments, one or both of the first flexure radius and the second flexure radius may be configured to be adjusted by an angle greater than 90°, relative to straightened configurations thereof. The first flexure radius and the second flexure radius may be configured to be adjusted at different angles, each angle greater than 90°; additionally, or alternatively, the first flexure radius and the second flexure radius may be configured to be adjusted at the same angle greater than 90°. In some embodiments, the first flexure radius and the second flexure radius may each be configured to be adjusted by an angle up to and including 120°, relative to straightened configurations of the first flexure radius and the second flexure radius. In some embodiments, the adjustment of the first flexure radius and/or the second flexure radius may cause a resultant bend in the first catheter, since at least a portion of the first catheter may extend within the second and third catheters, including through the first and second flexure radii, respectively. In some embodiments, the first flexure radius and the second flexure radius may be configured to bend the first catheter by an angle greater than 180°, relative to a straightened configuration thereof. Put another way, the first and second flexure radii may be configured to bend the first catheter such that the distal end of the first catheter may form an angle equal to or greater than 180°, relative to the proximal end of the first catheter.
In some embodiments, the first catheter may be configured to advance the heart valve within a heart chamber while the second catheter and third catheter remain stationary relative to the heart chamber. For example, the first catheter may be configured to move longitudinally relative to the second and third catheters, which may remain stationary in their respective longitudinal positions.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification and practice of the disclosed embodiments. For example, while certain components have been described as being coupled to one another, such components may be integrated with one another or distributed in any suitable fashion.
Moreover, while illustrative embodiments have been described herein, the scope includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations based on the present disclosure. The elements in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application, which examples are to be construed as nonexclusive. Further, the steps of the disclosed methods can be modified in any manner, including reordering steps and/or inserting or deleting steps.
The features and advantages of the disclosure are apparent from the detailed specification, and thus, it is intended that the appended claims cover all systems and methods falling within the true spirit and scope of the disclosure. As used herein, the indefinite articles “a” and “an” mean “one or more.” Similarly, the use of a plural term does not necessarily denote a plurality unless it is unambiguous in the given context. Words such as “and” or “or” mean “and/or” unless specifically directed otherwise. Further, since numerous modifications and variations will readily occur from studying the present disclosure, it is not desired to limit the disclosure to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the disclosure.
Other embodiments will be apparent from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as example only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.
This application claims priority from U.S. Provisional Patent Application No. 62/560,384, filed Sep. 19, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3874388 | King et al. | Apr 1975 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4972494 | White et al. | Nov 1990 | A |
5089006 | Stiles | Feb 1992 | A |
5201757 | Heyn | Apr 1993 | A |
5713948 | Uflacker | Feb 1998 | A |
5716417 | Girard et al. | Feb 1998 | A |
5741297 | Simon | Apr 1998 | A |
5749920 | Quiachon | May 1998 | A |
5766151 | Valley | Jun 1998 | A |
5776140 | Cottone | Jul 1998 | A |
5906619 | Olson | May 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5961549 | Nguyen et al. | Oct 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6083198 | Afzal | Jul 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6254609 | Vrba et al. | Jul 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6669724 | Park et al. | Dec 2003 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755857 | Peterson et al. | Jun 2004 | B2 |
6849084 | Rabkin | Feb 2005 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
6939370 | Hartley | Sep 2005 | B2 |
7074236 | Rabkin et al. | Jul 2006 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7261686 | Couvillon, Jr. | Aug 2007 | B2 |
7288097 | Séguin | Oct 2007 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7556632 | Zadno | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7753949 | Lamphere et al. | Jul 2010 | B2 |
7811296 | Goldfarb et al. | Oct 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7993392 | Righini | Aug 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
D652927 | Braido et al. | Jan 2012 | S |
D653341 | Braido et al. | Jan 2012 | S |
8109996 | Stacchino et al. | Feb 2012 | B2 |
D660433 | Braido et al. | May 2012 | S |
D660967 | Braido et al. | May 2012 | S |
8216256 | Raschdorf, Jr. et al. | Jul 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8414644 | Quadri et al. | Apr 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8562672 | Bonhoeffer et al. | Oct 2013 | B2 |
8568475 | Nguyen et al. | Oct 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8657872 | Seguin | Feb 2014 | B2 |
8728155 | Montorfano et al. | May 2014 | B2 |
8747460 | Tuval et al. | Jun 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870950 | Hacohen | Oct 2014 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8986375 | Garde et al. | Mar 2015 | B2 |
8992604 | Gross et al. | Mar 2015 | B2 |
8998982 | Richter et al. | Apr 2015 | B2 |
9017399 | Gross et al. | Apr 2015 | B2 |
D730520 | Braido et al. | May 2015 | S |
D730521 | Braido et al. | May 2015 | S |
9023100 | Quadri et al. | May 2015 | B2 |
D732666 | Nguyen et al. | Jun 2015 | S |
9050188 | Schweich, Jr. et al. | Jun 2015 | B2 |
9060858 | Thornton et al. | Jun 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9095434 | Rowe | Aug 2015 | B2 |
9119719 | Zipory et al. | Sep 2015 | B2 |
9125740 | Morriss et al. | Sep 2015 | B2 |
9132009 | Hacohen et al. | Sep 2015 | B2 |
9173659 | Bodewadt et al. | Nov 2015 | B2 |
9180009 | Majkrzak et al. | Nov 2015 | B2 |
9232995 | Kovalsky et al. | Jan 2016 | B2 |
9241790 | Lane et al. | Jan 2016 | B2 |
9241791 | Braido et al. | Jan 2016 | B2 |
9241792 | Benichou et al. | Jan 2016 | B2 |
9248014 | Lane et al. | Feb 2016 | B2 |
9277994 | Miller et al. | Mar 2016 | B2 |
9295551 | Straubinger et al. | Mar 2016 | B2 |
9295552 | McLean et al. | Mar 2016 | B2 |
9320591 | Bolduc | Apr 2016 | B2 |
D755384 | Pesce et al. | May 2016 | S |
9345573 | Nyuli et al. | May 2016 | B2 |
9358107 | Nguyen et al. | Jun 2016 | B2 |
9387078 | Gross et al. | Jul 2016 | B2 |
9393110 | Levi et al. | Jul 2016 | B2 |
9439757 | Wallace et al. | Sep 2016 | B2 |
9445893 | Vaturi | Sep 2016 | B2 |
9463102 | Kelly | Oct 2016 | B2 |
9492273 | Wallace et al. | Nov 2016 | B2 |
9532870 | Cooper et al. | Jan 2017 | B2 |
9554897 | Lane et al. | Jan 2017 | B2 |
9554899 | Granada et al. | Jan 2017 | B2 |
9561103 | Granada et al. | Feb 2017 | B2 |
9566152 | Schweich, Jr. et al. | Feb 2017 | B2 |
9572665 | Lane et al. | Feb 2017 | B2 |
9597182 | Straubinger et al. | Mar 2017 | B2 |
9629716 | Seguin | Apr 2017 | B2 |
9662203 | Sheahan et al. | May 2017 | B2 |
9681952 | Hacohen et al. | Jun 2017 | B2 |
9717591 | Chau et al. | Aug 2017 | B2 |
9763657 | Hacohen et al. | Sep 2017 | B2 |
9770256 | Cohen et al. | Sep 2017 | B2 |
D800908 | Hariton et al. | Oct 2017 | S |
9788941 | Hacohen | Oct 2017 | B2 |
9895226 | Harari et al. | Feb 2018 | B1 |
9974651 | Hariton et al. | May 2018 | B2 |
10010414 | Cooper et al. | Jul 2018 | B2 |
10076415 | Metchik et al. | Sep 2018 | B1 |
10105222 | Metchik et al. | Oct 2018 | B1 |
10111751 | Metchik et al. | Oct 2018 | B1 |
10123873 | Metchik et al. | Nov 2018 | B1 |
10130475 | Metchik et al. | Nov 2018 | B1 |
10136993 | Metchik et al. | Nov 2018 | B1 |
10143552 | Wallace et al. | Dec 2018 | B2 |
10149761 | Granada et al. | Dec 2018 | B2 |
10154906 | Granada et al. | Dec 2018 | B2 |
10159570 | Metchik et al. | Dec 2018 | B1 |
10182908 | Tubishevitz et al. | Jan 2019 | B2 |
10226341 | Gross et al. | Mar 2019 | B2 |
10231837 | Metchik et al. | Mar 2019 | B1 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10245143 | Gross et al. | Apr 2019 | B2 |
10245144 | Metchik et al. | Apr 2019 | B1 |
10299927 | McLean et al. | May 2019 | B2 |
10321995 | Christianson et al. | Jun 2019 | B1 |
10322020 | Lam et al. | Jun 2019 | B2 |
10327895 | Lozonschi et al. | Jun 2019 | B2 |
10335278 | McLean et al. | Jul 2019 | B2 |
10357360 | Hariton et al. | Jul 2019 | B2 |
10376361 | Gross et al. | Aug 2019 | B2 |
10390952 | Hariton et al. | Aug 2019 | B2 |
10426610 | Hariton et al. | Oct 2019 | B2 |
10463487 | Hariton et al. | Nov 2019 | B2 |
10463488 | Hariton et al. | Nov 2019 | B2 |
10492907 | Duffy | Dec 2019 | B2 |
10507105 | Hariton et al. | Dec 2019 | B2 |
10507108 | Delgado et al. | Dec 2019 | B2 |
10507109 | Metchik et al. | Dec 2019 | B2 |
10512456 | Hacohen et al. | Dec 2019 | B2 |
10517719 | Miller et al. | Dec 2019 | B2 |
10524792 | Hernandez et al. | Jan 2020 | B2 |
10524903 | Hariton et al. | Jan 2020 | B2 |
10531872 | Hacohen et al. | Jan 2020 | B2 |
10548731 | Lashinski et al. | Feb 2020 | B2 |
10575948 | Iamberger et al. | Mar 2020 | B2 |
10595992 | Chambers | Mar 2020 | B2 |
10595997 | Metchik et al. | Mar 2020 | B2 |
10610358 | Vidlund et al. | Apr 2020 | B2 |
10631984 | Nyuli | Apr 2020 | B2 |
10646342 | Marr et al. | May 2020 | B1 |
10667908 | Hariton et al. | Jun 2020 | B2 |
10682227 | Hariton et al. | Jun 2020 | B2 |
10695177 | Hariton et al. | Jun 2020 | B2 |
10702385 | Hacohen | Jul 2020 | B2 |
10722360 | Hariton et al. | Jul 2020 | B2 |
10758342 | Chau et al. | Sep 2020 | B2 |
10758344 | Hariton et al. | Sep 2020 | B2 |
10799345 | Hariton et al. | Oct 2020 | B2 |
10813760 | Metchik et al. | Oct 2020 | B2 |
10820998 | Marr et al. | Nov 2020 | B2 |
10842627 | Delgado et al. | Nov 2020 | B2 |
10849748 | Hariton et al. | Dec 2020 | B2 |
10856972 | Hariton et al. | Dec 2020 | B2 |
10856975 | Hariton et al. | Dec 2020 | B2 |
10856978 | Straubinger et al. | Dec 2020 | B2 |
10864078 | Hariton et al. | Dec 2020 | B2 |
10874514 | Dixon et al. | Dec 2020 | B2 |
10881511 | Hariton et al. | Jan 2021 | B2 |
10888422 | Hariton et al. | Jan 2021 | B2 |
10888644 | Ratz et al. | Jan 2021 | B2 |
10905548 | Hariton et al. | Feb 2021 | B2 |
10905549 | Hariton et al. | Feb 2021 | B2 |
10905552 | Dixon et al. | Feb 2021 | B2 |
10905554 | Cao | Feb 2021 | B2 |
10918483 | Metchik et al. | Feb 2021 | B2 |
10925595 | Hacohen et al. | Feb 2021 | B2 |
10945844 | McCann et al. | Mar 2021 | B2 |
10973636 | Hariton et al. | Apr 2021 | B2 |
10993809 | McCann et al. | May 2021 | B2 |
11083582 | McCann et al. | Aug 2021 | B2 |
11147672 | McCann et al. | Oct 2021 | B2 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030074059 | Nguyen et al. | Apr 2003 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040186558 | Pavcnik et al. | Sep 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040249433 | Freitag | Dec 2004 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050137681 | Shoemaker et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050203618 | Sharkawy et al. | Sep 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050256566 | Gabbay | Nov 2005 | A1 |
20060004469 | Sokel | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060030863 | Fields | Feb 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060216404 | Seyler et al. | Sep 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070038293 | St. Goar et al. | Feb 2007 | A1 |
20070056346 | Spenser et al. | Mar 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198077 | Cully et al. | Aug 2007 | A1 |
20070021381 | Newhauser et al. | Sep 2007 | A1 |
20070213810 | Newhauser et al. | Sep 2007 | A1 |
20070219630 | Chu | Sep 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070244546 | Francis | Oct 2007 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080200980 | Robin et al. | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090105794 | Ziarno | Apr 2009 | A1 |
20090125098 | Chuter | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090259306 | Rowe | Oct 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
20100023120 | Holecek et al. | Jan 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100100167 | Bortlein et al. | Apr 2010 | A1 |
20100161036 | Pintor et al. | Jun 2010 | A1 |
20100256737 | Pollock et al. | Oct 2010 | A1 |
20100312333 | Navia et al. | Dec 2010 | A1 |
20100331971 | Keränen et al. | Dec 2010 | A1 |
20110004227 | Goldfarb et al. | Jan 2011 | A1 |
20110004299 | Navia et al. | Jan 2011 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110066233 | Thornton et al. | Mar 2011 | A1 |
20110098805 | Dwork | Apr 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110144742 | Madrid et al. | Jun 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110282439 | Thill et al. | Nov 2011 | A1 |
20110306916 | Nitzan et al. | Dec 2011 | A1 |
20110307049 | Kao | Dec 2011 | A1 |
20110313515 | Quadri et al. | Dec 2011 | A1 |
20110319989 | Lane et al. | Dec 2011 | A1 |
20120016468 | Robin et al. | Jan 2012 | A1 |
20120022629 | Perera et al. | Jan 2012 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120059458 | Buchbinder | Mar 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120078237 | Wang et al. | Mar 2012 | A1 |
20120078353 | Quadri et al. | Mar 2012 | A1 |
20120089223 | Nguyen et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120165930 | Gifford, III et al. | Jun 2012 | A1 |
20120296418 | Bonyuet et al. | Nov 2012 | A1 |
20120300063 | Majkrzak et al. | Nov 2012 | A1 |
20120310328 | Olson et al. | Dec 2012 | A1 |
20120323316 | Chau et al. | Dec 2012 | A1 |
20130018458 | Yohanan et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130066342 | Dell et al. | Mar 2013 | A1 |
20130144381 | Quadri et al. | Jun 2013 | A1 |
20130178930 | Straubinger et al. | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130231735 | Deem | Sep 2013 | A1 |
20130253643 | Rolando et al. | Sep 2013 | A1 |
20130261738 | Clague et al. | Oct 2013 | A1 |
20130274870 | Lombardi et al. | Oct 2013 | A1 |
20130282059 | Ketai et al. | Oct 2013 | A1 |
20130289711 | Liddy et al. | Oct 2013 | A1 |
20130289740 | Liddy et al. | Oct 2013 | A1 |
20130304200 | McLean et al. | Nov 2013 | A1 |
20140000112 | Braido et al. | Jan 2014 | A1 |
20140018915 | Biadillah et al. | Jan 2014 | A1 |
20140067050 | Costello | Mar 2014 | A1 |
20140142688 | Duffy et al. | May 2014 | A1 |
20140172077 | Bruchman et al. | Jun 2014 | A1 |
20140172082 | Bruchman et al. | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140236287 | Clague et al. | Aug 2014 | A1 |
20140236289 | Alkhatib | Aug 2014 | A1 |
20140249622 | Carmi et al. | Sep 2014 | A1 |
20140257467 | Lane et al. | Sep 2014 | A1 |
20140277409 | Bortlein et al. | Sep 2014 | A1 |
20140277411 | Bortlein et al. | Sep 2014 | A1 |
20140277418 | Miller | Sep 2014 | A1 |
20140277422 | Ratz et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20140358222 | Gorman, III et al. | Dec 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150032205 | Matheny | Jan 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150157458 | Thambar et al. | Jun 2015 | A1 |
20150173896 | Richter et al. | Jun 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150196390 | Ma et al. | Jul 2015 | A1 |
20150196393 | Vidlund et al. | Jul 2015 | A1 |
20150216661 | Hacohen et al. | Aug 2015 | A1 |
20150238313 | Spence et al. | Aug 2015 | A1 |
20150238315 | Rabito | Aug 2015 | A1 |
20150245934 | Lombardi et al. | Sep 2015 | A1 |
20150250588 | Yang et al. | Sep 2015 | A1 |
20150272730 | Melnick et al. | Oct 2015 | A1 |
20150272734 | Sheps et al. | Oct 2015 | A1 |
20150320556 | Levi et al. | Nov 2015 | A1 |
20150327994 | Morriss et al. | Nov 2015 | A1 |
20150328000 | Ratz et al. | Nov 2015 | A1 |
20150335429 | Morriss et al. | Nov 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20150351904 | Cooper et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20150359629 | Ganesan et al. | Dec 2015 | A1 |
20150359631 | Sheahan et al. | Dec 2015 | A1 |
20160030169 | Shahriari | Feb 2016 | A1 |
20160030171 | Quijano et al. | Feb 2016 | A1 |
20160089482 | Siegenthaler | Mar 2016 | A1 |
20160100939 | Amstrong et al. | Apr 2016 | A1 |
20160113765 | Ganesan et al. | Apr 2016 | A1 |
20160113766 | Ganesan et al. | Apr 2016 | A1 |
20160113768 | Ganesan et al. | Apr 2016 | A1 |
20160158497 | Tran | Jun 2016 | A1 |
20160175095 | Dienno et al. | Jun 2016 | A1 |
20160184098 | Vaturi | Jun 2016 | A1 |
20160262885 | Sandstrom | Sep 2016 | A1 |
20160270911 | Ganesan et al. | Sep 2016 | A1 |
20160310268 | Oba et al. | Oct 2016 | A1 |
20160317305 | Pelled et al. | Nov 2016 | A1 |
20160324633 | Gross et al. | Nov 2016 | A1 |
20160324635 | Vidlund et al. | Nov 2016 | A1 |
20160331525 | Straubinger et al. | Nov 2016 | A1 |
20160331526 | Schweich, Jr. et al. | Nov 2016 | A1 |
20160338706 | Rowe | Nov 2016 | A1 |
20160374801 | Jimenez et al. | Dec 2016 | A1 |
20160374802 | Levi et al. | Dec 2016 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170049435 | Sauer et al. | Feb 2017 | A1 |
20170056166 | Ratz et al. | Mar 2017 | A1 |
20170056169 | Johnson | Mar 2017 | A1 |
20170056171 | Cooper et al. | Mar 2017 | A1 |
20170065411 | Grundeman et al. | Mar 2017 | A1 |
20170128205 | Tamir et al. | May 2017 | A1 |
20170135816 | Lashinski et al. | May 2017 | A1 |
20170143938 | Ogle | May 2017 | A1 |
20170189174 | Braido et al. | Jul 2017 | A1 |
20170209264 | Chau et al. | Jul 2017 | A1 |
20170224323 | Rowe et al. | Aug 2017 | A1 |
20170231757 | Gassler | Aug 2017 | A1 |
20170231759 | Geist et al. | Aug 2017 | A1 |
20170231766 | Hariton et al. | Aug 2017 | A1 |
20170239048 | Goldfarb et al. | Aug 2017 | A1 |
20170325948 | Wallace et al. | Nov 2017 | A1 |
20170333183 | Backus | Nov 2017 | A1 |
20170333187 | Hariton et al. | Nov 2017 | A1 |
20170367823 | Hariton et al. | Dec 2017 | A1 |
20180000580 | Wallace et al. | Jan 2018 | A1 |
20180021129 | Peterson et al. | Jan 2018 | A1 |
20180028215 | Cohen | Feb 2018 | A1 |
20180049873 | Manash et al. | Feb 2018 | A1 |
20180055630 | Patel et al. | Mar 2018 | A1 |
20180098850 | Rafiee et al. | Apr 2018 | A1 |
20180116843 | Schreck et al. | May 2018 | A1 |
20180125644 | Conklin | May 2018 | A1 |
20180153689 | Maimon et al. | Jun 2018 | A1 |
20180206983 | Noe et al. | Jul 2018 | A1 |
20180214263 | Rolando et al. | Aug 2018 | A1 |
20180250126 | O'Connor et al. | Sep 2018 | A1 |
20180250130 | Hariton et al. | Sep 2018 | A1 |
20180250147 | Syed | Sep 2018 | A1 |
20180256323 | Hariton et al. | Sep 2018 | A1 |
20180256325 | Hariton et al. | Sep 2018 | A1 |
20180271654 | Hariton et al. | Sep 2018 | A1 |
20180271655 | Hariton et al. | Sep 2018 | A1 |
20180289479 | Hariton et al. | Oct 2018 | A1 |
20180296336 | Cooper et al. | Oct 2018 | A1 |
20180338829 | Hariton et al. | Nov 2018 | A1 |
20180338830 | Hariton et al. | Nov 2018 | A1 |
20180338831 | Hariton et al. | Nov 2018 | A1 |
20180344457 | Gross et al. | Dec 2018 | A1 |
20180353294 | Calomeni et al. | Dec 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190015093 | Hacohen et al. | Jan 2019 | A1 |
20190053896 | Adamek-Bowers et al. | Feb 2019 | A1 |
20190060060 | Chau et al. | Feb 2019 | A1 |
20190060068 | Cope et al. | Feb 2019 | A1 |
20190060070 | Groothuis et al. | Feb 2019 | A1 |
20190069997 | Ratz et al. | Mar 2019 | A1 |
20190083242 | Hariton et al. | Mar 2019 | A1 |
20190083243 | Hariton et al. | Mar 2019 | A1 |
20190083246 | Hariton et al. | Mar 2019 | A1 |
20190083247 | Hariton et al. | Mar 2019 | A1 |
20190105153 | Barash et al. | Apr 2019 | A1 |
20190117391 | Humair | Apr 2019 | A1 |
20190175339 | Vidlund | Jun 2019 | A1 |
20190183639 | Moore | Jun 2019 | A1 |
20190192295 | Spence et al. | Jun 2019 | A1 |
20190328519 | Hariton et al. | Oct 2019 | A1 |
20190336280 | Naor et al. | Nov 2019 | A1 |
20190343627 | Hariton et al. | Nov 2019 | A1 |
20190350701 | Adamek-Bowers et al. | Nov 2019 | A1 |
20190365530 | Hoang et al. | Dec 2019 | A1 |
20190388218 | Vidlund et al. | Dec 2019 | A1 |
20190388220 | Vidlund et al. | Dec 2019 | A1 |
20190388223 | Hariton et al. | Dec 2019 | A1 |
20200000449 | Goldfarb et al. | Jan 2020 | A1 |
20200000579 | Manash et al. | Jan 2020 | A1 |
20200015964 | Noe et al. | Jan 2020 | A1 |
20200030098 | Delgado et al. | Jan 2020 | A1 |
20200046497 | Hariton et al. | Feb 2020 | A1 |
20200054335 | Hernandez et al. | Feb 2020 | A1 |
20200054451 | Hariton et al. | Feb 2020 | A1 |
20200060818 | Geist et al. | Feb 2020 | A1 |
20200069424 | Hariton et al. | Mar 2020 | A1 |
20200113677 | McCann et al. | Apr 2020 | A1 |
20200113689 | McCann et al. | Apr 2020 | A1 |
20200113692 | McCann et al. | Apr 2020 | A1 |
20200129294 | Hariton et al. | Apr 2020 | A1 |
20200138567 | Marr et al. | May 2020 | A1 |
20200146671 | Hacohen et al. | May 2020 | A1 |
20200163761 | Hariton et al. | May 2020 | A1 |
20200214832 | Metchik et al. | Jul 2020 | A1 |
20200237512 | McCann et al. | Jul 2020 | A1 |
20200246136 | Marr et al. | Aug 2020 | A1 |
20200246140 | Hariton et al. | Aug 2020 | A1 |
20200253600 | Darabian | Aug 2020 | A1 |
20200261094 | Goldfarb et al. | Aug 2020 | A1 |
20200315786 | Metchik et al. | Oct 2020 | A1 |
20200337842 | Metchik et al. | Oct 2020 | A1 |
20210085455 | Bateman et al. | Mar 2021 | A1 |
20210093449 | Hariton et al. | Apr 2021 | A1 |
20210113331 | Quadri et al. | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
2822801 | Aug 2006 | CA |
103974674 | Aug 2014 | CN |
1264582 | Dec 2002 | EP |
1637092 | Mar 2006 | EP |
2349124 | Oct 2018 | EP |
3583922 | Dec 2019 | EP |
3270825 | Apr 2020 | EP |
2485795 | Sep 2020 | EP |
WO 2003020179 | Mar 2003 | WO |
WO 2004028399 | Apr 2004 | WO |
WO 2006007389 | Jan 2006 | WO |
WO 2006086434 | Aug 2006 | WO |
WO 2006116558 | Nov 2006 | WO |
WO 20060128193 | Nov 2006 | WO |
WO 20047047488 | Apr 2007 | WO |
WO 2008029296 | Mar 2008 | WO |
WO 2009091509 | Jul 2009 | WO |
WO 2010006627 | Jan 2010 | WO |
WO 2010027485 | Mar 2010 | WO |
WO 2010045297 | Apr 2010 | WO |
WO 2010057262 | May 2010 | WO |
WO 2011069048 | Jun 2011 | WO |
WO 2011144351 | Nov 2011 | WO |
WO 2012011108 | Jan 2012 | WO |
WO 2012036740 | Mar 2012 | WO |
WO 2012048035 | Apr 2012 | WO |
WO 2013059747 | Apr 2013 | WO |
WO 2013072496 | May 2013 | WO |
WO 2013078497 | Jun 2013 | WO |
WO 2013114214 | Aug 2013 | WO |
WO 2013175468 | Nov 2013 | WO |
WO 2014115149 | Jul 2014 | WO |
WO 2014144937 | Sep 2014 | WO |
WO 2014164364 | Oct 2014 | WO |
WO 2016016899 | Feb 2016 | WO |
WO 2016098104 | Jun 2016 | WO |
WO 2016125160 | Aug 2016 | WO |
WO 2016150806 | Sep 2016 | WO |
WO 2018025260 | Feb 2018 | WO |
WO 2018025263 | Feb 2018 | WO |
WO 2018029680 | Feb 2018 | WO |
WO 2018039631 | Mar 2018 | WO |
WO 2018112429 | Jun 2018 | WO |
WO 2018118717 | Jun 2018 | WO |
WO 2018131042 | Jul 2018 | WO |
WO 2018131043 | Jul 2018 | WO |
WO 2019027507 | Feb 2019 | WO |
WO 2019195860 | Oct 2019 | WO |
WO 2020167677 | Aug 2020 | WO |
Entry |
---|
International Search Report dated Dec. 5, 2011, by the United States Patent and Trademark Office in PCT/IL2011/000582 (3 pages). |
International Search Report dated Mar. 27, 2018, by the European Patent Office in PCT/IL2017/050849 (5 pages). |
International Search Report dated May 30, 2016, by the European Patent Office in PCT/IL2016/050125 (6 pages). |
International Search Report dated Nov. 24, 2017, by the European Patent Office in PCT/IL2017/050873 (5 pages). |
International Search Report dated Oct. 27, 2015, by the European Patent Office in PCT/IL2015/050792 (3 pages). |
International Search Report dated Sep. 4, 2014, by the European Patent Office in PCT/IL2014/050087 (6 pages). |
Written Opinion of the International Searching Authority issued by the United States Patent and Trademark Office in PCT/IL2011/000582 (12 pages). |
Written Opinion of the International Searching Authority issued by the European Patent Office in PCT/IL2017/050849 (10 pages). |
Written Opinion of the International Searching Authority issued by the European Patent Office in PCT/IL2016/050125 (7 pages). |
Written Opinion of the International Searching Authority issued by the European Patent Office in PCT/IL2014/050087 (10 pages). |
Written Opinion of the International Searching Authority issued by the European Patent Office in PCT/IL2015/050792 (5 pages). |
Written Opinion of the International Searching Authority issued by the European Patent Office in PCT/IL2017/050873 (12 pages). |
Sündermann, Simon H. et al., Feasibility of the Engager™ aortic transcatheter valve system using a flexible over-the-wire design, 42 European Journal of Cardio-Thoracic Surgery, Jun. 27, 2012, at e48 (5 pages). |
Symetis S.A., Clinical Investigation Plan for ACURATE Neo™ TA Delivery System, Protocol Jan. 2015, ver. 2, ClinicalTrials.gov Identifier NCT02950428, Sep. 8, 2015 (76 pages). |
Tchetche, Didier et al., New-generation TAVI devices: description and specifications, 10 EuroIntervention (Supplement), Sep. 2014, at U90 (11 pages). |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Exhibit 1014: Transcript of proceedings held May 20, 2021 (May 26, 2021) (21 pages). |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Exhibit 1015: Facilitate, Merriam-Webster.com, https://www. www.merriam-webster.com/dictionary/facilitate (accessed May 27, 2021) (5 pages). |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Paper 12: Petitioners' Authorized Reply to Patent Owner's Preliminary Response (May 27, 2021) (9 pages). |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Paper 13: Patent Owner's Authorized Surreply to Petitioner's Reply to Patent Owner's Preliminary Response (Jun. 4, 2021) (8 pages). |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Paper 16: Institution Decision (Jul. 20, 2021) (51 pages). |
Batista, Randas J. V. et al., Partial Left Ventriculectomy to Treat End-Stage Heart Disease, 64 Annals Thoracic Surgery 634-38 (1997) (5 pages). |
Beall, Jr., Arthur C. et al., Clinical Experience with a Dacron Velour-Covered Teflon-Disc Mitral-Valve Prosthesis, 5 Annals Thoracic Surgery 402-10 (1968) (9 pages). |
Fucci, Carlo et al., Improved Results with Mitral Valve Repair Using New Surgical Techniques, 9 Eur. J. Cardiothoracic Surgery 621-27 (1995) (7 pages). |
Maisano, Francesco et al., The Edge-To-Edge Technique: A Simplified Method to Correct Mitral Insufficiency, 13 Eur. J. Cardiothoracic Surgery 240-46 (1998) (7 pages). |
Stone, Gregg W. et al., Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles, 66 J. Am. C. Cardiology 278-307 (2015) (30 pages). |
Poirier, Nancy et al., A Novel Repair for Patients with Atrioventricular Septal Defect Requiring Reoperation for Left Atrioventricular Valve Regurgitation, 18 Eur. J. Cardiothoracic Surgery 54-61 (2000) (8 pages). |
Ando, Tomo et al., Iatrogenic Ventricular Septal Defect Following Transcatheter Aortic Valve Replacement: A Systematic Review, 25 Heart, Lung, and Circulation 968-74 (2016) (7 pages). |
Urina, Marina et al., Transseptal Transcatheter Mitral Valve Replacement Using Balloon-Expandable Transcatheter Heart Valves, JACC: Cardiovascular Interventions 1905-19 (2017) (15 pages). |
Ando, Tomo et al., “Iatrogenic Ventricular Septal Defect Following Transcatheter Aortic Valve Replacement: A Systematic Review,” Heart, Lung, and Circulation (2016) 25, 968-974, http://dx.doi.org/10.1016/j.hlc.2016.03.012, © 2016, Accepted on Mar. 12, 2016, 7 pgs. |
Poirier, Nancy C. et al., “A Novel Repair for Patients with Atrioventricular Septal Defect Requiring Reoperation for Left Atrioventricular Valve Regurgitation,” European Journal of Cardio-thoracic Surgery 18 (2000) 54-61, Accepted on Feb. 22, 2000, © 2000 Elsevier Science B.V., 8 pgs. |
Urena, Marina et al., “Transseptal Transcatheter Mitral Valve Replacement Using Balloon-Expandable Transcatheter Heart Valves,” JACC: Cardiovascular Interventions, © 2017 by the American College of Cardiology Foundation, pub. by Elsevier, vol. 10, No. 19, Accepted on Jun. 29, 2017, 15 pgs. |
Edwards Lifesciences Corporation and Edwards Lifesciences LLC, Petitioner v. Cardiovalve Ltd., Patent Owner, Case No. IPR2021-00383, U.S. Pat. No. 10,226,341, Deposition of Dr. Ivan Vesely, Ph D., Washington, D.C., Sep. 22, 2021, reported by Mary Ann Payonk, Job No. 199935, TSG Reporting-Worldwide, Cardiovalve Exhibit 2010, 170 pgs. |
Fann, James I., et al., “Beating Heart Catheter-Based Edge-to-Edge Mitral Valve Procedure in a Porcine Model, Efficacy and Hearing Response,” Circulation, 110:988-993, originally published Aug. 9, 2004, 6 pgs. |
Feldman, Ted et al., “Percutaneous Mitral Valve Repair Using the Edge-to-Edge Technique, Six-Month Results of the EVEREST Phase I Clinical Trial,” J Am Coll Cardiol, 2005; vol. 46, No. 11, 2134-40, available online Oct. 19, 2005, 7 pgs. |
Feldman, Ted et al., “Percutaneous Mitral Repair With the MitraClip System, Safety and Midterm Durability in the Initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) Cohort,” J Am Coll Cardiol, 2009;54:686-94, available online Aug. 11, 2009, 9 pgs. |
Feldman, Ted et al., “Percutaneous Mitral Leaflet Repair: MitraClip® Therapy for Mitral Regurgitation,” Informa Healthcare, ©2012, ISBN: 13:978-1-84184-966-9, Version Date Jan. 16, 2005, 8 pgs. |
Fucci, C. et al., “Improved Results with Mitral Valve Repair Using New Surgical Techniques,” Eur J Cardio-thorac Surg, © Springer-Verlag 1995, Eur J Cardio-thorac Surg (1995) 9: 621-627, published Nov. 1, 1995, 7 pgs. |
Maisano, Francesco et al., “The Evolution From Surgery to Percutaneous Mitral Valve Interventions, The Role of the Edge-to-Edge Technique,” J Am Coll Cardiol, 2011;58:2174-82, available online Nov. 8, 2011, 9 pgs. |
Maisano, F. et al., “The Edge-to-Edge Technique: A Simplified Method to Correct Mitral Insufficiency,” European Journal of Cardio-thoracic Surgery 13 (1998) 240-246, published Mar. 1, 1998, 7 pgs. |
Edwards Lifesciences Corporation and Edwards Lifesciences LLC, Petitioners, v. Cardiovalve Ltd., Patent Owner, IPR2021-00383, U.S. Pat. No. 10,226,341, Patent Owner's Response Pursuant to 37 C.F.R. § 42.120, 75 pgs. |
Edwards Lifesciences Corporation and Edwards Lifesciences LLC, Petitioners, v. Cardiovalve Ltd., Patent Owner, IPR2021-00383, U.S. Pat. No. 10,226,341, Second Declaration of Dr. Michael Sacks, Cardiovalve Exhibit 2014, 28 pgs. |
Edwards Lifesciences Corporation and Edwards Lifesciences LLC, Petitioners, v. Cardiovalve Ltd., Patent Owner, IPR2021-00383, U.S. Pat. No. 10,226,341, Patent Owner's Contingent Motion to Amend under 37 C.F.R. §42.121, 35 pgs. |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Paper 10: Decision Granting Institution of Inter Partes Review (Dec. 10, 2021) (42 pages). |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Petitioners' Opposition to Patent Owner's Contingent Motion to Amend (Jan. 5, 2022) (32 pages). |
Edwards Lifesciences Corp. v. Cardiovalve Ltd., IPR2021-00383, Petitioners' Reply to Patent Owner's Response (Jan. 5, 2022) (41 pages). |
Number | Date | Country | |
---|---|---|---|
20190083262 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62560384 | Sep 2017 | US |