Some applications of the present invention relate in general to surgical techniques. More specifically, some applications of the present invention relate to techniques for securing sutures. More specifically, some applications of the present invention relate to transluminal techniques for securing sutures.
Functional tricuspid regurgitation (FTR) is governed by several pathophysiologic abnormalities such as tricuspid valve annular dilatation, annular shape, pulmonary hypertension, left or right ventricle dysfunction, right ventricle geometry, and leaflet tethering. Treatment options for FTR are primarily surgical. The current prevalence of moderate-to-severe tricuspid regurgitation is estimated to be 1.6 million in the United States. Of these, only 8,000 patients undergo tricuspid valve surgeries annually, most of them in conjunction with left heart valve surgeries.
In some applications of the invention, apparatus and methods are provided for fixedly coupling sutures to each other. For some such applications, the apparatus comprises a suture-securing device that comprises two tubular elements that are movably coupled to each other. For other such applications, the apparatus comprises a suture-securing device that comprises a casing and a core that are movably coupled to each other. Both suture-securing devices described have an unlocked configuration, in which sutures are generally slidable through the device, and a locking configuration, in which the sutures are generally not slidable through the device.
In some applications of the invention, the suture-securing devices are configured to be biased to moving toward the locking configuration thereof, and are retained in the unlocked configuration by a constraint. For such applications, the devices automatically move toward the locking configuration when the constraint is removed.
In some applications of the invention, techniques are provided for using the suture-securing device to repair a heart valve, by fixedly coupling together sutures that are coupled to different parts of the annulus of the valve.
In some applications of the invention, apparatus and methods are provided for repairing a heart valve by sandwiching valve leaflets between a support and a securing element, such that multiple orifices are formed between respective portions of the valve leaflets. Typically, the support is generally disc-shaped, and comprises a wire-mesh. Typically, the securing element comprises a plurality of arms, one end of each arm coupled to a central core, and the other end of each arm coupled to leaflet-piercing elements, which protrude through the valve leaflets and into the wire mesh of the support.
There is therefore provided, in accordance with an application of the present invention, apparatus for use with a heart valve of a patient, the heart valve including at least two leaflets, the apparatus including:
a support, having a leaflet-engaging side, configured to be placed against a first side of the heart valve in a position in which respective portions of the leaflet-engaging side of the support are disposed against respective regions of respective leaflets of the valve; and
a plurality of leaflet-piercing elements, deliverable to a second side of the heart valve of the patient, and configured to couple the support to the heart valve by (1) piercing the leaflets of the heart valve from the second side of the heart valve to the first side of the heart valve, and (2) coupling to the support while the support is in the position on the first side of the heart valve.
In an application, the support is flat.
In an application, the support is disc-shaped.
In an application, the support has a delivery configuration in which the support is generally cylindrical, and a deployed configuration in which the support is generally flat.
In an application, the support includes a braided wire mesh.
In an application, the leaflet-piercing elements include straight spikes.
In an application, the leaflet-piercing elements include barbs.
In an application, the leaflet-piercing elements include hooks.
In an application, the leaflet-piercing elements are configured to couple to the support by being configured to protrude into the support.
In an application, the leaflet-piercing elements are configured to couple to the support by being configured to protrude through the support.
In an application, the support is transluminally deliverable to the first side of the heart valve of the patient.
In an application, the leaflet-piercing elements are transluminally deliverable to the second side of the heart valve independently of the support.
In an application, the apparatus further includes a securing element, including:
a core;
two or more arms, an inner end of each arm being coupled to the core, and the arms extending radially outward from the core; and
the leaflet-piercing elements, coupled to respective outer ends of each arm.
In an application, the securing element is transluminally deliverable to the second side of the heart valve independently of the support.
In an application, the apparatus is configured such that the leaflet-engaging elements are configured to be coupled to the support by the securing element being configured to be coupled to the support.
In an application, the apparatus is configured such that coupling the leaflet-engaging elements to the support while the support is in the position on the first side of the heart valve, sandwiches the leaflets of the heart valve between the support and the securing element.
In an application, the core defines a coupling portion, configured to couple the core to the support.
In an application, the apparatus is configured such that the coupling of the core to the support facilitates the coupling of the leaflet-piercing elements to the support.
In an application, the support defines an inner perimeter that defines an opening through the support, and the coupling portion is configured to couple the core to the support, by being configured to secure at least part of the coupling portion within the opening.
In an application, the core is configured to extend between the leaflets of the heart valve, from the second side of the heart valve to the first side of the heart valve, such that the coupling portion is couplable to the support at the first side of the heart valve.
In an application, the securing element has a delivery configuration and a deployed configuration, and the outer end of the arms are closer to each other in the delivery configuration than in the deployed configuration.
In an application:
the securing element is disposable within a sheath, and is removable from the sheath,
the delivery configuration defines a constrained configuration, the sheath being configured to constrain the securing element in the constrained delivery configuration,
the deployed configuration defines an unconstrained configuration, and
the securing element is configured to automatically move from the delivery configuration to the deployed configuration when the securing element is removed from the sheath.
There is further provided, in accordance with an application of the present invention, a method for use with a heart valve of a patient, the heart valve including at least two leaflets, the method including:
delivering, to a first side of the heart valve, a support, having a leaflet-engaging side;
delivering, to a second side of the heart valve, a plurality of leaflet-piercing elements;
piercing the leaflets of the valve, from the second side to the first side of the valve, with the leaflet-piercing elements; and
coupling the support to the leaflets, such that respective portions of the leaflet-engaging side of the support are disposed against respective regions of respective leaflets, by coupling, at the first side of the valve, the leaflet-piercing elements to the support.
In an application, delivering the support includes delivering a flat support.
In an application, delivering the support includes delivering a disc-shaped support.
In an application, delivering the support includes delivering a support that includes a braided wire mesh.
In an application, delivering the support includes:
percutaneously delivering the support while the support is in a generally-cylindrical delivery configuration thereof, and
subsequently, deploying the support into a generally flat deployed configuration thereof.
In an application, coupling the leaflet-piercing elements to the support includes advancing the leaflet-piercing elements into the support.
In an application, coupling the leaflet-piercing elements to the support includes advancing the leaflet-piercing elements through the support.
In an application, delivering the leaflet-piercing elements includes delivering the leaflet-piercing elements independently of delivering the support.
In an application, delivering the leaflet-piercing elements includes delivering, to the second side of the valve, a securing element that includes (1) a core, (2) two or more arms, an inner end of each arm being coupled to the core, and the arms extending radially outward from the core, and (3) the leaflet-piercing elements, coupled to respective outer ends of each arm.
In an application, coupling the leaflet-piercing elements to the support includes coupling the securing element to the support.
In an application, coupling the securing element to the support includes sandwiching the leaflets between the securing element and the support.
In an application, coupling the securing element to the support includes coupling the core to the support, and coupling the core to the support facilitates coupling the leaflet-piercing elements to the support.
In an application, the core defines a coupling portion, and coupling the securing element to the support includes coupling the coupling portion of the core to the support.
In an application, coupling the coupling portion to the support facilitates the coupling of the leaflet-piercing elements to the support.
In an application, the support defines an inner perimeter that defines an opening through the support, and coupling the coupling portion of the core to the support includes securing at least part of the coupling portion within the opening.
In an application, coupling the coupling portion of the core to the support, includes coupling the coupling portion to the support at the first side of the heart valve.
In an application, coupling the coupling portion to the support includes moving at least part of the coupling portion, from the second side of the heart valve, between the leaflets of the heart valve, to the first side of the heart valve.
There is further provided, in accordance with an application of the present invention, apparatus for use with one or more sutures, the apparatus including:
a first tubular element, shaped to define a first lumen therethrough, and having a first end and a second end; and
a second tubular element, shaped to define a second lumen therethrough, and having a first end and a second end,
the apparatus having:
In an application, the second tubular element has a length, from the first end of the second tubular element to the second end of the second tubular element, that is smaller than the cross-sectional diameter of the first lumen.
In an application, the sutures include a first suture and a second suture, and the apparatus having a locking configuration in which the sutures are inhibited from sliding through the first and second lumens, includes the apparatus having a locking configuration in which the first suture is inhibited from moving with respect to the second suture.
In an application, the apparatus is configured such that:
in the unlocked configuration, the second end of the second tubular element is disposed outside of the first lumen, and
in the locking configuration, the second end of the second tubular element is disposed within the first lumen.
In an application, the second end of the first tubular element is coupled to the first end of the second tubular element.
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, movement of the apparatus from the unlocked to the locking configuration rotates at least a portion of each suture.
In an application, the apparatus is configured such that movement of the apparatus from the unlocked to the locking configuration rotates the second tubular element.
In an application, the first and second tubular elements include a continuous piece of material.
In an application, the first tubular element is shaped such that the first lumen has a cross-sectional diameter that is greater than a cross-sectional diameter of the second lumen.
In an application, the first tubular element is shaped such that the first lumen has a cross-sectional diameter that is more than 1.1 times greater than the cross-sectional diameter of the second lumen.
In an application, the first tubular element is shaped such that the first lumen has a cross-sectional diameter that is less than 1.5 times greater than the cross-sectional diameter of the second lumen.
In an application:
the unlocked configuration includes a constrained configuration, and the locking configuration includes an unconstrained configuration, and
the apparatus is configured to be retained in the constrained unlocked configuration by a constraining force, and to automatically move toward the unconstrained locking configuration when the constraining force is removed.
In an application, the apparatus further includes a constraint, configured to provide the constraining force.
In an application, the constraint includes a rod, disposable in the lumen of at least one of the tubular elements, configured to provide the constraining force by being disposed in the lumen, the constraining force being removable by removing the rod from the lumen.
In an application, the constraint includes a constraining sheath, configured to provide the constraining force by being disposed around at least one of the tubular members, the constraining force being removable by removing the sheath from the at least one of the tubular members.
In an application, the first and second tubular elements both define respective inner and outer surfaces, and, in the locking configuration, at least part of the outer surface of the second tubular element is disposed against at least part of the inner surface of the first tubular element.
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, movement of the apparatus from the unlocked to the locking configuration sandwiches at least a portion of each suture between the outer surface of the second tubular element and the inner surface of the first tubular element.
In an application, the apparatus includes at least one helical element.
In an application, at least in the unlocked configuration, the apparatus defines a continuous helix from the first end of the first tubular element to the second end of the second tubular element.
In an application, the first tubular element includes a first helical element and the second tubular element includes a second helical element.
In an application, the second end of the first tubular element is coupled to the first end of the second tubular element by a connecting portion.
In an application, the tubular elements and the connecting portion include a continuous piece of material.
There is further provided, in accordance with an application of the present invention, apparatus for use with one or more sutures, the apparatus including:
a first tubular element, shaped to define a first lumen therethrough, and having a proximal end and a distal end; and
a second tubular element, shaped to define a second lumen therethrough, and having a first end and a second end,
the apparatus having:
In an application, the apparatus is configured such that:
in the unlocked configuration, the second end of the second tubular element is disposed outside of the first lumen, and
in the locking configuration, the second end of the second tubular element is disposed within the first lumen.
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, movement of the apparatus from the unlocked to the locking configuration rotates at least a portion of each suture.
In an application, the first and second tubular elements both define respective inner and outer surfaces, and, in the locking configuration, at least part of the outer surface of the second tubular element is disposed against at least part of the inner surface of the first tubular element.
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, movement of the apparatus from the unlocked to the locking configuration sandwiches at least a portion of each suture between the outer surface of the second tubular element and the inner surface of the first tubular element.
There is further provided, in accordance with an application of the present invention, apparatus for use with one or more sutures, the apparatus including:
a first tubular element, shaped to define a first lumen therethrough; and
a second tubular element, coupled to the first tubular element, and shaped to define a second lumen therethrough,
the apparatus having:
the apparatus being constrainable in the unlocked configuration by a removable constraining force, and configured to automatically move toward the second configuration when the constraining force is removed.
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, movement of the apparatus from the unlocked to the locking configuration rotates at least a portion of each suture.
In an application, the first and second tubular elements both define respective inner and outer surfaces, and, in the locking configuration, at least part of the outer surface of the second tubular element is disposed against at least part of the inner surface of the first tubular element.
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, movement of the apparatus from the unlocked to the locking configuration sandwiches at least a portion of each suture between the outer surface of the second tubular element and the inner surface of the first tubular element.
There is further provided, in accordance with an application of the present invention, apparatus for use with one or more sutures, the apparatus including:
a first tubular element, shaped to define a first lumen therethrough; and
a second tubular element shaped to define a second lumen therethrough, the second tubular element being coupled to the first tubular element at a coupling point, the coupling point being configured to facilitate deflection of the second tubular element around the coupling point, and
the apparatus:
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, the deflecting of the second tubular element around the coupling point rotates at least a portion of each suture.
In an application, the first and second tubular elements both define respective inner and outer surfaces, and, in the locking configuration, at least part of the outer surface of the second tubular element is disposed against at least part of the inner surface of the first tubular element.
In an application, the apparatus is configured such that, when the sutures are disposed within the lumens of the first and second tubular elements, the deflecting of the second tubular element around the coupling point sandwiches at least a portion of each suture between the outer surface of the second tubular element and the inner surface of the first tubular element.
There is further provided, in accordance with an application of the present invention, apparatus for use with one or more sutures, the apparatus including:
a casing, shaped to define a cavity, and one or more openings in which the sutures are disposable;
a core, disposed in the cavity, and shaped to define a lumen in which the sutures are disposable,
the apparatus:
In an application:
the casing defines two or more openings, the openings being provided along a longitudinal axis of the casing,
in the unlocked configuration of the apparatus, the lumen of the core is disposed along the axis, and between the openings, and
in the locking configuration of the apparatus, the core is disposed with respect to the casing in a manner in which the lumen of the core is not disposed along the axis.
In an application:
the casing defines two or more openings,
in the unlocked configuration of the apparatus, the lumen of the core is generally in fluid communication with the openings, and
in the locking configuration of the apparatus, the lumen of the core is generally not in fluid communication with the openings.
In an application:
the unlocked configuration includes a constrained configuration, and the locking configuration includes an unconstrained configuration, and
the apparatus is configured to be retained in the constrained unlocked configuration by a constraining force, and to automatically move toward the unconstrained locking configuration when the constraining force is removed.
In an application, the apparatus further includes a constraint, configured to provide the constraining force.
In an application, the constraint includes a constraining sheath.
In an application, the cutting site includes at least one cutting edge, and the apparatus is configured to cut the sutures by pushing the sutures against the cutting edge.
In an application:
the at least one cutting edge includes first and second cutting edges,
the casing is shaped to define the first cutting edge, and the core is shaped to define the second cutting edge,
delivering, to a vicinity of the anatomical site, apparatus that includes (1) a first tubular element, shaped to define a first lumen therethrough, and having a first end and a second end, and (2) a second tubular element, shaped to define a second lumen therethrough, and having a first end and a second end;
sliding the apparatus over at least part of the sutures while the apparatus is in an unlocked configuration thereof in which (1) the first end of the second tubular element is disposed closer to the first end of the first tubular element than is the second end of the second tubular element, and (2) the sutures are slidable through the first and second lumens; and
securing the apparatus to the sutures by moving the apparatus into a locking configuration thereof in which: (1) the second end of the second tubular element is disposed closer to the first end of the first tubular element than is the first end of the second tubular element, and (2) the sutures are inhibited from sliding through the first and second lumens.
There is further provided, in accordance with an application of the present invention, a method for use with one or more sutures at an anatomical site of a patient, the method including: delivering, to a vicinity of the anatomical site, apparatus that includes (1) a first tubular element, shaped to define a first lumen therethrough, and having a first end and a second end, and (2) a second tubular element, shaped to define a second lumen therethrough, and having a first end and a second end;
sliding the apparatus over at least part of the sutures while the apparatus is in an unlocked configuration thereof in which (1) the first end of the second tubular element is disposed closer to the first end of the first tubular element than is the second end of the second tubular element, and (2) the sutures are slidable through the first and second lumens; and
subsequently inhibiting the sutures from sliding through the first and second lumens by moving the apparatus into a locking configuration in which the second end of the second tubular element is disposed closer to the first end of the first tubular element than is the first end of the second tubular element.
In an application, in the unlocked configuration, the second end of the second tubular element of the apparatus is disposed outside of the first lumen, and moving the apparatus into the locking configuration includes moving the second end of the second tubular element into the first lumen.
In an application, moving the apparatus into the locking configuration includes moving at least a quarter of the second tubular element into the first lumen.
In an application, moving the apparatus into the locking configuration includes sandwiching at least a portion of each suture between an outer surface of the second tubular element and an inner surface of the first tubular element.
In an application, the apparatus is configured to be constrained in the unlocked configuration by a constraining force, and moving the apparatus into the locking configuration includes removing the constraining force.
In an application, removing the constraining force includes removing, from the lumen of at least one of the tubular elements, a rod that is (1) disposed in the lumen of the least one of the tubular elements, and (2) configured to provide the constraining force.
In an application, removing the constraining force includes removing, from around at least one of the tubular elements, a constraining sheath that is (1) disposed around the at least one of the tubular elements, and (2) configured to provide the constraining force.
In an application, moving the apparatus into the locking configuration includes rotating the second tubular element.
In an application, the first tubular element is coupled to the second tubular element via a coupling point, and rotating the second tubular element includes deflecting the second tubular element around the coupling point.
There is further provided, in accordance with an application of the present invention, a method for use with one or more sutures at an anatomical site of a patient, the method including:
delivering, to a vicinity of the anatomical site, apparatus that includes (1) a casing, shaped to define a cavity, and one or more openings in which the sutures are disposable, and (2) a core, disposed in the cavity, and shaped to define a lumen in which the sutures are disposable;
sliding the apparatus over at least part of the sutures while the apparatus is in an unlocked configuration thereof, in which the sutures are slidable through the openings and the lumen; and
subsequently, by moving the apparatus into a locking configuration thereof, simultaneously (1) inhibiting the sutures from sliding through the lumen by coupling the apparatus to the sutures at a coupling site of the apparatus, and (2) cutting the sutures with one or more cutting edges at a cutting site of the apparatus.
In an application, the apparatus is configured to be constrained in the unlocked configuration by a constraining force, and moving the apparatus into the locking configuration includes removing the constraining force.
In an application, removing the constraining force includes removing, from around at least part of the core, a constraining sheath that is (1) disposed around the at least part of the core, and (2) configured to provide the constraining force.
For some applications, techniques described herein are practiced in combination with techniques described in one or more of the references cited in the Background section and Cross-references section of the present patent application.
Reference is made to
Device 22 comprises a first tubular element 24, which is shaped to define a first lumen L1, a first end 10 and a second end 11, and a second tubular element 26, which is shaped to define a second lumen, a first end 12 and a second end 13. Typically, second tubular element 26 is narrower than first tubular element 24. That is, lumen L2 typically has a smaller transverse cross-sectional area than does lumen L1. Typically, the second tubular element has an outer edge that has a diameter D2 that is smaller than a diameter D1 of an inner edge of the first tubular element.
For some applications of the invention, diameter D1 is more than 1.1 times greater and/or less than 1.5 times greater than diameter D2. Typically, second tubular element 26 has a longitudinal length (i.e., from first end 12 to second end 13) that is smaller than diameter D1 of first tubular element 24, e.g., so as to facilitate rotation of the second tubular element within lumen L1 of the first tubular element.
Typically, device 22 is used in catheter-based procedures or minimally-invasive procedures, and is positioned with respect to the operating physician such that second tubular element 26 is distal to first tubular element 24. Alternatively, the device is positioned with respect to the physician such that the first tubular element is distal to the second tubular element. For some applications, device 22 may be used in a surgical procedure, e.g., an open-heart procedure.
In the unlocked configuration of device 22, the first and second tubular elements are typically disposed end to end.
That is, in the unlocked configuration of device 22, one or more of the following are typically true:
(1) first end 12 of the second tubular element is disposed closer to first end 10 of the first tubular element than is second end 13 of the second tubular element,
(2) second end 13 of the second tubular element is disposed distally (i.e., with respect to the operating physician) to first end 12 of the second tubular element, and
(3) at least a quarter (e.g., all) of second tubular element 26 is disposed outside of lumen L1 of the first tubular element.
In the unlocked configuration, sutures 34a and 34b are slidable through device 22, i.e., through lumens L1 and L2 of tubular elements 24 and 26. That is, in the unlocked configuration, the device is slidably coupled to the sutures, i.e., is slidable over the sutures. Typically, device 22 is delivered to an anatomical site (e.g., in a vicinity of a site being treated) with sutures 34a and 34b pre-threaded through the device.
Typically, and as shown in
Helical elements 24 and 26 are typically coupled by a connecting portion 38, which facilitates movement of device 22 from the unlocked configuration to the locking configuration. For some applications in which tubular elements 24 and 26 are defined by helices and comprise a single piece of material, connecting portion 38 also comprises the single piece of material. That is, for such applications, device 22, comprising connecting portion 38, comprises a single piece of material.
Typically, in the locking configuration of device 22, one or more of the following are true:
(1) second end 13 of the second tubular element is disposed closer to first end 10 of the first tubular element than is first end 12 of the second tubular element,
(2) first end 12 of the second tubular element is disposed distally (i.e., with respect to the operating physician) to second end 13 of the second tubular element, and
(3) at least a quarter of second tubular element 26 is disposed inside lumen L1 of the first tubular element.
In the locking configuration, sutures 34a and 34b are generally not slidable through device 22, i.e., through lumens L1 and L2 of tubular elements 24 and 26. That is, in the locking configuration, the device is fixedly coupled to the sutures, i.e., is generally not slidable over the sutures. Typically, the device is fixedly coupled to the sutures by sandwiching at least part of the sutures between the two tubular elements, e.g., between the outer edge of second tubular element 26 and the inner edge first tubular element 24, as shown at coupling zone 31 in
As described hereinabove, device 22 (i.e., the tubular elements and coupling portion thereof) typically comprises a single piece of material that has been fabricated into at least one helix. Typically, device 22 comprises a shape-memory material, which is configured to be biased (e.g., is shape-set) such that the device moves toward the locking configuration thereof. For such applications, the device is retained in the unlocked configuration by at least one constraint 28 (see
For some applications, and as shown in
For applications of the invention in which device 22 is constrained in the unlocked configuration by rod 30, rod 30 is typically shaped to define a lumen, and the sutures are slidable through the device by being slidable through the lumen of the rod.
For some applications, device 22 is constrained in the unlocked configuration by a constraining sheath (not shown) for delivery to an intracorporeal site. At, or in the vicinity of, the intracorporeal site, the device is exposed from the delivery sheath and automatically moves into the locking configuration.
Reference is made to
For some applications in which cardiac valve 4 comprises tricuspid valve 94, first site 6 is typically in a vicinity of an anterior-posterior commissure (APC) 88 (i.e., the commissure between anterior leaflet 82 and posterior leaflet 84) of the valve, and second site 8 is in a vicinity of septal leaflet 86 of the valve.
Typically, anchor 40b is delivered via a second inner sheath 44b. Alternatively, anchors 40a and 40b are delivered via the same inner sheath.
Reference is now made to
Reference is made to
Device 60 comprises a casing 62, shaped to define a cavity 63 and one or more openings 64, and a core 66, disposed in cavity 63, and shaped to define a lumen L3 therethrough. Typically, casing 62 defines two openings 64. Typically, cavity 63 is open at a lateral side of the casing. Core 66 is movable, at least in part, within cavity 63. Typically, a pin 70 is disposed through casing 62 and core 66, such that core 66 is movable within cavity 63 without decoupling from casing 62. For example, and as shown in
In the unlocked configuration of device 60, lumen L3 is typically aligned between openings 64, i.e., the lumen is typically disposed on an axis between the openings. Typically, thereby, in the unlocked configuration, lumen L3 is generally in fluid communication with openings 64.
In the unlocked configuration, sutures 34a and 34b are slidable through device 60, i.e., through openings 64 and lumen L3. That is, in the unlocked configuration, the device is slidably coupled to the sutures, i.e., is slidable over the sutures. Typically, device 60 is delivered to an anatomical site (e.g., in a vicinity of a site being treated) with sutures 34a and 34b pre-threaded through the device.
Device 60 typically further comprises and/or defines one or more cutting edges, such as cutting edges 80a and 80b, described further with reference to
In the locking configuration, sutures 34a and 34b are generally not slidable through device 60, i.e., through openings 64 and lumen L3. That is, in the locking configuration, the device is fixedly coupled to the sutures, i.e., is generally not slidable over the sutures. Typically, the device is fixedly coupled to the sutures by sandwiching at least part of the sutures between core 66 and casing 62, as shown at coupling zone 61 in
When device 60 moves into the locking configuration, the device cuts the sutures disposed therein, at a cutting zone 65. Typically, a first cutting edge 80a is defined by casing 62, a second cutting edge 80b is defined by core 66, and when sutures 34a and 34b are slid through device 60, part of each suture is disposed between the two cutting edges. When device 60 moves into the locking configuration, the two cutting edges move toward and, typically, past each other, thereby cutting the sutures.
A portion of each suture typically remains within device 60 subsequent to the fixed-coupling of the device to the sutures. For example, and as shown in
Device 60 is typically configured to be biased such that the device moves toward the locking configuration thereof. Typically, device 60 is thus configured by comprising at least one spring 72, which moves core 66 with respect to casing 62. For such applications, the device is retained in the unlocked configuration by at least one constraint, which provides a constraining force. That is, the locking configuration is an unconstrained locking configuration, and the unlocked configuration is a constrained unlocked configuration.
For example, a portion of core 66 may protrude from a lateral surface of casing 62 when the device is in the locking configuration, and the constraint may comprise a delivery sheath (not shown), which inhibits that portion of core 66 from protruding thus. So as to move device 60 into the locking configuration (e.g., so as to fixedly couple the device to the sutures, and to cut the sutures), the operating physician removes the constraining force, e.g., by removing the constraint, such as by withdrawing the sheath, such that the device automatically moves to the locking configuration.
Reference is made to
Reference is made to
Typically, system 100 comprises a securing element 104, which comprises elements 106. Securing element 104 typically further comprises a core 108 and a plurality of arms 110. A respective inner end of each arm 110 is coupled to core 108, from which the arms extend radially. Elements 106 are coupled to respective outer ends of each arm. Typically, securing element 104 is deliverable to the valve independently of support 102.
Coupling of securing element 104 to support 102 is facilitated by leaflet-piercing elements 106. Typically, support 102 has an inner perimeter 114 that defines an opening 115, and coupling of securing element 104 to support 102 is further facilitated by at least part of core 108 of element 104 being disposed within opening 115. Typically, core 108 is shaped to define a coupling portion 109, which secures the core within the opening. For example, coupling portion 109 may comprise, or be shaped to define, a ridge 111 which inhibits the core from being decoupled from opening 115 (e.g., coupling portion 109 locks core 108 to support 102).
Typically, support 102 comprises a braided wire mesh 112, which, when unconstrained, has an expanded configuration, and can be compressed into a compressed configuration. Typically, support 102 is compressed into the compressed configuration for delivery to the heart valve, is constrained in the compressed configuration by a catheter via which the support is delivered, and automatically expands upon being released from a distal end of the catheter at the heart valve. Typically, in the compressed configuration, the support is generally cylindrical in shape. In the uncompressed configuration, support 102 defines a leaflet-engaging side 118 (typically a downstream side of the support) that is typically a flat side. In the uncompressed configuration, support 102 itself is typically flat. Further typically, in the uncompressed configuration, the support defines two adjacent layers and is generally circular (i.e., disc-shaped).
Typically, securing element 104 has a delivery configuration in which arms 110 are disposed distally to core 108, and is configured to be movable to a deployed configuration following delivery to the heart valve. Typically, element 104 is configured to be constrained in the delivery configuration by a delivery sheath, and to automatically move toward the deployed configuration upon being exposed from the sheath at the heart valve.
Subsequently, securing element 104 is moved (e.g., pulled) proximally, such that leaflet-piercing elements 106 pierce the leaflets of the valve, thereby coupling the securing element to the leaflets, as shown in
Subsequently, as shown in
Support 102 is placed against the leaflets of the valve (e.g., leaflet-engaging side 118 of the support is placed against the upstream surface of the leaflets), typically by being slid over delivery sheath 122. That is, delivery sheath 122 typically acts as a guide for support 102.
As shown in
For some applications of the invention, support 102 is dimensioned to cover more than 10% and/or less than 90% (e.g., between 10% and 90%, such as between 10% and 30%) of the area defined by the native orifice of the heart valve. For example, a support of desired dimensions may be selected according to the valve and/or patient being treated (e.g., following measurement of the valve being treated).
It is hypothesized that the use of apparatus 100 as described with reference to
Reference is now made to
Apparatus 100 is typically coupled to the heart valve being treated, such that support 102 is disposed against an upstream side of the valve (i.e., an upstream side of the valve leaflets), and securing element 104 is disposed against a downstream side of the valve (i.e., against a downstream side of the valve leaflets). However, for some applications, apparatus 100 is coupled to the heart valve such that support 102 is disposed against the downstream side of the valve, and securing element 104 is disposed against the upstream side of the valve.
Apparatus 100 is typically delivered to the heart valve percutaneously (e.g., transcatheterally and/or transluminally). Apparatus 100 is shown being delivered transluminally from an upstream side of the valve (e.g., via the inferior vena cava). That is, typically, from the perspective of the operating physician, the upstream side of the valve is the proximal side of the valve, and the downstream side of the valve is the distal side of the valve. However, it is to be noted that the scope of the present invention includes delivery from a downstream side of the valve (e.g., transapically, or via the aorta), mutatis mutandis.
Reference is now made to
Reference is made to
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
4423525 | Vallana et al. | Jan 1984 | A |
4493329 | Crawford et al. | Jan 1985 | A |
4625727 | Leiboff | Dec 1986 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4853986 | Allen | Aug 1989 | A |
5108420 | Marks | Apr 1992 | A |
5330521 | Cohen | Jul 1994 | A |
5450860 | O'Connor | Sep 1995 | A |
5473812 | Morris et al. | Dec 1995 | A |
5776178 | Pohndorf et al. | Jul 1998 | A |
5792400 | Talja et al. | Aug 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
6027523 | Schmieding | Feb 2000 | A |
6298272 | Peterfeso et al. | Oct 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6575976 | Grafton | Jun 2003 | B2 |
6613078 | Barone | Sep 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6641597 | Burkhart et al. | Nov 2003 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6908478 | Alferness et al. | Jun 2005 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7144363 | Pai et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7169187 | Datta et al. | Jan 2007 | B2 |
7175625 | Culbert | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7338506 | Caro | Mar 2008 | B2 |
7351256 | Hojeibane et al. | Apr 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7530995 | Quijano et al. | May 2009 | B2 |
7547321 | Silvestri et al. | Jun 2009 | B2 |
7549983 | Roue et al. | Jun 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7628797 | Tieu et al. | Dec 2009 | B2 |
7632303 | Stalker et al. | Dec 2009 | B1 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7771467 | Svensson | Aug 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7803187 | Hauser | Sep 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7988725 | Gross et al. | Aug 2011 | B2 |
7991484 | Sengupta et al. | Aug 2011 | B1 |
7993368 | Gambale et al. | Aug 2011 | B2 |
8010207 | Smits et al. | Aug 2011 | B2 |
8029518 | Goldfarb et al. | Oct 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8108054 | Helland | Jan 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8236013 | Chu | Aug 2012 | B2 |
8262724 | Seguin et al. | Sep 2012 | B2 |
8262725 | Subramanian | Sep 2012 | B2 |
8267981 | Boock et al. | Sep 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8332051 | Sommer et al. | Dec 2012 | B2 |
8475525 | Maisano et al. | Jul 2013 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040181287 | Gellman | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193092 | Deal | Sep 2004 | A1 |
20040236419 | Milo | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050016560 | Voughlohn | Jan 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050107812 | Starksen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20060052821 | Abbott et al. | Mar 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070021781 | Jervis et al. | Jan 2007 | A1 |
20070038221 | Fine et al. | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070203391 | Bloom et al. | Aug 2007 | A1 |
20070250160 | Rafiee | Oct 2007 | A1 |
20070276437 | Call et al. | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20080003539 | Lundgren | Jan 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080077231 | Heringes et al. | Mar 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275469 | Fanton et al. | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080288062 | Andrieu et al. | Nov 2008 | A1 |
20080300629 | Surti | Dec 2008 | A1 |
20090084386 | McClellan et al. | Apr 2009 | A1 |
20090118776 | Kelsch et al. | May 2009 | A1 |
20090149872 | Gross et al. | Jun 2009 | A1 |
20090171439 | Nissl | Jul 2009 | A1 |
20090216265 | DeVries et al. | Aug 2009 | A1 |
20090254103 | Deutsch | Oct 2009 | A1 |
20090259307 | Gross et al. | Oct 2009 | A1 |
20090264995 | Subramanian | Oct 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100161042 | Maisano et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100161047 | Cabiri | Jun 2010 | A1 |
20100168791 | Kassab et al. | Jul 2010 | A1 |
20100174358 | Rabkin et al. | Jul 2010 | A1 |
20100185278 | Schankereli | Jul 2010 | A1 |
20100204662 | Orlov et al. | Aug 2010 | A1 |
20100211166 | Miller et al. | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100234935 | Bashiri et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100280603 | Maisano et al. | Nov 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100280605 | Hammer et al. | Nov 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100286767 | Zipory et al. | Nov 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110022164 | Quinn et al. | Jan 2011 | A1 |
20110029066 | Gilad et al. | Feb 2011 | A1 |
20110035000 | Nieminen et al. | Feb 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087146 | Ryan et al. | Apr 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110106245 | Miller et al. | May 2011 | A1 |
20110106247 | Miller et al. | May 2011 | A1 |
20110112619 | Foster et al. | May 2011 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110184510 | Maisano et al. | Jul 2011 | A1 |
20110238088 | Bolduc et al. | Sep 2011 | A1 |
20110238112 | Kim et al. | Sep 2011 | A1 |
20110251678 | Eidenschink et al. | Oct 2011 | A1 |
20110264208 | Duffy et al. | Oct 2011 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120035712 | Maisano et al. | Feb 2012 | A1 |
20120215236 | Matsunaga et al. | Aug 2012 | A1 |
20120232373 | Hallander et al. | Sep 2012 | A1 |
20120296349 | Smith et al. | Nov 2012 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1 759 663 | Mar 2007 | EP |
1 836 971 | Sep 2007 | EP |
9205093 | Apr 1992 | WO |
2005021063 | Mar 2005 | WO |
2005102194 | Nov 2005 | WO |
2006097931 | Sep 2006 | WO |
2008068756 | Jun 2008 | WO |
2009101617 | Aug 2009 | WO |
2010004546 | Jan 2010 | WO |
2010071494 | Jun 2010 | WO |
2010073246 | Jul 2010 | WO |
2010128502 | Nov 2010 | WO |
2010128503 | Nov 2010 | WO |
2011051942 | May 2011 | WO |
2011089601 | Jul 2011 | WO |
2011143263 | Nov 2011 | WO |
2012127309 | Sep 2012 | WO |
Entry |
---|
Shikhar Agarwal, et al; “Interventional Cardiology Perspective of Functional Tricuspid Regurgitation”, Circulation, Journal of the American Heart Association, Dec. 2009; vol. 2, Issue 6, pp. 565-573. |
Ottavio Alfieri M.D., et al; “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse”, J. Card. Surg. Nov.-Dec. 1999, vol. 14, Issue 6, pp. 468-470. |
Ottavio Alfieri, M.D., et al; “The double-orifice technique in mitral valve repair: A simple solution for complex problems”, The Journal of Thoracic and Cardiovascular Surgery, Oct. 2001, vol. 122, Issue 4, pp. 674-681. |
Ottavio Alfieri, M.D., et al; “Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann. Thorac. Surg. Nov. 2002, vol. 74, Issue 5, pp. 1488-1493. |
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011; 16 pages. |
Brian S. Beale; “Surgical Repair of Collateral Ligament Injuries”, Presented at 63rd CVMA Convention, Halifax, Nova Scotia, Canada, Jul. 6-9, 2011; 4 pages. |
Dentistry Today; “Implant Direct”, product information page, Jun. 1, 2011; downloaded from http://dentistrytoday.com/top25implant-i/5558-implant-direct. |
Francesco Maisano, et al; “The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique”, European Journal of Cardio-thoracic Surgery, Mar. 2000, vol. 17, Issue 3, pp. 201-205. |
Smith & Nephew MINITAC™ TI 2.0 Suture Anchor Product Description, downloaded on Dec. 9, 2012 from http://global.smith-nephew.com/us/MINITAC—TI—2—SUTURE—ANCHR—3127.htm. |
International Search Report and Written Opinion dated May 19, 2011; PCT/IL11/00064. |
International Search Report and Written Opinion dated Jan. 22, 2013 PCT/IL2012/000282. |
International Preliminary Report on Patentability dated Jul. 24, 2012 PCT/IL2011/000064. |
U.S. Appl. No. 60/902,146, filed Feb. 16, 2007. |
USPTO RR mailed Jan. 23, 2012 in connection with U.S. Appl. No. 12/692,061. |
USPTO NFOA mailed Jul. 6, 2012 in connection with U.S. Appl. No. 12/692,061. |
USPTO NOA mailed Mar. 6, 2013 in connection with U.S. Appl. No. 12/692,061. |
USPTO NOA mailed May 10, 2013 in connection with U.S. Appl. No. 12/692,061. |
USPTO RR dated Jun. 18, 2013 in connection with U.S. Appl. No. 13/188,175. |
Invitation to Pay Additional Fees and International Search Report dated Apr. 4, 2014;PCT/IL2014/050027. |
Number | Date | Country | |
---|---|---|---|
20130325115 A1 | Dec 2013 | US |