Heart wall tension reduction apparatus and method

Abstract
An apparatus for treatment of a failing heart by reducing the wall tension therein. In one embodiment, the apparatus includes a tension member for drawing at least two walls of a heart chamber toward each other. Methods for placing the apparatus on the heart are also provided.
Description
FIELD OF THE INVENTION

The present invention pertains to the field of apparatus for treatment of a failing heart. In particular, the apparatus of the present invention is directed toward reducing the wall stress in the failing heart.


BACKGROUND OF THE INVENTION

The syndrome of heart failure is a common course for the progression of many forms of heart disease. Heart failure may be considered to be the condition in which an abnormality of cardiac function is responsible for the inability of the heart to pump blood at a rate commensurate with the requirements of the metabolizing tissues, or can do so only at an abnormally elevated filling pressure. There are many specific disease processes that can lead to heart failure with a resulting difference in pathophysiology of the failing heart, such as the dilatation of the left ventricular chamber. Etiologies that can lead to this form of failure include idiopathic cardiomyopathy, viral cardiomyopathy, and ischemic cardiomyopathy.


The process of ventricular dilatation is generally the result of chronic volume overload or specific damage to the myocardium. In a normal heart that is exposed to long term increased cardiac output requirements, for example, that of an athlete, there is an adaptive process of slight ventricular dilation and muscle myocyte hypertrophy. In this way, the heart fully compensates for the increased cardiac output requirements. With damage to the myocardium or chronic volume overload, however, there are increased requirements put on the contracting myocardium to such a level that this compensated state is never achieved and the heart continues to dilate.


The basic problem with a large dilated left ventricle is that there is a significant increase in wall tension and/or stress both during diastolic filling and during systolic contraction. In a normal heart, the adaptation of muscle hypertrophy (thickening) and ventricular dilatation maintain a fairly constant wall tension for systolic contraction. However, in a failing heart, the ongoing dilatation is greater than the hypertrophy and the result is a rising wall tension requirement for systolic contraction. This is felt to be an ongoing insult to the muscle myocyte resulting in further muscle damage. The increase in wall stress is also true for diastolic filling. Additionally, because of the lack of cardiac output, there is generally a rise in ventricular filling pressure from several physiologic mechanisms. Moreover, in diastole there is both a diameter increase and a pressure increase over normal, both contributing to higher wall stress levels. The increase in diastolic wall stress is felt to be the primary contributor to ongoing dilatation of the chamber.


Prior art treatments for heart failure fall into three generally categories. The first being pharmacological, for example, diuretics. The second being assist systems, for example, pumps. Finally, surgical treatments have been experimented with, which are described in more detail below.


With respect to pharmacological treatments, diuretics have been used to reduce the workload of the heart by reducing blood volume and preload. Clinically, preload is defined in several ways including left ventricular end diastolic pressure (LVEDP), or left ventricular end diastolic volume (LVLEDV). Physiologically, the preferred definition is the length of stretch of the sarcomere at end diastole. Diuretics reduce extra cellular fluid which builds in congestive heart failure patients increasing preload conditions. Nitrates, arteriolar vasodilators, angiotensin converting enzyme inhibitors have been used to treat heart failure through the reduction of cardiac workload through the reduction of afterload. Afterload may be defined as the tension or stress required in the wall of the ventricle during ejection. Inotropes like digoxin are cardiac glycosides and function to increase cardiac output by increasing the force and speed of cardiac muscle contraction. These drug therapies offer some beneficial effects but do not stop the progression of the disease.


Assist devices include mechanical pumps and electrical stimulators. Mechanical pumps reduce the load on the heart by performing all or part of the pumping function normally done by the heart. Currently, mechanical pumps are used to sustain the patient while a donor heart for transplantation becomes available for the patient. Electrical stimulation such as bi-ventricular pacing have been investigated for the treatment of patients with dilated cardiomyopathy.


There are at least three surgical procedures for treatment of heart failure: 1) heart transplant; 2) dynamic cardiomyoplasty; and 3) the Batista partial left ventriculectomy. Heart transplantation has serious limitations including restricted availability of organs and adverse effects of immunosuppressive therapies required following heart transplantation. Cardiomyoplasty includes wrapping the heart with skeletal muscle and electrically stimulating the muscle to contract synchronously with the heart in order to help the pumping function of the heart. The Batista partial left ventriculectomy includes surgically remodeling the left ventricle by removing a segment of the muscular wall. This procedure reduces the diameter of the dilated heart, which in turn reduces the loading of the heart. However, this extremely invasive procedure reduces muscle mass of the heart.


SUMMARY OF THE INVENTION

The present invention pertains to a non-pharmacological, passive apparatus and method for the treatment of a failing heart. The device is configured to reduce the tension in the heart wall. It is believed to reverse, stop or slow the disease process of a failing heart as it reduces the energy consumption of the failing heart, decreases isovolumetric contraction, increases sarcomere shortening during contraction and increases isotonic shortening which in turn increases stroke volume. The device reduces wall tension during diastole and systole.


In one embodiment, the apparatus includes a tension member for drawing at least two walls of the heart chamber toward each other to reduce the radius or area of the heart chamber in at least one cross sectional plane. The tension member has anchoring members disposed at opposite ends for engagement with the heart or chamber wall.


In another embodiment, the apparatus includes a compression member for drawing at least two walls of a heart chamber toward each other. In one embodiment, the compression member includes a balloon. In another embodiment of the apparatus, a frame is provided for supporting the compression member.


Yet another embodiment of the invention includes a clamp having two ends biased toward one another for drawing at least two walls of a heart chamber toward each other. The clamp includes at least two ends having atraumatic anchoring member disposed thereon for engagement with the heart or chamber wall.


In yet another embodiment, a heart wall tension reduction apparatus is provided which includes a first tension member having two oppositely disposed ends and first and second elongate anchor members. A second tension member can be provided. One of the elongate anchors may be substituted for by two smaller anchors.


In an alternate embodiment of the heart wall tension reduction apparatus, an elongate compression member can be provided. First and second elongate lever members preferably extend from opposite ends of the compression member. A tension member extends between the first and second lever members.


The compression member of the above embodiment can be disposed exterior to, or internally of the heart. The tension member extends through the chamber or chambers to bias the lever members toward the heart.


In yet another embodiment of a heart wall tension reduction apparatus in accordance with the present invention, a rigid elongate frame member is provided. The frame member can extend through one or more chambers of the heart. One or more cantilever members can be disposed at opposite ends of the frame member. Each cantilever member includes at least one atraumatic pad disposed thereon. The atraumatic pads disposed at opposite ends of the frame member can be biased toward each other to compress the heart chamber.


One method of placing a heart wall tension apparatus or splint on human heart includes the step of extending a hollow needle through at least one chamber of the heart such that each end of the needle is external to the chamber. A flexible leader is connected to a first end of a tension member. A second end of the tension member is connected to an atraumatic pad. The leader is advanced through the needle from one end of the needle to the other. The leader is further advanced until the second end of the tension member is proximate the heart and the first end of the tension member is external to the heart. A second atraumatic pad is connected to the first end of the tension member such that the first and second atraumatic pads engage the heart.


An alternate method of placing the heart wall tension reduction apparatus on the heart includes the step of extending a guide member through at least one chamber of the heart such that each end of the guide member is external to the chamber. A tension member for use in this method has at least one lumen extending through at least a portion of the member. The guide member is placed in the lumen. The tension member is advanced over the guide member such that a first end of the tension member is disposed to one side of and external to the heart and a second end of the tension member is disposed to an opposite side of and external to the heart. A first atraumatic pad is connected to one end of the tension member and a second atraumatic pad is connected to the opposite end of the tension member.


Yet another method of placing a heart wall tension apparatus on a heart includes the step of extending a needle having a flexible tension member releasably connected thereto through at least one chamber of the heart such that opposite ends of the tension member are external to the chamber and exposed on opposite sides of the chamber. The needle is removed from the tension member. Then first and second atraumatic pads are connected to the tension member at opposite ends of the tension member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a transverse cross-section of the left and right ventricles of a human heart showing the placement of a splint in accordance with the present invention;



FIG. 2 is a transverse cross-section of the left and right ventricles of a human heart showing the placement of a balloon device in accordance with the present invention;



FIG. 3 is a transverse cross-section of the left and right ventricles of a human heart showing the placement of an external compression frame structure in accordance with the present invention;



FIG. 4 is a transverse cross-section of the left and right ventricles of a human heart showing a clamp in accordance with the present invention;



FIG. 5 is a transverse cross-section of the left and right ventricles of a human heart showing a three tension member version of the splint of FIG. 1;



FIG. 6 is a transverse cross-section of the left and right ventricles of a human heart showing a four tension member version of the splint shown in FIG. 1;



FIG. 7 is a vertical cross-sectional view of the left ventricle of a human heart showing an alternate version of the splint in accordance with the present invention;



FIG. 8 is an end of the splint shown in FIG. 7;



FIG. 9 is a vertical cross-sectional view of a chamber of a human heart showing another alternative embodiment of the splint in accordance with the present invention;



FIG. 10 is a vertical cross-section of a chamber of a human heart showing another alternative configuration of splints in accordance with the present invention;



FIG. 11 is a vertical cross-sectional view of a chamber of a human heart showing another embodiment of a splint in accordance with the present invention;



FIG. 12 is a vertical cross-sectional view of a chamber of a human heart showing another embodiment of the splint in accordance with the present invention;



FIG. 13 is a vertical cross-sectional view of a chamber of a human heart showing a compression member version of the splint in accordance with the present invention;



FIG. 14 is a vertical cross-sectional view of a chamber of a human heart showing another version of the splint shown in FIG. 13;



FIG. 15 is a vertical cross-sectional view of a chamber of a human heart showing a frame member version of the splint in accordance with the present invention;



FIG. 16 is an end view of the splint of FIG. 15;



FIG. 17 is a vertical cross-section of the left ventricle and atrium, the left ventricle having scar tissue;



FIG. 18 is a vertical cross-section of the heart of FIG. 7 showing the splint of FIG. 1 drawing the scar tissue toward the opposite wall of the left ventricle;



FIG. 19 is a vertical cross-section of the left ventricle and atrium of a human heart showing a version of the splint of FIG. 1 having an elongate anchor bar;



FIG. 20 is a side view of an undeployed hinged anchor member;



FIG. 21 is a side view of a deployed hinged anchor member of FIG. 10;



FIG. 22 is a cross-sectional view of an captured ball anchor member;



FIG. 23 is a perspective view of a cross bar anchor member;



FIG. 24 is a vertical cross-sectional view of a chamber of a human heart showing a needle used for placement of a splint in accordance with the present invention;



FIG. 25 is a view of the heart and needle of FIG. 24 showing a tension member being placed in the heart;



FIG. 26 is a view of the heart shown in FIG. 24 wherein oppositely disposed anchor pads are being joined by a tension member;



FIG. 27 is a view of the heart of FIG. 24, wherein two oppositely disposed anchor pads have been joined by two tension members;



FIG. 28 is a view of a tension member having a lumen extending therethrough;



FIG. 29 is a view of a tension member having lumens extending therethrough;



FIG. 30 is a vertical cross-sectional view of a chamber of the heart and two pads, and a needle extending therethrough;



FIG. 31 is a vertical cross-sectional view of a chamber of the heart showing a guidewire extending therethrough;



FIG. 32 is a view of the heart of FIG. 31, and two pads, and a guidewire extending therethrough;



FIG. 33 is a vertical cross-sectional view of a chamber of the heart showing a needle connected to a tension member being inserted into the chamber;



FIG. 34 is a vertical cross-sectional view of a chamber of a heart showing two anchors connected by a tension member;



FIG. 35 is a vertical cross-sectional view of a chamber of the heart, showing a band surrounding the heart;



FIG. 36 is a idealized cylindrical model of a left ventricle of a human heart;



FIG. 37 is a splinted model of the left ventricle of FIG. 14;



FIG. 38 is a transverse cross-sectional view of FIG. 15 showing various modeling parameters;



FIG. 39 is a transverse cross-section of the splinted left ventricle of FIG. 15 showing a hypothetical force distribution; and



FIG. 40 is a second transverse cross-sectional view of the model left ventricle of FIG. 15 showing a hypothetical force distribution.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein like reference numerals refer to like elements throughout the several views, FIG. 1 shows a transverse cross-section of a left ventricle 10 and a right ventricle 12 of a human heart 14. Extending through the left ventricle is a splint 16 including a tension member 18 and oppositely disposed anchors 20. Splint 16 as shown in FIG. 1 has been positioned to draw opposite walls of left ventricle 10 toward each other to reduce the “radius” of the left ventricular cross-section or the cross-sectional area thereof to reduce left ventricular wall stresses. It should be understood that although the splint 16 and the alternative devices disclosed herein are described in relation to the left ventricle of a human heart, these devices could also be used to reduce the radius or cross-sectional area of the other chambers of a human heart in transverse or vertical directions, or at an angle between the transverse and vertical.



FIG. 2 discloses an alternate embodiment of the present invention, wherein a balloon 200 is deployed adjacent the left ventricle. The size and degree of inflation of the balloon can be varied to reduce the radius or cross-sectional area of left ventricle 10 of heart 14.



FIG. 3 shows yet another alternative embodiment of the present invention deployed with respect to left ventricle 10 of human heart 14. Here a compression frame structure 300 is engaged with heart 14 at atraumatic anchor pads 310. A compression member 312 having an atraumatic surface 314 presses against a wall of left ventricle 10 to reduce the radius or cross-sectional area thereof.



FIG. 4 is a transverse cross-sectional view of human heart 14 showing yet another embodiment of the present invention. In this case a clamp 400 having atraumatic anchor pads 410 biased toward each other is shown disposed on a wall of left ventricle 10. Here the radius or cross-sectional area of left ventricle 10 is reduced by clamping off the portion of the wall between pads 410. Pads 410 can be biased toward each other and/or can be held together by a locking device.


Each of the various embodiments of the present invention disclosed in FIGS. 1-4 can be made from materials which can remain implanted in the human body indefinitely. Such biocompatible materials are well-known to those skilled in the art of clinical medical devices.



FIG. 5 shows an alternate embodiment of the splint of FIG. 1 referred to in FIG. 5 by the numeral 116. The embodiment 116 shown in FIG. 5 includes three tension members 118 as opposed to a single tension member 18 as shown in FIG. 1. FIG. 6 shows yet another embodiment of the splint 216 having four tension members 218. It is anticipated that in some patients, the disease process of the failing heart may be so advanced that three, four or more tension members may be desirable to reduce the heart wall stresses more substantially than possible with a single tension member as shown in FIG. 1.



FIG. 7 is a partial vertical cross-section of human heart 14 showing left ventricle 10. In FIG. 7, another splint embodiment 316 is shown having a tension member 318 extending through left ventricle 10. On opposite ends of tension member 318 are disposed elongate anchors or pads 320. FIG. 8 is an end view of tension member 318 showing elongate anchor 320.



FIG. 9 shows another embodiment of a splint 416 disposed in a partial vertical cross-section of human heart 14. Splint 416 includes two elongate anchors or pads 420 similar to those shown in FIGS. 7 and 8. In FIG. 9, however, two tension members 418 extend through left ventricle 10 to interconnect anchors 420 on opposite sides of heart 14.



FIG. 10 is a vertical cross section of heart 14 showing left ventricle 10. In this case, two splints 16 are disposed through left ventricle 10 and vertically spaced from each other to resemble the configuration of FIG. 9.



FIG. 11 is a vertical cross sectional view of the left ventricle of heart 14. Two alternate embodiment splints 516 are shown extending through left ventricle 10. Each splint 516 includes two tension members 518 interconnecting two anchors or pads 520.



FIG. 12 is yet another vertical cross sectional view of left ventricle 10 of heart 14. An alternate embodiment 616 of the splint is shown extending through left ventricle 10. Splint 616 includes an elongate anchor pad 620 and two shorter anchors or pads 621. Splint 616 includes two tension members 618. Each tension member 618 extends between anchors 520 and respective anchors 621.



FIG. 13 is a vertical cross sectional view of left ventricle 10 of heart 14. A splint 50 is shown disposed on heart 14. Splint 50 includes a compression member 52 shown extending through left ventricle 10. Opposite ends of compression member 52 are disposed exterior to left ventricle 10. Lever members 54 extend from each end of compression member 52 upwardly along the exterior surface of ventricle 10. A tension member 56 extends between lever members 54 to bias lever members 54 toward heart 14 to compress chamber 10.


Compression member 52 should be substantially rigid, but lever members 54 and to some degree compression member 52 should be flexible enough to allow tension member 56 to bias lever members 54 toward heart 14. Alternately, lever members 54 could be hinged to compression member 52 such that lever members 54 could pivot about the hinge when biased toward heart 14 by tension member 56.



FIG. 14 shows an alternate embodiment 156 of the splint shown in FIG. 13. In this case lever members 154 are longer than members 54 as compression member 152 of splint 150 has been disposed to the exterior of left ventricle 10.



FIG. 15 is a vertical cross sectional view of left ventricle 10 of heart 14. An alternate embodiment 250 of the splint is shown on heart 14. A preferably relatively rigid frame member 256 extends through ventricle 10. Disposed on opposite ends of frame 250 are cantilever member 254. Disposed on cantilever members 254 are atraumatic pads 258. Cantilever members 254 can be positioned along frame member 256 such that atraumatic pads 258 press against heart 14 to compress chamber 10. FIG. 16 is an end view of frame member 256 showing cantilever members 254 and pads 258.


It should be understood that each of the embodiments described above should be formed from suitable biocompatible materials known to those skilled in the art. The tension members can be formed from flexible or relatively more rigid material. The compression members and frame member should be formed from generally rigid material which may flex under load, but generally hold its shape.



FIG. 17 is a partial vertical cross-section of human heart 14 showing left ventricle 10 and left atrium 22. As shown in FIG. 7, heart 14 includes a region of scar tissue 24 associated with an aneurysm or ischemia. As shown in FIG. 7, the scar tissue 24 increases the radius or cross-sectional area of left ventricle 10 in the region affected by the scar tissue. Such an increase in the radius or cross-sectional area of the left ventricle will result in greater wall stresses on the walls of the left ventricle.



FIG. 18 is a vertical cross-sectional view of the heart 14 as shown in FIG. 7, wherein a splint 16 has been placed to draw the scar tissue 24 toward an opposite wall of left ventricle 10. As a consequence of placing splint 16, the radius or cross-sectional area of the left ventricle affected by the scar tissue 24 is reduced. The reduction of this radius or cross-sectional area results in reduction in the wall stress in the left ventricular wall and thus improves heart pumping efficiency.



FIG. 19 is a vertical cross-sectional view of left ventricle 10 and left atrium 22 of heart 14 in which a splint 16 has been placed. As shown in FIG. 9, splint 16 includes an alternative anchor 26. The anchor 26 is preferably an elongate member having a length as shown in FIG. 9 substantially greater than its width (not shown). Anchor bar 26 might be used to reduce the radius or cross-sectional area of the left ventricle in an instance where there is generalized enlargement of left ventricle 10 such as in idiopathic dilated cardiomyopathy. In such an instance, bar anchor 26 can distribute forces more widely than anchor 20.



FIGS. 20 and 21 are side views of a hinged anchor 28 which could be substituted for anchors 20 in undeployed and deployed positions respectively. Anchor 28 as shown in FIG. 20 includes two legs similar to bar anchor 26. Hinged anchor 28 could include additional legs and the length of those legs could be varied to distribute the force over the surface of the heart wall. In addition there could be webbing between each of the legs to give anchor 28 an umbrella-like appearance. Preferably the webbing would be disposed on the surface of the legs which would be in contact with the heart wall.



FIG. 22 is a cross-sectional view of a capture ball anchor 30. Capture ball anchor 30 can be used in place of anchor 20. Capture ball anchor 30 includes a disk portion 32 to distribute the force of the anchor on the heart wall, and a recess 34 for receiving a ball 36 affixed to an end of tension member 18. Disk 32 and recess 34 include a side groove which allows tension member 38 to be passed from an outside edge of disk 32 into recess 34. Ball 36 can then be advanced into recess 34 by drawing tension member 18 through an opening 38 in recess 34 opposite disk 32.



FIG. 23 is a perspective view of a cross bar anchor 40. The cross bar anchor 40 can be used in place of anchors 20. The anchor 40 preferably includes a disk or pad portion 42 having a cross bar 44 extending over an opening 46 in pad 42. Tension member 18 can be extended through opening 46 and tied to cross bar 42 as shown.


In use, the various embodiments of the present invention are placed in or adjacent the human heart to reduce the radius or cross-section area of at least one chamber of the heart. This is done to reduce wall stress or tension in the heart or chamber wall to slow, stop or reverse failure of the heart. In the case of the splint 16 shown in FIG. 1, a canula can be used to pierce both walls of the heart and one end of the splint can be advanced through the canula from one side of the heart to the opposite side where an anchor can be affixed or deployed. Likewise, an anchor is affixed or deployed at the opposite end of splint 16.



FIG. 24 is a vertical cross-sectional view of a chamber 10 of a heart 14. A needle 60 having a stylet inserted therethrough is inserted through chamber 10. FIG. 25 shows needle 60 disposed in heart 40 as shown in FIG. 24. In FIG. 25, stylet 6 has been removed. A tension member 64 having a flexible leader 66 attached to one end of tension member 64, is threaded through needle 60 and an anchor 68.


As shown in FIG. 25, tension member 64 includes a generally elongate cylindrical shaft 70 having two generally cylindrical ends 72. Ends 72 preferably have a greater diameter than shaft 70. Also shown in FIG. 25 is a perspective view of anchor 68 showing an opening 73 extending through anchor 68. Opening 73 includes a first cylindrically shaped opening 74 extending entirely through anchor 68. The diameter of opening 74 is preferably slightly greater than the diameter of end 72 of tension member 64. A groove 76 having a width preferably slightly greater than that of shaft 70 of tension member 64 extends from opening 74 to a generally cylindrical opening 78. Generally cylindrical opening 78 has a diameter approximately equal to end 72. Unlike opening 74, however, opening 78 includes a reduced base opening 80 which has a width approximately equal to that of groove 76. The width of the opening 80 is also less than the diameter of end 72 of tension member 64.


It can be appreciated that tension member 64 can be advanced through opening 74 until shaft 70 is disposed therein. Shaft 70 can be then slid transversely through groove 76. Tension member 64 can then be advanced further through opening 73 until end portion 72 enters opening 78 and seats against base 80.



FIG. 26 shows the view of heart 14 shown in FIG. 25. Needle 60 has been removed from heart 14. Tension member 64 has been advanced into chamber 10 and anchor 68 connected thereto is engaging the heart wall. Leader 66 has been advanced through yet another anchor 68 disposed on the opposite side of heart 14.



FIG. 27 is a view of heart 14 of FIG. 26. Two tension member 64 have been advanced through chamber 10. Each tension member has been seated in respective opening 78 against respective bases 80 to form a splint in a configuration such as that shown in FIG. 9.


It can be appreciated that each of the other tension member splints configurations can be placed on the heart in a similar manner. It can also be appreciated that anchors 68 could initially be held against the heart and needle 60 advanced through anchors 68 and chamber 10 prior to extending leader 66 through the needle.



FIG. 28 is a perspective view of a tension member 164 in accordance with the present invention. Tension member 164 is similar to tension member 64 described above in that it has an elongate, generally cylindrical shaft 170 and generally cylindrical ends 172. A lumen, however, extends longitudinally through tension member 164 along axis A.



FIG. 29 is a perspective view of yet another embodiment of the tension member 264. Tension member 264, is similar to tension member 164, and includes an elongate cylindrical shaft 270 and cylindrical ends 272. Lumens 282, however, extend through ends 272 aligned along axis B.



FIG. 30 is a vertical, cross-sectional view of left ventricle 10 of heart 14. Anchors 68 have been placed on opposite sides of heart 14. A needle 160 extends through the lumen of tension member 164, left ventricle 10 and openings 78 in anchors 68. It can be appreciated that tension member 64 can be advanced through anchors 68 and left ventricle 10 and be seated within openings 78 as described above with respect to tension member 64.



FIG. 31 is a vertical, cross-sectional view of left ventricle 10 of heart 14. A needle 60 has been advanced through the wall of left ventricle 10 and a guidewire 162 has been advanced through needle 60.



FIG. 32 is the same view of heart 14 as shown in FIG. 32. Needle 60, however, has been removed from heart 14 while guidewire 162 remains in position. Anchors 68 have been placed on guidewire 162, on opposite sides of left ventricle 10. Tension member 264 has been threaded onto guidewire 162 through lumens 282. It can be appreciated that as discussed above with respect to tension member 164 above, tension member 264 can be advanced through left ventricle 10 such that ends 272 of tension member 264 seat in respective openings 78 against base 80.



FIG. 33 is a vertical, cross-sectional view of left ventricle 10 of heart 14. In FIG. 34, flexible tension member 364 has been connected to a needle 360. Needle 360 is shown being advanced into left ventricle 10 through a ventricle wall.



FIG. 34 is the same view of heart 14 as shown in FIG. 33 except that tension member 364 has been advanced entirely through left ventricle 10 and anchors 68. Knots 384 have been tied at the ends of tension member 364 to prevent the ends of tension member 364 from passing through opening 73 of anchors 68.


It can be appreciated that the methods described above to advance the tension members through the ventricles can be repeated to advance the desired number of tension members through the ventricle for a particular configuration. The length of the tension members can be determined based upon the size and condition of the patient's heart. It should also be noted that although the left ventricle has been referred to here for illustrative purposes, that the apparatus and methods of this invention can also be used to splint multiple chambers of a patient's heart as well as the right ventricle or either atrium.



FIG. 35 is a vertical cross-section of left ventricle 10 of heart 14. Disposed about heart 14 is a band 716. Band 716 is shown as being sized relative to the heart such that the heart's radius or cross-sectional area in a plane parallel to the length of the band is reduced relative to the radius at that location prior to placement of the band on the heart. The length of the heart perpendicular to the band is also increased. The band may be formed from a continuous ribbon of elastomeric material or from other biocompatible materials which are sufficiently strong to provide the desired effect of heart radius reduction and lengthening.



FIG. 36 is a view of a cylinder or idealized heart chamber 48 which is used to illustrate the reduction of wall stress in a heart chamber as a result of deployment of the splint in accordance with the present invention. The model used herein and the calculations related to this model are intended merely to illustrate the mechanism by which wall stress is reduced in the heart chamber. No effort is made herein to quantify the actual reduction which would be realized in any particular in vivo application.



FIG. 37 is a view of the idealized heart chamber 48 of FIG. 36 wherein the chamber has been splinted along its length L such that a “figure eight” cross-section has been formed along the length thereof. It should be noted that the perimeter of the circular transverse cross-section of the chamber in FIG. 36 is equal to the perimeter of the figure eight transverse cross-section of FIG. 37. For purposes of this model, opposite lobes of the figure in cross-section are assumed to be mirror images.



FIG. 38 shows various parameters of the FIG. 1 cross-section of the splinted idealized heart chamber of FIG. 37. Where l is the length of the splint between opposite walls of the chamber, R1 is the radius of each lobe, θ is the angle between the two radii of one lobe which extends to opposite ends of the portion of the splint within chamber 48 and h is the height of the triangle formed by the two radii and the portion of the splint within the chamber 48 (R1 is the radius of the cylinder of FIG. 36). These various parameters are related as follows:

h=R2 COS(θ/2)
l=2R2 SIN(η/2)
R2=R1π/(2π−θ)


From these relationships, the area of the figure eight cross-section can be calculated by:

A2=2π(R2)2(1−θ/2π)+hl


Where chamber 48 is unsplinted as shown in FIG. 36 A1, the original cross-sectional area of the cylinder is equal to A2 where θ=180°, h=0 and t=2R2. Volume equals A2 times length L and circumferential wall tension equals pressure within the chamber times R2 times the length L of the chamber.


Thus, for example, with an original cylindrical radius of four centimeters and a pressure within the chamber of 140 mm of mercury, the wall tension T in the walls of the cylinder is 104.4 newtons. When a 3.84 cm splint is placed as shown in FIGS. 37 and 38 such that l=3.84 cm, the wall tension T is 77.33 newtons.



FIGS. 39 and 40 show a hypothetical distribution of wall tension T and pressure P for the figure eight cross-section. As θ goes from 180° to 0°, tension Ts in the splint goes from 0 to a 2T load where the chamber walls carry a T load.


In yet another example, assuming that the chamber length L is a constant 10 cm, the original radius R1 is 4 cm, at a 140 mmHg the tension in the walls is 74.7 N. If a 4.5 cm splint is placed such that l=4.5 cm, the wall tension will then be 52.8 N.


It will be understood that this disclosure is in many respects, is only illustrative. Changes may be made in details, particularly in matters of shape, size, material, and arrangement of parts without exceeding the scope of the invention. Accordingly, the scope of the invention is as defined in the language of the appended claims.

Claims
  • 1. A surgical procedure comprising: advancing an elongate member towards a target location on a patient's heart, wherein the elongate member includes a proximal end, a distal end, and a lumen extending therebetween;inserting the distal end of the elongate member through a heart wall and into a heart chamber;introducing an instrument and an element through the elongate member for installing the element; andinstalling the element in contact with first and second spaced apart portions of the heart, wherein the element traverses a chamber of the heart, and wherein all portions of the heart chamber remain in non-contacting fluid communication when the element is installed.
  • 2. The surgical procedure according to claim 1, wherein the chamber is a left ventricle of the heart.
  • 3. The surgical procedure according to claim 1, wherein the element is secured to the first and second spaced apart portions of the heart.
  • 4. The surgical procedure according to claim 1, wherein the element includes a generally elongate member attached to each of the first and second spaced apart portions of the heart.
  • 5. The surgical procedure according to claim 1, wherein one of the first and second spaced apart portions of the heart includes an external heart wall.
  • 6. The surgical procedure according to claim 1, further comprising exerting tension on the element to reduce a dimension of the heart.
  • 7. The surgical procedure according to claim 1, further comprising exerting tension on the element to draw the first and second spaced apart portions of the heart toward one another.
  • 8. The surgical procedure according to claim 1, wherein the element includes a first end and a second end, and one of the first and second ends is anchored to an external heart wall by an anchor.
  • 9. A surgical procedure comprising: advancing an elongate member towards a target location on a patient's heart, wherein the elongate member includes a proximal end, a distal end, and a lumen extending therebetween;inserting the distal end of the elongate member through a heart wall and into a heart chamber;introducing an instrument and an element through the elongate member for installing the element; andinstalling the element in contact with first and second spaced apart portions of the heart, wherein the element includes a generally elongate member attached to each of the first and second spaced apart portions of the heart, and wherein all portions of the heart chamber remain in non-contacting fluid communication when the element is installed.
  • 10. A surgical procedure comprising: advancing an elongate member towards a target location on a patient's heart, wherein the elongate member includes a proximal end, a distal end, and a lumen extending therebetween;inserting the distal end of the elongate member through a heart wall and into a heart chamber;introducing an instrument and an element through the elongate member for installing the element;installing the element in contact with first and second spaced apart portions of the heart; andexerting tension on the element to improve heart function,wherein all portions of the heart chamber remain in non-contacting fluid communication when the element is installed.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 10/326,585, filed Dec. 20, 2002, now U.S. Pat. No. 6,755,777, which is a continuation of U.S. application Ser. No. 09/985,362, filed Nov. 2, 2001, now U.S. Pat. No. 6,514,194, which is a continuation of U.S. application Ser. No. 09/697,596, filed Oct. 27, 2000, now U.S. Pat. No. 6,332,863, which is a continuation of U.S. application Ser. No. 09/543,155, filed Apr. 4, 2000, now U.S. Pat. No. 6,165,120, which is a continuation of U.S. application Ser. No. 09/224,349, filed Jan. 4, 1999, now U.S. Pat. No. 6,165,119, which is a divisional of U.S. application Ser. No. 08/933,456, filed Sep. 18, 1997, now U.S. Pat. No. 5,961,440, which is a continuation-in-part of U.S. application Ser. No. 08/778,277, filed Jan. 2, 1997, now U.S. Pat. No. 6,050,936, the entire disclosures of each of which are herein incorporated by reference.

US Referenced Citations (471)
Number Name Date Kind
963899 Kistler Jul 1910 A
3019790 Militana Feb 1962 A
3656185 Carpentier Apr 1972 A
3980086 Kletschka et al. Sep 1976 A
4035849 Angell et al. Jul 1977 A
4055861 Carpentier et al. Nov 1977 A
4192293 Asrican Mar 1980 A
4217665 Bex et al. Aug 1980 A
4261342 Aranguren Duo Apr 1981 A
4300564 Furihata Nov 1981 A
4306319 Kaster Dec 1981 A
4343048 Ross et al. Aug 1982 A
4372293 Vijil-Rosales Feb 1983 A
4409974 Freedland Oct 1983 A
4536893 Parravicini Aug 1985 A
4592342 Salmasian Jun 1986 A
4629459 Ionescu et al. Dec 1986 A
4632101 Freedland Dec 1986 A
4690134 Snyders Sep 1987 A
4705040 Mueller et al. Nov 1987 A
4936857 Kulik Jun 1990 A
4944753 Burgess et al. Jul 1990 A
4960424 Grooters Oct 1990 A
4991578 Cohen Feb 1991 A
4997431 Isner et al. Mar 1991 A
5061277 Carpentier et al. Oct 1991 A
5104407 Lam et al. Apr 1992 A
5106386 Isner et al. Apr 1992 A
5131905 Grooters Jul 1992 A
RE34021 Mueller et al. Aug 1992 E
5152765 Ross et al. Oct 1992 A
5156621 Navia et al. Oct 1992 A
5169381 Snyders Dec 1992 A
5192314 Daskalakis Mar 1993 A
5245102 Zarchy et al. Sep 1993 A
5250049 Michael Oct 1993 A
5256132 Snyders Oct 1993 A
5258015 Li et al. Nov 1993 A
5284488 Sideris Feb 1994 A
5300087 Knoepfler Apr 1994 A
5312642 Chesterfield et al. May 1994 A
5360444 Kusuhara Nov 1994 A
5376112 Duran Dec 1994 A
5383840 Heilman et al. Jan 1995 A
5385528 Wilk Jan 1995 A
5389096 Aita et al. Feb 1995 A
5397331 Himpens et al. Mar 1995 A
5417709 Slater May 1995 A
5433727 Sideris Jul 1995 A
5445600 Abdulla Aug 1995 A
5450860 O'Connor Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5458574 Machold et al. Oct 1995 A
5496305 Kittrell et al. Mar 1996 A
5509428 Dunlop Apr 1996 A
5522884 Wright Jun 1996 A
5533958 Wilk Jul 1996 A
5571215 Sterman et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5593424 Northrup, III Jan 1997 A
5607471 Seguin et al. Mar 1997 A
5655548 Nelson et al. Aug 1997 A
5665092 Mangiardi et al. Sep 1997 A
5674279 Wright et al. Oct 1997 A
5682906 Sterman et al. Nov 1997 A
5702343 Alferness Dec 1997 A
5713954 Rosenberg et al. Feb 1998 A
5718725 Sterman et al. Feb 1998 A
5738649 Macoviak Apr 1998 A
5755783 Stobie et al. May 1998 A
5758663 Wilk Jun 1998 A
5766234 Chen et al. Jun 1998 A
5776189 Khalid et al. Jul 1998 A
5800334 Wilk Sep 1998 A
5800528 Lederman et al. Sep 1998 A
5800531 Cosgrove et al. Sep 1998 A
5807384 Mueller Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5824066 Gross Oct 1998 A
5824069 Lemole Oct 1998 A
5840059 March et al. Nov 1998 A
5849005 Garrison et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5855614 Stevens et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5876436 Vanney et al. Mar 1999 A
5888240 Carpentier et al. Mar 1999 A
5902229 Tsitlik et al. May 1999 A
5928281 Huynh et al. Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5957977 Melvin Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northup, III et al. Oct 1999 A
5961549 Nguyen et al. Oct 1999 A
5967990 Thierman et al. Oct 1999 A
5971910 Tsitlik et al. Oct 1999 A
5971911 Wilk Oct 1999 A
5972022 Huxel Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5984857 Buck et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6001126 Nguyen-Thien-Nhon Dec 1999 A
6019722 Spence et al. Feb 2000 A
6024096 Buckberg Feb 2000 A
6024756 Huebsch et al. Feb 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6071303 Laufer Jun 2000 A
6077214 Mortier et al. Jun 2000 A
6077218 Alferness Jun 2000 A
6079414 Roth Jun 2000 A
6085754 Alferness et al. Jul 2000 A
6086532 Panescu et al. Jul 2000 A
6095968 Snyders Aug 2000 A
6102944 Huynh et al. Aug 2000 A
6110100 Talpade Aug 2000 A
6113536 Aboul-Hosn et al. Sep 2000 A
6113636 Ogle Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6120520 Saadat et al. Sep 2000 A
6123662 Alferness et al. Sep 2000 A
6125852 Stevens et al. Oct 2000 A
6126590 Alferness Oct 2000 A
6129758 Love Oct 2000 A
6132438 Fleischman et al. Oct 2000 A
6143025 Stobie et al. Nov 2000 A
6155968 Wilk Dec 2000 A
6155972 Nauertz et al. Dec 2000 A
6162168 Schweich, Jr. et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6165120 Schweich, Jr. et al. Dec 2000 A
6165121 Alferness Dec 2000 A
6165122 Alferness Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6169922 Alferness et al. Jan 2001 B1
6174279 Girard Jan 2001 B1
6179791 Krueger Jan 2001 B1
6182664 Cosgrove Feb 2001 B1
6183411 Mortier et al. Feb 2001 B1
6183512 Howanec, Jr. et al. Feb 2001 B1
6190408 Melvin Feb 2001 B1
6193648 Krueger Feb 2001 B1
6197053 Cosgrove et al. Mar 2001 B1
6206004 Schmidt et al. Mar 2001 B1
6206820 Kazi et al. Mar 2001 B1
6210432 Solem et al. Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6221013 Panescu et al. Apr 2001 B1
6221103 Melvin Apr 2001 B1
6221104 Buckberg et al. Apr 2001 B1
6224540 Lederman et al. May 2001 B1
6230714 Alferness et al. May 2001 B1
6231561 Frazier et al. May 2001 B1
6231602 Carpentier et al. May 2001 B1
6238334 Easterbrook, III et al. May 2001 B1
6241654 Alferness Jun 2001 B1
6245105 Nguyen et al. Jun 2001 B1
6250308 Cox Jun 2001 B1
6251061 Hastings et al. Jun 2001 B1
6258021 Wilk Jul 2001 B1
6258023 Rogers et al. Jul 2001 B1
6260820 Chowdhury Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6293906 Vanden Hoek et al. Sep 2001 B1
6309370 Haim et al. Oct 2001 B1
6312447 Grimes Nov 2001 B1
6314322 Rosenberg Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6331157 Hancock Dec 2001 B2
6332863 Schweich, Jr. et al. Dec 2001 B1
6332864 Schweich, Jr. et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6338712 Spence et al. Jan 2002 B2
6343605 Lafontaine Feb 2002 B1
6360749 Jayaraman Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6370429 Alferness et al. Apr 2002 B1
6375608 Alferness Apr 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6406422 Landesberg Jun 2002 B1
6409759 Peredo Jun 2002 B1
6409760 Melvin Jun 2002 B1
6416459 Haindl Jul 2002 B1
6419669 Frazier et al. Jul 2002 B1
6425856 Shapland et al. Jul 2002 B1
6432039 Wardle Aug 2002 B1
6432059 Hickey Aug 2002 B2
6436088 Frazier et al. Aug 2002 B2
6439237 Buckberg et al. Aug 2002 B1
6443949 Altman Sep 2002 B2
6450171 Buckberg et al. Sep 2002 B1
6458100 Roue et al. Oct 2002 B2
6461366 Seguin Oct 2002 B1
6478729 Rogers et al. Nov 2002 B1
6482146 Alferness et al. Nov 2002 B1
6488706 Solymar Dec 2002 B1
6494825 Talpade Dec 2002 B1
6508756 Kung et al. Jan 2003 B1
6511426 Hossack et al. Jan 2003 B1
6514194 Schweich, Jr. et al. Feb 2003 B2
6520904 Melvin Feb 2003 B1
6537198 Vidlund et al. Mar 2003 B1
6537203 Alferness et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6544167 Buckberg et al. Apr 2003 B2
6544180 Doten et al. Apr 2003 B1
6547821 Taylor et al. Apr 2003 B1
6572529 Wilk Jun 2003 B2
6582355 Alferness et al. Jun 2003 B2
6587734 Okuzumi Jul 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6592619 Melvin Jul 2003 B2
6595912 Lau et al. Jul 2003 B2
6602182 Milbocker Aug 2003 B1
6602184 Lau et al. Aug 2003 B2
6612978 Lau et al. Sep 2003 B2
6612979 Lau et al. Sep 2003 B2
6616596 Milbocker Sep 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6619291 Hlavka Sep 2003 B2
6626821 Kung et al. Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6645139 Haindl Nov 2003 B2
6651671 Donlon et al. Nov 2003 B1
6656221 Taylor et al. Dec 2003 B2
6663558 Lau et al. Dec 2003 B2
6673009 Vanden Hoek et al. Jan 2004 B1
6676702 Mathis Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682474 Lau et al. Jan 2004 B2
6682475 Cox et al. Jan 2004 B2
6682476 Alferness et al. Jan 2004 B2
6685620 Gifford, III et al. Feb 2004 B2
6685627 Jayaraman Feb 2004 B2
6685646 Cespedes et al. Feb 2004 B2
6689048 Vanden Hoek et al. Feb 2004 B2
6695768 Levine et al. Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6701929 Hussein Mar 2004 B2
6702732 Lau et al. Mar 2004 B1
6702763 Murphy et al. Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6712804 Roue et al. Mar 2004 B2
6716158 Raman et al. Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730016 Cox et al. May 2004 B1
6733525 Yang et al. May 2004 B2
6740107 Loeb et al. May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich, Jr. et al. Jun 2004 B2
6755779 Vanden Hoek et al. Jun 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6776754 Wilk Aug 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6793673 Kowalsky et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6800090 Alferness et al. Oct 2004 B2
6814700 Mueller et al. Nov 2004 B1
6893392 Alferness May 2005 B2
7163507 Alferness Jan 2007 B2
7166071 Alferness Jan 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7255674 Alferness Aug 2007 B2
7261684 Alferness Aug 2007 B2
7278964 Alferness Oct 2007 B2
7351200 Alferness Apr 2008 B2
20010003986 Cosgrove Jun 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010009976 Panescu et al. Jul 2001 A1
20010014800 Frazier et al. Aug 2001 A1
20010014811 Hussein Aug 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010021874 Carpentier et al. Sep 2001 A1
20010029314 Alferness et al. Oct 2001 A1
20010034551 Cox Oct 2001 A1
20010037123 Hancock Nov 2001 A1
20010039434 Frazier et al. Nov 2001 A1
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041821 Wilk Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20010047122 Vanden Hoek et al. Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020007216 Melvin Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020016628 Langberg et al. Feb 2002 A1
20020019580 Lau et al. Feb 2002 A1
20020022880 Melvin Feb 2002 A1
20020026092 Buckberg et al. Feb 2002 A1
20020028981 Lau et al. Mar 2002 A1
20020029783 Stevens et al. Mar 2002 A1
20020032364 Lau et al. Mar 2002 A1
20020042554 Alferness et al. Apr 2002 A1
20020045798 Lau et al. Apr 2002 A1
20020045799 Lau et al. Apr 2002 A1
20020045800 Lau et al. Apr 2002 A1
20020052538 Lau et al. May 2002 A1
20020056461 Jayaraman May 2002 A1
20020058855 Schweich, Jr. et al. May 2002 A1
20020065449 Wardle May 2002 A1
20020065465 Panescu et al. May 2002 A1
20020068850 Vanden Hoek et al. Jun 2002 A1
20020077532 Gannoe et al. Jun 2002 A1
20020082647 Alferness et al. Jun 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020091296 Alferness Jul 2002 A1
20020103511 Alferness et al. Aug 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020103533 Langberg et al. Aug 2002 A1
20020111533 Melvin Aug 2002 A1
20020111567 Vanden Hoek et al. Aug 2002 A1
20020111636 Fleischman et al. Aug 2002 A1
20020133055 Haindl Sep 2002 A1
20020143250 Panescu et al. Oct 2002 A1
20020151766 Shapland et al. Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161275 Schweich, Jr. et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020169359 McCarthy et al. Nov 2002 A1
20020169360 Taylor et al. Nov 2002 A1
20020169502 Mathis Nov 2002 A1
20020169504 Alferness et al. Nov 2002 A1
20020173694 Mortier et al. Nov 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20020183836 Liddicoat et al. Dec 2002 A1
20020183837 Streeter et al. Dec 2002 A1
20020183838 Liddicoat et al. Dec 2002 A1
20020183841 Cohn et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20030004396 Vanden Hock et al. Jan 2003 A1
20030009081 Rogers et al. Jan 2003 A1
20030023132 Melvin et al. Jan 2003 A1
20030028077 Alferness et al. Feb 2003 A1
20030032979 Mortier et al. Feb 2003 A1
20030045771 Schweich, Jr. et al. Mar 2003 A1
20030045776 Alferness et al. Mar 2003 A1
20030045896 Murphy et al. Mar 2003 A1
20030050529 Vidlund et al. Mar 2003 A1
20030050659 Murphy et al. Mar 2003 A1
20030060674 Gifford, III et al. Mar 2003 A1
20030065248 Lau et al. Apr 2003 A1
20030069467 Lau et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030078671 Lesniak et al. Apr 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130730 Cohn et al. Jul 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030144697 Mathis et al. Jul 2003 A1
20030149333 Alferness Aug 2003 A1
20030153946 Kimblad Aug 2003 A1
20030158570 Ferrazzi Aug 2003 A1
20030166992 Schweich, Jr. et al. Sep 2003 A1
20030171641 Schweich, Jr. et al. Sep 2003 A1
20030171776 Adams et al. Sep 2003 A1
20030171806 Mathis et al. Sep 2003 A1
20030181928 Vidlund et al. Sep 2003 A1
20030191538 Buckberg et al. Oct 2003 A1
20030199733 Shapland et al. Oct 2003 A1
20030212453 Mathis et al. Nov 2003 A1
20030225454 Mathis et al. Dec 2003 A1
20030229260 Girard et al. Dec 2003 A1
20030229261 Girard et al. Dec 2003 A1
20030229265 Girard et al. Dec 2003 A1
20030229266 Cox et al. Dec 2003 A1
20030233022 Vidlund et al. Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20030236569 Mathis et al. Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St. Goar et al. Jan 2004 A1
20040010305 Alferness et al. Jan 2004 A1
20040015039 Melvin Jan 2004 A1
20040015040 Melvin Jan 2004 A1
20040015041 Melvin Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024286 Melvin Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040034271 Melvin et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044365 Bachman Mar 2004 A1
20040049115 Murphy et al. Mar 2004 A1
20040049116 Murphy et al. Mar 2004 A1
20040059180 Melvin Mar 2004 A1
20040059181 Alferness Mar 2004 A1
20040059182 Alferness Mar 2004 A1
20040059187 Alferness Mar 2004 A1
20040059188 Alferness Mar 2004 A1
20040059189 Alferness Mar 2004 A1
20040059351 Eigler et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040092962 Thornton et al. May 2004 A1
20040093023 Allen et al. May 2004 A1
20040098116 Callas et al. May 2004 A1
20040102678 Haindl May 2004 A1
20040102679 Alferness et al. May 2004 A1
20040102839 Cohn et al. May 2004 A1
20040102840 Solem et al. May 2004 A1
20040111095 Gordon et al. Jun 2004 A1
20040111101 Chin Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040122512 Navia et al. Jun 2004 A1
20040122513 Navia et al. Jun 2004 A1
20040127980 Kowalsky et al. Jul 2004 A1
20040127981 Rahdert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133062 Pai et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040133069 Shapland et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133240 Adams et al. Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138526 Guenst Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040143323 Chawla Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040158123 Jayarman Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040167374 Schweich, Jr. et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040171907 Alferness et al. Sep 2004 A1
20040171908 Alferness et al. Sep 2004 A1
20040171909 Alferness Sep 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040176678 Murphy et al. Sep 2004 A1
20040176679 Murphy et al. Sep 2004 A1
20040176840 Langberg et al. Sep 2004 A1
20040181121 Alferness et al. Sep 2004 A1
20040181122 Alferness et al. Sep 2004 A1
20040181123 Alferness et al. Sep 2004 A1
20040181124 Alferness Sep 2004 A1
20040181125 Alferness et al. Sep 2004 A1
20040181126 Buckberg et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186342 Vanden Hoek et al. Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040193260 Alferness et al. Sep 2004 A1
20040199183 Oz et al. Oct 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040267083 McCarthy et al. Dec 2004 A1
20060009842 Huynh et al. Jan 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20070004962 Alferness et al. Jan 2007 A1
20070112244 McCarthy et al. May 2007 A1
20070225547 Alferness Sep 2007 A1
Foreign Referenced Citations (72)
Number Date Country
32 27 984 Feb 1984 DE
296 19 294 Aug 1987 DE
36 14 292 Nov 1987 DE
42 34 127 May 1994 DE
295 00 381 Jul 1995 DE
198 26 675 Mar 1999 DE
199 47 885 Oct 1999 DE
298 24 017 Jun 2000 DE
0 583 012 Feb 1994 EP
0 792 621 Sep 1997 EP
0 820 729 Jan 1998 EP
1 129 736 Sep 2001 EP
2214428 Sep 1989 GB
9 200 878 Dec 1993 NL
WO 9741779 Nov 1977 WO
9119465 Dec 1991 WO
9506447 Mar 1995 WO
9516476 Jun 1995 WO
WO 9516407 Jun 1995 WO
9604852 Feb 1996 WO
WO 9602197 Feb 1996 WO
9640356 Dec 1996 WO
9714286 Apr 1997 WO
9724082 Jul 1997 WO
9724083 Jul 1997 WO
9724101 Jul 1997 WO
9803213 Jan 1998 WO
9814136 Apr 1998 WO
9817347 Apr 1998 WO
9818393 May 1998 WO
9826738 Jun 1998 WO
9829041 Jul 1998 WO
9832382 Jul 1998 WO
WO 9844969 Oct 1998 WO
9858598 Dec 1998 WO
9900059 Jan 1999 WO
9911201 Mar 1999 WO
9913777 Mar 1999 WO
WO 9913936 Mar 1999 WO
9916350 Apr 1999 WO
WO 9922784 May 1999 WO
9930647 Jun 1999 WO
9944534 Sep 1999 WO
9944680 Sep 1999 WO
9952470 Oct 1999 WO
WO 9953977 Oct 1999 WO
WO 9956655 Nov 1999 WO
WO 9966969 Dec 1999 WO
WO 0002500 Jan 2000 WO
WO 0003759 Jan 2000 WO
WO 0006026 Feb 2000 WO
WO 0006028 Feb 2000 WO
0013722 Mar 2000 WO
0018320 Apr 2000 WO
0028912 May 2000 WO
WO 0025842 May 2000 WO
WO 0025853 May 2000 WO
WO 0027304 May 2000 WO
WO 0028918 May 2000 WO
0036995 Jun 2000 WO
WO 0036995 Jun 2000 WO
WO 0042950 Jul 2000 WO
WO 0042951 Jul 2000 WO
0045735 Aug 2000 WO
WO 0045735 Aug 2000 WO
0062727 Oct 2000 WO
WO 0060995 Oct 2000 WO
WO 0061033 Oct 2000 WO
WO 0062715 Oct 2000 WO
WO 0062727 Oct 2000 WO
0103608 Jan 2001 WO
WO 0100111 Jan 2001 WO
Related Publications (1)
Number Date Country
20040167374 A1 Aug 2004 US
Divisions (1)
Number Date Country
Parent 08933456 Sep 1997 US
Child 09224349 US
Continuations (5)
Number Date Country
Parent 10326585 Dec 2002 US
Child 10778176 US
Parent 09985362 Nov 2001 US
Child 10326585 US
Parent 09697596 Oct 2000 US
Child 09985362 US
Parent 09543155 Apr 2000 US
Child 09697596 US
Parent 09224349 Jan 1999 US
Child 09543155 US
Continuation in Parts (1)
Number Date Country
Parent 08778277 Jan 1997 US
Child 08933456 US