Heart valve repair and replacement

Information

  • Patent Grant
  • 10179042
  • Patent Number
    10,179,042
  • Date Filed
    Thursday, June 9, 2016
    8 years ago
  • Date Issued
    Tuesday, January 15, 2019
    5 years ago
Abstract
A prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent having a plurality of commissure features, a plurality of first struts and a plurality of second struts. The plurality of first struts define a substantially cylindrical portion and the plurality of second struts have first ends attached to the cylindrical portion and free ends projecting radially outward from the cylindrical portion and configured to couple to adjacent heart tissue to anchor the stent. A collapsible and expandable valve assembly disposed within the stent has a plurality of leaflets coupled to the commissure features.
Description
BACKGROUND OF THE INVENTION

The present disclosure relates to heart valve repair and, in particular, to collapsible prosthetic heart valves. More particularly, the present disclosure relates to devices and methods for repairing and/or replacing the functionality of native valve leaflets.


Diseased and/or defective heart valves may lead to serious health complications. One method of addressing this condition is to replace a non-functioning heart valve with a prosthetic valve. Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.


Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed or crimped to reduce its circumferential size.


When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size. For balloon-expandable valves, this generally involves releasing the entire valve, assuring its proper location, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as the sheath covering the valve is withdrawn.


SUMMARY OF THE INVENTION

In some embodiments, a prosthetic heart valve having an inflow end and an outflow end, includes a collapsible and expandable stent having a plurality of commissure features, a plurality of first struts and a plurality of second struts. The plurality of first struts define a substantially cylindrical portion of the stent and the plurality of second struts have first ends attached to the cylindrical portion and free ends projecting radially outward of the cylindrical portion and configured to couple to adjacent heart tissue to anchor the stent. A collapsible and expandable valve assembly is disposed within the stent and has a plurality of leaflets coupled to the commissure features.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are disclosed herein with reference to the drawings, wherein:



FIG. 1 is a schematic cutaway representation of a human heart showing a transapical delivery approach;



FIG. 2A is a schematic representation of a native mitral valve and associated structures during normal operation;



FIG. 2B is a schematic representation of a native mitral valve having a prolapsed leaflet;



FIG. 3 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and a frame;



FIG. 4 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and curling struts;



FIG. 5 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and curved struts;



FIGS. 6A-L are schematic representations of several variations of the terminal ends of selected struts; and



FIG. 7 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and curling struts confined to a region adjacent the outflow section.





Various embodiments of the present disclosure will now be described with reference to the appended drawings. It is to be appreciated that these drawings depict only some embodiments of the disclosure and are therefore not to be considered limiting of its scope.


DETAILED DESCRIPTION

In conventional collapsible prosthetic heart valves, the stent is usually anchored within the native valve annulus via radial forces exerted by the expanding stent against the native valve annulus. If the radial force is too high, damage may occur to heart tissue. If, instead, the radial force is too low, the heart valve may move from its implanted position, for example, into the left ventricle. Because such anchoring partly depends on the presence of calcification or plaque in the native valve annulus, it may be difficult to properly anchor the valve in locations where plaque is lacking (e.g., the mitral valve annulus).


In view of the foregoing, there is a need for further improvements to the devices, systems, and methods for restoring and/or replacing the function of a native heart valve, such as a mitral valve, a tricuspid valve, an aortic valve, or a pulmonary valve. Among other advantages, the present disclosure may address one or more of these needs. While many of the examples disclosed herein are described with reference to a specific valve (e.g., a mitral valve or a tricuspid valve), it will be understood that many of the examples are not so limited and that the concepts described apply equally to other heart valves unless expressly limited herein.


Blood flows through the mitral valve from the left atrium to the left ventricle. As used herein, the term “inflow,” when used in connection with a prosthetic mitral heart valve, refers to the end of the heart valve closest to the left atrium when the heart valve is implanted in a patient, whereas the term “outflow,” when used in connection with a prosthetic mitral heart valve, refers to the end of the heart valve closest to the left ventricle when the heart valve is implanted in a patient. When used in connection with a prosthetic aortic valve, “inflow” refers to the end closest to the left ventricle and “outflow” refers to the end closest to the aorta. The same convention is applicable for other valves wherein “inflow” and “outflow” are defined by the direction of blood flow therethrough. “Trailing” is to be understood as relatively close to the user, and “leading” is to be understood as relatively farther away from the user. As used herein, the terms “proximal,” “distal,” “leading” and “trailing” are to be taken as relative to a user using the disclosed delivery devices. “Proximal” or “trailing end” are to be understood as relatively close to the user and “distal” or “leading end” are to be understood as relatively farther away from the user. Also, as used herein, the words “substantially,” “approximately,” “generally” and “about” are intended to mean that slight variations from absolute are included within the scope of the structure or process recited.



FIG. 1 is a schematic representation of a human heart 100. The human heart includes two atria and two ventricles: a right atrium 112 and a left atrium 122, and a right ventricle 114 and a left ventricle 124. As illustrated in FIG. 1, the heart 100 further includes an aorta 110, and an aortic arch 120. Disposed between the left atrium and the left ventricle is the mitral valve 130. The mitral valve 130, also known as the bicuspid valve or left atrioventricular valve, is a dual-flap that opens as a result of increased pressure in the left atrium as it fills with blood. As atrial pressure increases above that of the left ventricle, the mitral valve opens and blood passes toward the left ventricle. Blood flows through heart 100 in the direction shown by arrows “B”.


A dashed arrow, labeled “TA”, indicates a transapical approach for repairing or replacing heart valves, such as a mitral valve. In transapical delivery, a small incision is made between the ribs and into the apex of the left ventricle 124 at position “P1” in heart wall 150 to deliver a prosthesis or device to the target site.



FIG. 2A is a more detailed schematic representation of a native mitral valve 130 and its associated structures. Mitral valve 130 includes two flaps or leaflets, a posterior leaflet 136 and an anterior leaflet 138, disposed between left atrium 122 and left ventricle 124. Cord-like tendons known as chordae tendineae 134 connect the two leaflets 136, 138 to the medial and lateral papillary muscles 132. During atrial systole, blood flows from the left atrium to the left ventricle down the pressure gradient. When the left ventricle contracts in ventricular systole, the increased blood pressure in the chamber pushes the mitral valve to close, preventing backflow of blood into the left atrium. Since the blood pressure in the left atrium is much lower than that in the left ventricle, the flaps attempt to evert to the low pressure regions. The chordae tendineae prevent the eversion by becoming tense, thus pulling the flaps and holding them in the closed position.



FIG. 2B is a schematic representation of mitral valve prolapse as discussed above. Posterior leaflet 136 has prolapsed into left atrium 122. Moreover, certain chordae tendineae have stretched and others have ruptured. Because of damaged chordae 134a, even if posterior leaflet 136 returns to its intended position, it will eventually resume the prolapsed position due to being inadequately secured. Thus, mitral valve 130 is incapable of functioning properly and blood is allowed to return to the left atrium and the lungs. It will be understood that in addition to chordae damage, other abnormalities or failures may be responsible for mitral valve insufficiency.



FIG. 3 is a longitudinal cross-section of prosthetic heart valve 200 in accordance with one embodiment of the present disclosure. Prosthetic heart valve 200 is a collapsible prosthetic heart valve designed to replace the function of the native mitral valve of a patient. (See native mitral valve 130 of FIGS. 1-2.) Generally, prosthetic valve 200 has inflow end 210 and outflow end 212. Prosthetic valve 200 may be substantially cylindrically shaped and may include features for anchoring, as will be discussed in more detail below. When used to replace native mitral valve 130, prosthetic valve 200 may have a low profile so as not to interfere with atrial function.


Prosthetic heart valve 200 includes stent 250, which may be formed from biocompatible materials that are capable of self-expansion, such as, for example, shape-memory alloys including nitinol. Alternatively, stent 250 may be formed of a material suitable for forming a balloon-expandable stent. Stent 250 may include a plurality of struts 252 that form closed cells 254 connected to one another in one or more annular rows around the stent. Cells 254 may all be of substantially the same size around the perimeter and along the length of stent 250. Alternatively, cells 254 near inflow end 210 may be larger than the cells near outflow end 212. Stent 250 may be expandable to provide a radial force to assist with positioning and stabilizing prosthetic heart valve 200 within the native mitral valve annulus.


Prosthetic heart valve 200 may also include valve assembly 260, including a pair of leaflets 262 attached to a cylindrical cuff 264. Leaflets 262 replace the function of native mitral valve leaflets 136 and 138 described above with reference to FIG. 2. That is, leaflets 262 coapt with one another to function as a one-way valve. It will be appreciated, however, that prosthetic heart valve 200 may have more than two leaflets when used to replace a mitral valve or other cardiac valves within a patient. Valve assembly 260 of prosthetic heart valve 200 may be substantially cylindrical, or may taper outwardly from outflow end 212 to inflow end 210. Both cuff 264 and leaflets 262 may be wholly or partly formed of any suitable biological material, such as bovine or porcine pericardium, or polymers, such as PTFE, urethanes and the like.


When used to replace a native mitral valve, valve assembly 260 may be sized in the range of about 20 mm to about 40 mm in diameter. Valve assembly 260 may be secured to stent 250 by suturing to struts 252 or by using tissue glue, ultrasonic welding or other suitable methods.


An optional frame 300 may surround and house valve assembly 260 and stent 250. Frame 300 may be formed of a braided material in various configurations to create shapes and/or geometries for engaging tissue and filling the spaces between valve assembly 260 and the native valve annulus. As shown in FIG. 3, frame 300 includes a plurality of braided strands or wires 305 arranged in three-dimensional shapes. In one example, wires 305 form a braided metal fabric that is both resilient and capable of heat treatment to substantially set a desired preset shape. One class of materials which meets these qualifications is shape-memory alloys. One example of a suitable shape-memory alloy is nitinol. It is also contemplated that wires 305 may comprise various materials other than nitinol that have elastic and/or memory properties, such as spring stainless steel, alloys such as Elgiloy®, Hastelloy®, and MP35N®, CoCrNi alloys (e.g., trade name Phynox), CoCrMo alloys, or a mixture of metal and polymer fibers. Depending on the individual material selected, the strand diameter, number of strands, and pitch may be altered to achieve desired properties for frame 300.


In its simplest configuration, shown in FIG. 3, frame 300 may be formed in a cylindrical or tubular configuration having inlet end 310, outlet end 312 and lumen 315 extending between inlet end 310 and outlet end 312 for housing stent 250 and valve assembly 260. However, in certain embodiments stent 250 may be omitted, and valve assembly 260 may be directly attached to frame 300 using any of the techniques described above for attaching valve assembly 260 to stent 250. Frame 300 may be radially collapsed from a relaxed or preset configuration to a compressed or reduced configuration for delivery into the patient. Once released after delivery, the shape-memory properties of frame 300 may cause it to re-expand to its relaxed or preset configuration. Frame 300 may also be locally compliant in a radial direction such that a force exerted in the direction of arrow F deforms a portion of the frame. In this manner, irregularities in the native valve annulus may be filled by frame 300, thereby preventing paravalvular leakage. Moreover, portions of frame 300 may endothelialize and in-grow into the heart wall over time, providing permanent stability and a low thrombus surface.



FIG. 4 illustrates a variation in which prosthetic heart valve 400 includes outwardly curling struts to aid in its fixation to heart tissue. Prosthetic heart valve 400 may extend between inflow end 210 and outflow end 212 and include all the elements disclosed above including stent 250 formed of struts 252 defining cells 254, and valve assembly 260 having leaflets 262 and cuff 264. Stent 250 may be substantially cylindrical as shown and may further include two rows of curling struts 410a, 410b that project radially outward from the general stent body to anchor the stent at a predetermined location in the native valve annulus. A first row 420 of curling struts 410a is disposed adjacent inflow end 210 of prosthetic heart valve 400 and a second row 422 of curling struts 410b is disposed adjacent outflow end 212. Each curling strut 410a, 410b has a first end 412a connected to stent 250 and a free end 412b, with a curled configuration between these ends. Curling struts 410a, 410b may be formed of the same material as struts 252 and may be formed integrally with stent 250 by laser cutting from the same tube that forms stent 250 or separately formed and attached to stent 250 using welding techniques or other suitable methods. As shown in FIG. 4, the first end 412a of each curling strut 410a is connected to stent 250 at fixation points 430 at the bottom of the first full row of cells 254 adjacent inflow end 210 of prosthetic heart valve 400 and the first end 412a of each curling strut 410b is connected to stent 250 at fixation points 432 at the top of the last (i.e., bottom-most) full row of cells 254 adjacent outflow end 212 of the prosthetic heart valve. It will be understood that other fixation points (e.g., closer to inflow end 210 or further from inflow end 210) are possible.


As noted above, each curling strut 410a, 410b has a curled configuration between its ends. Curling struts 410a initially extend upward from fixation points 430 toward inflow end 210 before bending outwardly and downwardly toward outflow end 212 to form a substantially “fiddlehead” shape. Likewise, each curling strut 410b initially extends downward from a fixation point 432 toward outflow end 212 before bending outwardly and upwardly toward inflow end 210. Curling struts 410a,410b may be subjected to heat treatment to substantially preset their desired curled shape. During the delivery of prosthetic heart valve 400 into a patient, curling struts 410a,410b may be distorted to a substantially linear configuration within the sheath of a delivery device and may return to their curled configuration when released from the sheath.


When heart valve 400 is implanted, first row 420 of curling struts 410a may engage upper portions of the native mitral valve (i.e., portions of the native mitral valve in left atrium 122) or the atrial wall itself, while second row 422 of curling struts 410b may engage lower portions of the native mitral valve (i.e., portions of the native mitral valve in left ventricle 124) or the ventricular wall itself. The engagement of curling struts 410a and 410b with the surrounding native tissue may help to affix heart valve 400 in the proper position in the native mitral valve annulus.



FIG. 5 illustrates another variation in which prosthetic heart valve 500 includes projecting curved struts to aid in its fixation to heart tissue. Prosthetic heart valve 500 may extend between inflow end 210 and outflow end 212 and include all the elements described above in connection with heart valve 400, including stent 250 formed of struts 252 defining cells 254, and valve assembly 260 having leaflets 262 and cuff 264. As shown, prosthetic heart valve 500 includes two rows of curved struts 510a, 510b.


A first row 520 of curved struts 510a is disposed adjacent inflow end 210 of prosthetic heart valve 500 and a second row 522 of curved struts 510b is disposed adjacent outflow end 212. Each curved strut 510a, 510b has a first end 512a connected to stent 250, a free end 512b and a bowed configuration between these ends. Curved struts 510a, 510b may be formed of the same material as struts 252 and may be formed integrally with stent 250 by laser cutting from the same tube that forms stent 250 or separately and attached to stent 250 using welding or another suitable method. Curved struts 510a, 510b may be between about 3.0 mm and about 8.0 mm in length. In at least some examples, curved struts 510a, 510b are approximately 5.0 mm in length to aid in fixation. Additionally, curved struts 510a, 510b may apply a small radial force on the surrounding tissue. For example, the applied force may be enough to maintain contact to avoid thrombus, but not enough damage the tissue. In at least some examples, a radial force of between about 0.1 N and about 2.0 N may be exerted by the curved struts on the surrounding tissue. The force applied by curved struts on surrounding tissues may also be selected by adjusting the thickness and/or width of the curved struts. In some examples, curved struts 510a, 510b may have a width that is between about 20% to about 50% of struts 252. In some examples, curved struts 510a, 510b may have a wall thickness that is between about 20% to about 50% of struts 252.


In the example shown, the first end 512a of each curved strut 510a is connected to stent 250 at the top of the first full row of cells 254 adjacent inflow end 210 of prosthetic heart valve 500 and the first end 512a of each curved strut 510b is connected to stent 250 at the bottom of the last full row of cells 254 adjacent outflow end 212 of the prosthetic heart valve. Each curved strut 510a extends from its connection to stent 250 downwardly towards a midsection M of heart valve 500 and radially outwardly from the stent. Likewise, each curved strut 510b extends from its connection to stent 250 upwardly toward midsection M and radially outwardly from the stent. The connection of the curved struts to cells 254 does not have to be at the junction of two struts 252. Rather, as shown in FIG. 5, prosthetic heart valve 500 may include curved struts 510c that are coupled to selected struts 252a, 252b at spaced distances from the junction between the two. In this example, two curved struts 510c originate from one cell 254. This configuration of two curved struts 510c per cell 254 may be termed a “double takeoff” configuration and may be repeated at inflow end 210, outflow end 212, or both the inflow end and the outflow end. This “double takeoff” configuration may also alternate with the single curved struts 510a,510b, or replace all of the single curved struts 510a,510b.


Each curved strut 510a, 510b, 510c may terminate in a substantially circular eyelet 530 that forms a smooth and blunted shape at its free end 512b to prevent trauma to heart tissue. As shown in greater detail in FIG. 6A, strut 610a may terminate in circular eyelet 611, having an aperture 612. Aperture 612 may be useful to mate with portions of a delivery device for maneuvering and positioning heart valve 500 during deployment. Instead of round eyelets, curved struts 510a, 510b, 510c may have other smoothly curved eyelets on their free ends, such as oval or elliptical eyelets. Further, these smoothly curved structures need not include an aperture, but may be in the form of a solid disk, oval or ellipse. Alternatively, one or more of curved struts 510a, 510b 510c may include an anchoring feature at its free end as will be described with reference to FIGS. 6B-L. In the following examples, reference may be made to anchoring to heart tissue. It is intended by this that the features described may couple to at least one of an atrial wall, a ventricular wall, a native valve leaflet, heart muscle, papillary muscles, tendons, chordae tendineae or any other tissue adjacent a heart valve, such as a mitral valve or a tricuspid valve. Unless otherwise noted, each of the features shown in FIGS. 6A-6L and described below (or described above in the case of the feature of FIG. 6A) may be provided on any one or more of the curved struts of prosthetic heart valve 500.



FIG. 6B illustrates a variation in which strut 610b terminates in a bell-shaped end 620 having a broad base 621 composed of two convex ends 622 that are curved and disposed on either side of a middle depressed portion 623. Without being bound to any particular theory, it is believed that broad base 621 provides a larger surface area for pushing against native tissue and reduces the risk of trauma to heart tissue, and that depressed portion 623 may provide a region to which chordae tendineae may attach. FIG. 6C illustrates another variation in which strut 610c terminates in a rounded end 625 having a narrowed neck 626 and a bulbous crown 627. Narrowed neck 626 may add flexibility to strut 610c while bulbous crown 627 provides an atraumatic contact point with body tissue. FIG. 6D illustrates another variation in which strut 610d includes a pivoting head 630 that is capable of rotating at pivot 631 to alternate between a first position R1 and a second position R2 shown in phantom lines at an oblique angle to the strut. It will be understood that pivoting head 630 may be heat set or otherwise shape set so as to be disposed in position R2 during delivery of prosthetic heart valve 500 into the patient, and may then return to position R1 after deployment for anchoring. In FIG. 6E, strut 610e terminates in arrow-shaped end 635 having two outwardly extending wings 636 defining a cavity 637 between strut 610e and each wing. Cavities 637 may capture certain portions of the heart tissue such as, for example, chordae tendineae. FIG. 6F illustrates strut 610f which terminates in corkscrew 640 formed of a helical member 641 that progressively narrows to a point 642. Corkscrew 640 may be configured to engage certain heart tissue by having the tissue wrap around the progressively narrowing member or by piercing the tissue with point 642. A similar configuration, shown in FIG. 6G, illustrates strut 610g having opposing teeth-like barbs 645,646 which capture heart tissue. Each barb 645, 646 is substantially triangular and angled slightly away from the free end of strut 610g such that the teeth are capable of grasping onto heart tissue when implanted. FIG. 6H illustrates another example for anchoring a strut to heart tissue. Strut 610h includes an energy-excitable region 650, for example, having bio-glues like cyanoacrylates that bonds to heart tissue when excited by an energy source (e.g., laser energy, ultrasound, etc.). Instead of an energy-excitable region, strut 610i of FIG. 6I includes a chemical bonding portion 655, which includes a coating on strut 610i to aid in attachment to heart tissue. In one example, chemical bonding region 655 includes a biocompatible adhesive 656 that is coated onto one or more surfaces of strut 610i. In FIG. 6J, strut 610j includes a region 660 having pores 661. Porous region 660 may be formed from a different material than the remainder of strut 610j and may be biodegradable. Additionally, an adhesive 662 or the like may be added to pores 661 to aid in anchoring. FIG. 6K illustrates two struts 610k1,610k2 each having a polarized region 665,666, respectively. Polarized regions 665,666 may be magnetic and may have opposite polarities such that, when brought close together, struts 610k1,610k2 will be attracted to one another and magnetically clamp onto tissue. In some examples, certain struts that are used for anchoring may be divided into a first group of struts having a first polarized region 610k1 and a second group of struts having a second polarized region 610k2, the first and second polarized regions being of opposite polarities. In at least some examples, struts 610k1 having polarized regions 665 may be in a first row and struts 610k2 having polarized regions 666 may be in a second row, and the two rows may be disposed on opposite sides of heart tissue. In FIG. 6L, strut 610l includes clamp 670 having opposed clamps 671 defining a receiving portion 672 therebetween for receiving a portion of heart tissue.



FIG. 7 illustrates another variation in which prosthetic heart valve 700 includes projecting curved struts to aid in its fixation to heart tissue. Prosthetic heart valve 700 may extend between inflow end 210 and outflow end 212 and include all the elements described above in connection with heart valve 400, including stent 250 formed of struts 252 defining cells 254, and valve assembly 260 having leaflets 262 and cuff 264. Similar to prosthetic heart valve 400 of FIG. 4, prosthetic heart valve 700 includes upper curling struts 710a and lower curling struts 710b. Curling struts 710a, 710b may be between about 10 mm and about 20 mm. In contrast to prosthetic heart valve 400, however, curling struts 710a-b are arranged in pairs, with each pair originating at a single fixation point 730. In this case, fixation points 730 are disposed close to inflow end 210 (e.g., closer to the atrium when prosthetic heart valve 700 is implanted) to minimize protrusion into the left ventricular outflow tract. In some examples, fixation points 730 may be disposed equidistant between inflow end 210 and outflow end 212. Alternatively, fixation points 730 may be disposed closer to outflow end 212 than to inflow end 210. In at least some examples, curling struts 710a are longer than curling struts 710b and fixation point 730 is disposed closer to outflow end 212 than inflow end 210. Curling struts may apply a radial force on surrounding tissue in the range described above with respect to cured struts. In some examples, curling struts 710a, 710b may have a width that is between about 20% to about 50% of struts 252. In some examples, curling struts 710a, 710b may have a wall thickness that is between about 20% to about 50% of struts 252. Though leaflets 262 and stent 250 are illustrated in a simplified manner, it will be appreciated that leaflets 262 may be attached to stent 250 at commissure features 770 and that fixation points 730 may be disposed adjacent to or at the same longitudinal position as the commissure features as shown, or anywhere between commissure features 770 and outflow end 212.


According to the disclosure, a prosthetic heart valve has an inflow end and an outflow end, and may include a collapsible and expandable stent including a plurality of commissure features, a plurality of first struts and a plurality of second struts, the plurality of first struts defining a substantially cylindrical projection and the plurality of second struts projecting radially outward from the cylindrical portion and configured to couple to adjacent heart tissue to anchor the stent, and a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets coupled to the commissure features; and/or


the plurality of second struts may include curved struts, the free ends of the curved struts projecting toward a midsection of the stent; and/or


the plurality of second struts may include curling struts, the curling struts forming a fiddlehead shape between the first ends and the second ends; and/or


the first ends may be disposed adjacent the outflow end; and/or


the first ends may be disposed at a longitudinal position between the plurality of commissure features and the outflow end; and/or


the free ends may terminate in at least one of a bell-shaped base, a rounded end having a narrowed neck or a bulbous crown; and/or


the free ends may terminate in a pivoting head; and/or


the free ends may terminate in at least one of an arrow-shaped end, a corkscrew, or a plurality of barbs; and/or


the free ends may terminate in at least one of a porous region, a chemical bonding region, or an electrically excitable region; and/or


the free ends may terminate in a region coated with a biocompatible adhesive; and/or


the free ends of a first group of the second struts may have a first polarity and the free ends of a second group of the second struts may have a second polarity opposite a first polarity; and/or


the valve assembly and the stent may be capable of replacing the function of at least one of a native mitral valve and a native tricuspid valve.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A prosthetic heart valve having an inflow end and an outflow end, comprising: a collapsible and expandable stent including a plurality of commissure features, a plurality of first struts defining a substantially cylindrical portion, a plurality of curled second struts having first ends attached to the cylindrical portion and free ends projecting radially outward from the cylindrical portion to anchor the stent to the heart tissue, the free ends of a first group of the plurality of second struts have a first polarity and the free ends of a second group of the plurality of second struts have a second polarity opposite the first polarity; anda collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets coupled to the commissure features.
  • 2. The prosthetic heart valve of claim 1, wherein the valve assembly and the stent are capable of replacing the function of at least one of a native mitral valve or a native tricuspid valve.
  • 3. The prosthetic heart valve of claim 1, wherein the first ends of the first group of the plurality of second struts are disposed adjacent the outflow end.
  • 4. The prosthetic heart valve of claim 3, wherein the first ends of the second group of the plurality of second struts are disposed adjacent the inflow end.
  • 5. The prosthetic heart valve of claim 4, wherein the free ends of the first group of the plurality of second struts are configured to magnetically clamp to the free ends of the second group of the plurality of second struts on opposite sides of the heart tissue.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/174,690 filed Jun. 12, 2015, the disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (225)
Number Name Date Kind
3657744 Ersek Apr 1972 A
4275469 Gabbay Jun 1981 A
4491986 Gabbay Jan 1985 A
4759758 Gabbay Jul 1988 A
4878906 Lindemann et al. Nov 1989 A
4922905 Strecker May 1990 A
4994077 Dobben Feb 1991 A
5411552 Andersen et al. May 1995 A
5415664 Pinchuk May 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5843167 Dwyer et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5935163 Gabbay Aug 1999 A
5961549 Nguyen et al. Oct 1999 A
6077297 Robinson et al. Jun 2000 A
6083257 Taylor et al. Jul 2000 A
6090140 Gabbay Jul 2000 A
6214036 Letendre et al. Apr 2001 B1
6264691 Gabbay Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6368348 Gabbay Apr 2002 B1
6419695 Gabbay Jul 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6488702 Besselink Dec 2002 B1
6517576 Gabbay Feb 2003 B2
6533810 Hankh et al. Mar 2003 B2
6582464 Gabbay Jun 2003 B2
6610088 Gabbay Aug 2003 B1
6623518 Thompson et al. Sep 2003 B2
6685625 Gabbay Feb 2004 B2
6719789 Cox Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6783556 Gabbay Aug 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6869444 Gabbay Mar 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
7018406 Seguin et al. Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7137184 Schreck Nov 2006 B2
7160322 Gabbay Jan 2007 B2
7247167 Gabbay Jul 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7311730 Gabbay Dec 2007 B2
7374573 Gabbay May 2008 B2
7381218 Schreck Jun 2008 B2
7452371 Pavcnik et al. Nov 2008 B2
7510572 Gabbay Mar 2009 B2
7524331 Birdsall Apr 2009 B2
RE40816 Taylor et al. Jun 2009 E
7585321 Cribier Sep 2009 B2
7682390 Seguin Mar 2010 B2
7731742 Schlick et al. Jun 2010 B2
7803185 Gabbay Sep 2010 B2
7846203 Cribier Dec 2010 B2
7846204 Letac et al. Dec 2010 B2
7914569 Nguyen et al. Mar 2011 B2
D648854 Braido Nov 2011 S
D652926 Braido Jan 2012 S
D652927 Braido et al. Jan 2012 S
D653341 Braido et al. Jan 2012 S
D653342 Braido et al. Jan 2012 S
D653343 Ness et al. Jan 2012 S
D654169 Braido Feb 2012 S
D654170 Braido et al. Feb 2012 S
D660432 Braido May 2012 S
D660433 Braido et al. May 2012 S
D660967 Braido et al. May 2012 S
8591570 Revuelta Nov 2013 B2
8840663 Salahieh et al. Sep 2014 B2
9289291 Gorman, III Mar 2016 B2
9480556 Revuelta Nov 2016 B2
9629721 McKinnis Apr 2017 B2
9763778 Eidenschink Sep 2017 B2
20020036220 Gabbay Mar 2002 A1
20030023303 Palmaz et al. Jan 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030130726 Thorpe et al. Jul 2003 A1
20040049262 Obermiller et al. Mar 2004 A1
20040093075 Kuehne May 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20050096726 Sequin et al. May 2005 A1
20050137690 Salahieh Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050240200 Bergheim Oct 2005 A1
20050256566 Gabbay Nov 2005 A1
20060008497 Gabbay Jan 2006 A1
20060074484 Huber Apr 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060173532 Flagle et al. Aug 2006 A1
20060178740 Stacchino Aug 2006 A1
20060190074 Hill Aug 2006 A1
20060195180 Kheradvar et al. Aug 2006 A1
20060206202 Bonhoeffer et al. Sep 2006 A1
20060241744 Beith Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060259120 Vongphakdy et al. Nov 2006 A1
20060259136 Nguyen Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271166 Thill Nov 2006 A1
20060276813 Greenberg Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070027534 Bergheim et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070055358 Krolik et al. Mar 2007 A1
20070067029 Gabbay Mar 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100435 Case et al. May 2007 A1
20070118210 Pinchuk May 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070244545 Birdsall et al. Oct 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20070288087 Fearnot et al. Dec 2007 A1
20080021552 Gabbay Jan 2008 A1
20080039934 Styrc Feb 2008 A1
20080071361 Tuval Mar 2008 A1
20080071362 Tuval Mar 2008 A1
20080071366 Tuval Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082164 Friedman Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080114452 Gabbay May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147183 Styrc Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot Oct 2008 A1
20080255662 Stacchino et al. Oct 2008 A1
20080262602 Wilk et al. Oct 2008 A1
20080269879 Sathe et al. Oct 2008 A1
20090054976 Tuval Feb 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090287299 Tabor Nov 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100036484 Hariton et al. Feb 2010 A1
20100049306 House et al. Feb 2010 A1
20100082094 Quadri Apr 2010 A1
20100087907 Lattouf Apr 2010 A1
20100131055 Case et al. May 2010 A1
20100168778 Braido Jul 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100204785 Alkhatib Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249911 Alkhatib Sep 2010 A1
20100249923 Alkhatib Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298931 Quadri Nov 2010 A1
20110029072 Gabbay Feb 2011 A1
20110098802 Braido Apr 2011 A1
20110137397 Chau Jun 2011 A1
20110218620 Meiri Sep 2011 A1
20110238168 Pellegrini Sep 2011 A1
20110264206 Tabor Oct 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20120035722 Tuval Feb 2012 A1
20120078347 Braido Mar 2012 A1
20120215303 Quadri Aug 2012 A1
20120303116 Gorman, III Nov 2012 A1
20130150956 Yohanan Jun 2013 A1
20130184813 Quadri Jul 2013 A1
20130211508 Lane Aug 2013 A1
20130274870 Lombardi Oct 2013 A1
20130274873 Delaloye Oct 2013 A1
20140005771 Braido Jan 2014 A1
20140018911 Zhou Jan 2014 A1
20140018915 Biadillah Jan 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140228940 McKinnis Aug 2014 A1
20140236292 Braido Aug 2014 A1
20140243965 Benson Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140277425 Dakin Sep 2014 A1
20140324164 Gross Oct 2014 A1
20140330371 Gloss Nov 2014 A1
20150351904 Cooper Dec 2015 A1
20160030165 Mitra Feb 2016 A1
20160030171 Quijano Feb 2016 A1
20160067038 Park Mar 2016 A1
20160074160 Christianson Mar 2016 A1
20160081799 Leo Mar 2016 A1
20160095701 Dale Apr 2016 A1
20160113768 Ganesan Apr 2016 A1
20160158003 Wallace Jun 2016 A1
20160158007 Centola Jun 2016 A1
20160199180 Zeng Jul 2016 A1
20160228249 Mantanus Aug 2016 A1
20160235529 Ma Aug 2016 A1
20160278922 Braido Sep 2016 A1
20160278923 Krans Sep 2016 A1
20160302918 Keidar Oct 2016 A1
20160302919 Scorsin Oct 2016 A1
20160310268 Oba Oct 2016 A1
20160317301 Quadri Nov 2016 A1
20160331525 Straubinger Nov 2016 A1
20160361161 Braido Dec 2016 A1
20170000604 Conklin Jan 2017 A1
20170042673 Vietmeier Feb 2017 A1
20170049565 Bailey Feb 2017 A1
20170056169 Johnson Mar 2017 A1
20170071733 Ghione Mar 2017 A1
20170079786 Li Mar 2017 A1
20170095326 Lim Apr 2017 A1
20170095328 Cooper Apr 2017 A1
20170112621 Salahieh Apr 2017 A1
20170128204 Morriss May 2017 A1
20170128207 Tuval May 2017 A1
20170143481 Morriss May 2017 A1
20170143482 Kveen May 2017 A1
20170143484 Braido May 2017 A1
20170143485 Gorman, III May 2017 A1
Foreign Referenced Citations (35)
Number Date Country
19857887 Jul 2000 DE
10121210 Nov 2002 DE
102005003632 Aug 2006 DE
202008009610 Dec 2008 DE
0850607 Jul 1998 EP
1000590 May 2000 EP
1360942 Nov 2003 EP
1584306 Oct 2005 EP
1598031 Nov 2005 EP
1926455 Jun 2008 EP
2777616 Sep 2014 EP
2847800 Jun 2004 FR
2850008 Jul 2004 FR
9117720 Nov 1991 WO
9716133 May 1997 WO
9832412 Jul 1998 WO
9913801 Mar 1999 WO
01028459 Apr 2001 WO
0149213 Jul 2001 WO
01054625 Aug 2001 WO
01056500 Aug 2001 WO
01076510 Oct 2001 WO
0236048 May 2002 WO
0247575 Jun 2002 WO
02067782 Sep 2002 WO
03047468 Jun 2003 WO
2005070343 Aug 2005 WO
06073626 Jul 2006 WO
07071436 Jun 2007 WO
08070797 Jun 2008 WO
10008549 Jan 2010 WO
2010008548 Jan 2010 WO
10096176 Aug 2010 WO
10098857 Sep 2010 WO
2012068377 May 2012 WO
Non-Patent Literature Citations (17)
Entry
“Closed heart surgery: Back to the future”, Samuel V. Lichtenstein, The Journal of Thoracic and Cardiovascular Surgery, vol. 131, No. 5, pp. 941-943.
“Direct-Access Valve Replacement”, Christoph H. Huber, et al., Journal of the American College of Cardiology, vol. 46, No. 2, (Jul. 19, 2005).
“Minimally invasive cardiac surgery”, M. J. Mack, Surgical Endoscopy, 2006, 20:S488-S492, DOI: 10.1007/s00464-006-0110-8 (presented Apr. 24, 2006).
“Percutaneous Aortic Valve Implantation Retrograde From the Femoral Artery”, John G. Webb et al., Circulation, 2006; 113:842-850 (Feb. 6, 2006).
“Transapical aortic valve implantation: an animal feasibility study”; Todd M. Dewey et al., The annals of thoracic surgery 2006; 82: 110-6 (Feb. 13, 2006).
“Transapical approach for sutureless stent-fixed aortic valve implantation: experimental results”; Th. Walther et al., European Journal of Cardio-thoracic Surgery 29 (2006) 703-708 (Jan. 30, 2006).
“Transapical Transcatheter Aortic Valve Implantation in Humans”, Samuel V. Lichtenstein et al., Circulation. 2006; 114: 591-596 (Jul. 31, 2006).
Catheter-implanted prosthetic heart valves, Knudsen, L.L., et al., The International Journal of Artificial Organs, vol. 16, No. 5 1993, pp. 253-262.
International Search Report for Application No. PCT/US2016/036560 dated Aug. 18, 2016.
Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, Zegdi, Rachid, MD, PhD et al., J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008.
Percutaneous aortic valve replacement: resection before implantation, 836-840, Quaden, Rene et al., European J. of Cardio-thoracic Surgery, 27 (2005).
Textbook “Transcatheter Valve Repair”, 2006, pp. 165-186.
Transluminal Aortic Valve Placement, Moazami, Nader, et al., ASAIO Journal, 1996; 42:M381-M385.
Transluminal Catheter Implanted Prosthetic Heart Valves, Andersen, Henning Rud, International Journal of Angiology 7:102-106 (1998).
Transluminal implantation of artificial heart valves, Andersen, H. R., et al., European Heart Journal (1992) 13, 704-708.
U.S. Appl. No. 29/375,243, filed Sep. 20, 2010.
U.S. Appl. No. 29/375,260, filed Sep. 20, 2010.
Related Publications (1)
Number Date Country
20160361161 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62174690 Jun 2015 US