Magnetic storage systems, such as a hard disk drive (HDD), are utilized in a wide variety of devices in both stationary and mobile computing environments. Examples of devices that incorporate magnetic storage systems include desktop computers, portable notebook computers, portable hard disk drives, digital versatile disc (DVD) players, high definition television (HDTV) receivers, vehicle control systems, cellular or mobile telephones, television set top boxes, digital cameras, digital video cameras, video game consoles, and portable media players.
A typical disk drive includes magnetic storage media in the form of one or more flat disks. The disks are generally formed of two main substances, namely, a substrate material that gives it structure and rigidity, and a magnetic media coating that holds the magnetic impulses or moments that represent data in a recording layer within the coating. The typical disk drive also includes a read head and a write head, generally in the form of a magnetic transducer which can sense and/or change the magnetic fields stored on the recording layer of the disks.
Energy/Heat Assisted Magnetic Recording (EAMR/HAMR) systems can potentially increase the areal density of information recorded magnetically on various magnetic media. For example, to achieve magnetic information storage levels beyond 1 terabit per square inch, smaller grain size (e.g., less than 6 nm) media may be required. Such designs can demand higher Ku materials for a recording layer to sustain thermal stability, such as L10 ordered FePt alloys. Due to high anisotropy, FePt media is not writable with conventional recording heads. Therefore, either an exchange coupled composite media structure or heat-assisted magnetic recording (HAMR) are generally needed. HAMR media generally includes a magnetic recording layer and a heat sink positioned beneath the magnetic recording layer. To facilitate efficient HAMR, including the use of minimal laser power to achieve heat assisted writing and reading of information on the media, it is often necessary to dissipate heat and/or light energy from the magnetic recording layer. Typically, this is achieved to a certain degree by the heat sink layer. However, the use of minimal and/or reduced laser power may also be helpful.
It has recently been found that a laser power reduction is beneficial for lifetime improvement in heat assisted magnetic recording (HAMR) applications. More specifically, conventional HAMR systems including HAMR media based on L10 FePt type materials suffer from short lifetimes. Such short lifetimes often result from being unable to decrease laser power (e.g., without signal to noise ratio (SNR) penalties) during HAMR recording. In order to reduce laser power requirements and lower writing temperatures, it is useful to adjust the Curie temperature of the FePt magnetic recording layer. HAMR media with magnetic recording layers having reduced Curie temperatures are described herein and involve a low cost and fabrication friendly approach to control the Curie temperature of the magnetic recording layer for improvement of SNR characteristics and laser power reduction.
Referring now to the drawings, HAMR media with a magnetic recording layer having a reduced Curie temperature and methods of fabricating the HAMR media are illustrated. One such HAMR medium includes a substrate, a heatsink layer on the substrate, an interlayer on the heatsink layer, and a multi-layer magnetic recording layer on the interlayer. In such case, the multi-layer magnetic recording layer includes a first magnetic recording layer including an alloy selected from FePtX and CoPtX, where X is a material selected from Cu, Ni, and combinations thereof, a second magnetic recording layer on the first magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer, and a third magnetic recording layer on the second magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer. In one aspect, a method for fabricating this HAMR medium is described. The HAMR media described herein can provide a reduced Curie temperature as compared to current HAMR media designs, thereby reducing HAMR laser power and extending lifetimes of HAMR components including the media. In addition, the HAMR media described herein can provide a low cost and highly manufacturable approach for improvement of SNR while reducing the HAMR laser power.
In operation, a spindle motor (not shown) rotates the spindle assembly 104, and thereby rotates disk 102 to position head 108 at a particular location along a desired disk track 107. The position of head 104 relative to disk 102 may be controlled by position control circuitry 110.
In operation, the laser 114 is configured to generate and direct light energy to a waveguide (possibly along the dashed line) in the slider which directs the light to a near field transducer (NFT) near the air bearing surface (e.g., bottom surface) 108c of the slider 108. Upon receiving the light from the laser 114 via the waveguide, the NFT generates localized heat energy that heats a portion of the media 102 near the write element 108a and the read element 108b.
The first MRL 310a may be made of an alloy selected from FePtX and CoPtX, where X is a material selected from Cu, Ni, and combinations thereof. In one embodiment, the first MRL 310a includes a number of magnetic grains segregated by carbon segregants, where the magnetic grains are made of the alloy. In one embodiment, X may be Cu. In one embodiment, X has a atomic percentage of 1 to 30 percent or about 1 to 30 percent. In another embodiment, X has a atomic percentage of 7.5 to 10 percent or about 7.5 to 10 percent. In one embodiment, the first MRL 310a includes, or consists of, L10 FePtCAgX where X is Cu and has an atomic percentage of 1 to 30 percent. In one embodiment, the first MRL 310a is made of an alloy selected from FePtXX2 and CoPtXX2, where X2 is a material selected from the group consisting of Ag, C, BN, and combinations thereof. In several embodiments, the first MRL 310a is magnetic and configured to remain magnetic at temperatures sufficiently high to enable information to be recorded to the multi-layer MRL 310. In several embodiments, the first MRL 310a may include one or more segregant additives such as Cu, Ag, C, Ni, BN.
In several embodiments, the second MRL 310b may have at least one material different from the materials of the first MRL 310a. For example, in one embodiment, the second MRL 310b may be made of an alloy selected from L10 FePtX3 and L10 CoPt X3, where X3 is a material selected from BN, C, and combinations thereof. In such case, the BN, C materials may act as segregant additives. In one embodiment, the second MRL 310b may be made of FePtCBN.
In a number of embodiments, the third MRL 310c may have at least one material different from the materials of the first MRL 310a. For example, in one embodiment, the third MRL 310c may be made of an alloy selected from L10 FePtX4 and L10 CoPtX4, where X4 is a material selected from the group consisting of BN, SiO2, B2O3, ZrO2, and combinations thereof. In such case, the BN, SiO2, B2O3, ZrO2 materials may act as segregant additives. In several embodiments, the third MRL 310c includes at least one material different from the materials of the second MRL 310b. In one embodiment, the third MRL 310c may be made of FetPtBNSiO2.
In several embodiments, the Curie temperature of the first MRL 310a is lower than the Curie temperature of either the second MRL 310b or the third MRL 310c. In such case, the overall Curie temperature of the multi-layer MRL 310 may be reduced as compared to conventional magnetic recording media. In several embodiments, the first MRL 310a, the second MRL 310b, and the third MRL 310c operate collectively (e.g., effectively operate as a single MRL or entity) to enable information to be recorded to the multi-layer magnetic recording layer 310. For example, in one embodiment, one bit of information may collectively be stored within one grain from each MRL, where the grains are positioned at roughly the same horizontal position along the layers and may collectively act like a single vertically oriented grain extending through all three of the layers. This can be the case even if the grains on each MRL are physically distinct based on having different materials. In other embodiments, the one single grain may be replaced by multiple grains on any given layer to store the single bit of information.
In one embodiment, the substrate 302 can be made of one or more materials such as an Al alloy, NiP plated Al, glass, glass ceramic, and/or combinations thereof. In one embodiment, the adhesion layer 304 can include one or more materials such as CrTi, CrTa, NiTa, CoCrTaZr, CoFeZrBCr, CoTaZr, CoFeTaZr, CoCrWTaZr, CoCrMoTaZr, CoZrWMo, combinations thereof, and/or other suitable materials known in the art.
In one embodiment, the heat sink layer 306 can be made of one or more materials such as Ag, Al, Au, Cu, Cr, Mo, Ru, W, CuZr, MoCu, AgPd, CrRu, CrV, CrW, CrMo, CrNd, NiAl, NiTa, combinations thereof, and/or other suitable materials known in the art.
In one embodiment, the interlayer 308 provides a preselected texture for the multi-layer MRL 310. The interlayer 308 can be made of MgO, TiN, TiC, amorphous under layer such as CoCrTaZr, CoWZrMo, body centered cubic (bec) Cr or Cr alloy, W or W alloy, M or Mo alloy, B2RuAl, NiAl, or other suitable materials. In one embodiment, the interlayer 308 is made of MgO and the amorphous under layer is made of CoWZrMo.
In one embodiment, the capping layer 312 is made of Co, Pt, or Pd. In one embodiment, the capping layer 312 can be a bi-layer structure having a top layer including Co and a bottom layer including Pt or Pd. In addition to the Co/Pt and Co/Pd combinations of top layer and the bottom layer, specific combinations of the top layer materials and the bottom layer materials may include, for example, Co/Au, Co/Ag, Co/Al, Co/Cu, Co/Ir, Co/Mo, Co/Ni, Co/Os, Co/Ru, Co/Ti, Co/V, Fe/Ag, Fe/Au, Fe/Cu, Fe/Mo, Fe/Pd, Ni/Au, Ni/Cu, Ni/Mo, Ni/Pd, Ni/Re, etc. In additional embodiments, top layer materials and bottom layer materials include any combination of Pt and Pd (e.g., alloys), or any of the following elements, alone or in combination: Au, Ag, Al, Cu, Ir, Mo, Ni, Os, Ru, Ti, V, Fe, Re, and the like.
In one embodiment, the overcoat layer 314 is made of carbon. In one embodiment, the lubricant layer 316 is made of a polymer based lubricant. In one embodiment, the HAMR magnetic medium 300 further includes a thermal resistive layer between the heat sink layer 306 and the interlayer 308. The thermal resistive layer can be made of oxides such as ZrO2, SiO2, HfO2, Mg2SiO4, and/or other materials with low thermal conductivity.
The terms “above,” “below,” and “between” as used herein refer to a relative position of one layer with respect to other layers. As such, one layer deposited or disposed above or below another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer deposited or disposed between layers may be directly in contact with the layers or may have one or more intervening layers.
In one embodiment, the first magnetic recording layer (e.g., M1 or first MRL 310a of
In one embodiment, the process can perform the sequence of actions in a different order. In another embodiment, the process can skip one or more of the actions. In other embodiments, one or more of the actions are performed simultaneously. In some embodiments, additional actions can be performed.
In several embodiments, the deposition of such layers can be performed using a variety of deposition sub-processes, including, but not limited to physical vapor deposition (PVD), sputter deposition and ion beam deposition, and chemical vapor deposition (CVD) including plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD) and atomic layer chemical vapor deposition (ALCVD). In other embodiments, other suitable deposition techniques known in the art may also be used.
While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as examples of specific embodiments thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain method, event, state or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other suitable manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
Number | Name | Date | Kind |
---|---|---|---|
6013161 | Chen et al. | Jan 2000 | A |
6063248 | Bourez et al. | May 2000 | A |
6068891 | O'Dell et al. | May 2000 | A |
6086730 | Liu et al. | Jul 2000 | A |
6099981 | Nishimori | Aug 2000 | A |
6103404 | Ross et al. | Aug 2000 | A |
6117499 | Wong et al. | Sep 2000 | A |
6136403 | Prabhakara et al. | Oct 2000 | A |
6143375 | Ross et al. | Nov 2000 | A |
6145849 | Bae et al. | Nov 2000 | A |
6146737 | Malhotra et al. | Nov 2000 | A |
6149696 | Jia | Nov 2000 | A |
6150015 | Bertero et al. | Nov 2000 | A |
6156404 | Ross et al. | Dec 2000 | A |
6159076 | Sun et al. | Dec 2000 | A |
6164118 | Suzuki et al. | Dec 2000 | A |
6200441 | Gomicki et al. | Mar 2001 | B1 |
6204995 | Hokkyo et al. | Mar 2001 | B1 |
6206765 | Sanders et al. | Mar 2001 | B1 |
6210819 | Lal et al. | Apr 2001 | B1 |
6216709 | Fung et al. | Apr 2001 | B1 |
6221119 | Homola | Apr 2001 | B1 |
6248395 | Homola et al. | Jun 2001 | B1 |
6261681 | Suekane et al. | Jul 2001 | B1 |
6270885 | Hokkyo et al. | Aug 2001 | B1 |
6274063 | Li et al. | Aug 2001 | B1 |
6283838 | Blake et al. | Sep 2001 | B1 |
6287429 | Moroishi et al. | Sep 2001 | B1 |
6290573 | Suzuki | Sep 2001 | B1 |
6299947 | Suzuki et al. | Oct 2001 | B1 |
6303217 | Malhotra et al. | Oct 2001 | B1 |
6309765 | Suekane et al. | Oct 2001 | B1 |
6358636 | Yang et al. | Mar 2002 | B1 |
6362452 | Suzuki et al. | Mar 2002 | B1 |
6363599 | Bajorek | Apr 2002 | B1 |
6365012 | Sato et al. | Apr 2002 | B1 |
6381090 | Suzuki et al. | Apr 2002 | B1 |
6381092 | Suzuki | Apr 2002 | B1 |
6387483 | Hokkyo et al. | May 2002 | B1 |
6391213 | Homola | May 2002 | B1 |
6395349 | Salamon | May 2002 | B1 |
6403919 | Salamon | Jun 2002 | B1 |
6408677 | Suzuki | Jun 2002 | B1 |
6426157 | Hokkyo et al. | Jul 2002 | B1 |
6429984 | Alex | Aug 2002 | B1 |
6482330 | Bajorek | Nov 2002 | B1 |
6482505 | Bertero et al. | Nov 2002 | B1 |
6500567 | Bertero et al. | Dec 2002 | B1 |
6528124 | Nguyen | Mar 2003 | B1 |
6548821 | Treves et al. | Apr 2003 | B1 |
6552871 | Suzuki et al. | Apr 2003 | B2 |
6565719 | Lairson et al. | May 2003 | B1 |
6566674 | Treves et al. | May 2003 | B1 |
6571806 | Rosano et al. | Jun 2003 | B2 |
6628466 | Alex | Sep 2003 | B2 |
6664503 | Hsieh et al. | Dec 2003 | B1 |
6670055 | Tomiyasu et al. | Dec 2003 | B2 |
6682807 | Lairson et al. | Jan 2004 | B2 |
6683754 | Suzuki et al. | Jan 2004 | B2 |
6730420 | Bertero et al. | May 2004 | B1 |
6743528 | Suekane et al. | Jun 2004 | B2 |
6759138 | Tomiyasu et al. | Jul 2004 | B2 |
6778353 | Harper | Aug 2004 | B1 |
6795274 | Hsieh et al. | Sep 2004 | B1 |
6855232 | Jairson et al. | Feb 2005 | B2 |
6857937 | Bajorek | Feb 2005 | B2 |
6893748 | Bertero et al. | May 2005 | B2 |
6899959 | Bertero et al. | May 2005 | B2 |
6916558 | Umezawa et al. | Jul 2005 | B2 |
6939120 | Harper | Sep 2005 | B1 |
6946191 | Morikawa et al. | Sep 2005 | B2 |
6964819 | Girt et al. | Nov 2005 | B1 |
6967798 | Homola et al. | Nov 2005 | B2 |
6972135 | Homola | Dec 2005 | B2 |
7004827 | Suzuki et al. | Feb 2006 | B1 |
7006323 | Suzuki | Feb 2006 | B1 |
7016154 | Nishihira | Mar 2006 | B2 |
7019924 | McNeil et al. | Mar 2006 | B2 |
7045215 | Shimokawa | May 2006 | B2 |
7070870 | Bertero et al. | Jul 2006 | B2 |
7090934 | Hokkyo et al. | Aug 2006 | B2 |
7099112 | Harper | Aug 2006 | B1 |
7105241 | Shimokawa et al. | Sep 2006 | B2 |
7119990 | Bajorek et al. | Oct 2006 | B2 |
7147790 | Wachenschwanz et al. | Dec 2006 | B2 |
7161753 | Wachenschwanz et al. | Jan 2007 | B2 |
7166319 | Ishiyama | Jan 2007 | B2 |
7166374 | Suekane et al. | Jan 2007 | B2 |
7169487 | Kawai et al. | Jan 2007 | B2 |
7174775 | Ishiyama | Feb 2007 | B2 |
7179549 | Malhotra et al. | Feb 2007 | B2 |
7184139 | Treves et al. | Feb 2007 | B2 |
7196860 | Alex | Mar 2007 | B2 |
7199977 | Suzuki et al. | Apr 2007 | B2 |
7208236 | Morikawa et al. | Apr 2007 | B2 |
7220500 | Tomiyasu et al. | May 2007 | B1 |
7229266 | Harper | Jun 2007 | B2 |
7239970 | Treves et al. | Jul 2007 | B2 |
7252897 | Shimokawa et al. | Aug 2007 | B2 |
7277254 | Shimokawa et al. | Oct 2007 | B2 |
7281920 | Homola et al. | Oct 2007 | B2 |
7282277 | Munteanu et al. | Oct 2007 | B2 |
7292329 | Treves et al. | Nov 2007 | B2 |
7301726 | Suzuki | Nov 2007 | B1 |
7302148 | Treves et al. | Nov 2007 | B2 |
7305119 | Treves et al. | Dec 2007 | B2 |
7314404 | Singh et al. | Jan 2008 | B2 |
7320584 | Harper et al. | Jan 2008 | B1 |
7329114 | Harper et al. | Feb 2008 | B2 |
7375362 | Treves et al. | May 2008 | B2 |
7420886 | Tomiyasu et al. | Sep 2008 | B2 |
7425719 | Treves et al. | Sep 2008 | B2 |
7471484 | Wachenschwanz et al. | Dec 2008 | B2 |
7498062 | Calcaterra et al. | Mar 2009 | B2 |
7531485 | Hara et al. | May 2009 | B2 |
7537846 | Ishiyama et al. | May 2009 | B2 |
7549209 | Wachenschwanz et al. | Jun 2009 | B2 |
7569490 | Staud | Aug 2009 | B2 |
7597792 | Homola et al. | Oct 2009 | B2 |
7597973 | Ishiyama | Oct 2009 | B2 |
7608193 | Wachenschwanz et al. | Oct 2009 | B2 |
7632087 | Homola | Dec 2009 | B2 |
7656615 | Wachenschwanz et al. | Feb 2010 | B2 |
7682546 | Harper | Mar 2010 | B2 |
7684152 | Suzuki et al. | Mar 2010 | B2 |
7686606 | Harper et al. | Mar 2010 | B2 |
7686991 | Harper | Mar 2010 | B2 |
7695833 | Ishiyama | Apr 2010 | B2 |
7722968 | Ishiyama | May 2010 | B2 |
7733605 | Suzuki et al. | Jun 2010 | B2 |
7736768 | Ishiyama | Jun 2010 | B2 |
7755861 | Li et al. | Jul 2010 | B1 |
7758732 | Calcaterra et al. | Jul 2010 | B1 |
7833639 | Sonobe et al. | Nov 2010 | B2 |
7833641 | Tomiyasu et al. | Nov 2010 | B2 |
7862912 | Hellwig et al. | Jan 2011 | B2 |
7879467 | Chang et al. | Feb 2011 | B2 |
7910159 | Jung | Mar 2011 | B2 |
7911736 | Bajorek | Mar 2011 | B2 |
7924519 | Lambert | Apr 2011 | B2 |
7944165 | O'Dell | May 2011 | B1 |
7944643 | Jiang et al. | May 2011 | B1 |
7955723 | Umezawa et al. | Jun 2011 | B2 |
7983003 | Sonobe et al. | Jul 2011 | B2 |
7993497 | Moroishi et al. | Aug 2011 | B2 |
7993765 | Kim et al. | Aug 2011 | B2 |
7998912 | Chen et al. | Aug 2011 | B2 |
8002901 | Chen et al. | Aug 2011 | B1 |
8003237 | Sonobe et al. | Aug 2011 | B2 |
8012920 | Shimokawa | Sep 2011 | B2 |
8038863 | Homola | Oct 2011 | B2 |
8057926 | Ayama et al. | Nov 2011 | B2 |
8062778 | Suzuki et al. | Nov 2011 | B2 |
8064156 | Suzuki et al. | Nov 2011 | B1 |
8076013 | Sonobe et al. | Dec 2011 | B2 |
8084149 | Soeya | Dec 2011 | B2 |
8092931 | Ishiyama et al. | Jan 2012 | B2 |
8100685 | Harper et al. | Jan 2012 | B1 |
8101054 | Chen et al. | Jan 2012 | B2 |
8125723 | Nichols et al. | Feb 2012 | B1 |
8125724 | Nichols et al. | Feb 2012 | B1 |
8137517 | Bourez | Mar 2012 | B1 |
8142916 | Umezawa et al. | Mar 2012 | B2 |
8163093 | Chen et al. | Apr 2012 | B1 |
8171949 | Lund et al. | May 2012 | B1 |
8173282 | Sun | May 2012 | B1 |
8178480 | Hamakubo et al. | May 2012 | B2 |
8206789 | Suzuki | Jun 2012 | B2 |
8218260 | Iamratanakul et al. | Jul 2012 | B2 |
8247095 | Champion et al. | Aug 2012 | B2 |
8257783 | Suzuki et al. | Sep 2012 | B2 |
8298609 | Liew et al. | Oct 2012 | B1 |
8298689 | Sonobe et al. | Oct 2012 | B2 |
8309239 | Umezawa et al. | Nov 2012 | B2 |
8316668 | Chan et al. | Nov 2012 | B1 |
8331056 | O'Dell | Dec 2012 | B2 |
8354618 | Chen et al. | Jan 2013 | B1 |
8367228 | Sonobe et al. | Feb 2013 | B2 |
8383209 | Ayama | Feb 2013 | B2 |
8394243 | Jung et al. | Mar 2013 | B1 |
8397751 | Chan et al. | Mar 2013 | B1 |
8399809 | Bourez | Mar 2013 | B1 |
8402638 | Treves et al. | Mar 2013 | B1 |
8404056 | Chen et al. | Mar 2013 | B1 |
8404369 | Ruffini et al. | Mar 2013 | B2 |
8404370 | Sato et al. | Mar 2013 | B2 |
8406918 | Tan et al. | Mar 2013 | B2 |
8414966 | Yasumori et al. | Apr 2013 | B2 |
8425975 | Ishiyama | Apr 2013 | B2 |
8431257 | Kim et al. | Apr 2013 | B2 |
8431258 | Onoue et al. | Apr 2013 | B2 |
8453315 | Kajiwara et al. | Jun 2013 | B2 |
8488276 | Jung et al. | Jul 2013 | B1 |
8491800 | Dorsey | Jul 2013 | B1 |
8492009 | Homola et al. | Jul 2013 | B1 |
8492011 | Itoh et al. | Jul 2013 | B2 |
8496466 | Treves et al. | Jul 2013 | B1 |
8509039 | Huang et al. | Aug 2013 | B1 |
8517364 | Crumley et al. | Aug 2013 | B1 |
8517657 | Chen et al. | Aug 2013 | B2 |
8524052 | Tan et al. | Sep 2013 | B1 |
8530065 | Chernyshov et al. | Sep 2013 | B1 |
8546000 | Umezawa | Oct 2013 | B2 |
8551253 | Na'im et al. | Oct 2013 | B2 |
8551627 | Shimada et al. | Oct 2013 | B2 |
8556566 | Suzuki et al. | Oct 2013 | B1 |
8559131 | Masuda et al. | Oct 2013 | B2 |
8562748 | Chen et al. | Oct 2013 | B1 |
8565050 | Bertero et al. | Oct 2013 | B1 |
8570844 | Yuan et al. | Oct 2013 | B1 |
8580410 | Onoue | Nov 2013 | B2 |
8584687 | Chen et al. | Nov 2013 | B1 |
8591709 | Lim et al. | Nov 2013 | B1 |
8592061 | Onoue et al. | Nov 2013 | B2 |
8596287 | Chen et al. | Dec 2013 | B1 |
8597723 | Jung et al. | Dec 2013 | B1 |
8603649 | Onoue | Dec 2013 | B2 |
8603650 | Sonobe et al. | Dec 2013 | B2 |
8605388 | Yasumori et al. | Dec 2013 | B2 |
8605555 | Chernyshov et al. | Dec 2013 | B1 |
8608147 | Yap et al. | Dec 2013 | B1 |
8609263 | Chernyshov et al. | Dec 2013 | B1 |
8619381 | Moser et al. | Dec 2013 | B2 |
8623528 | Umezawa et al. | Jan 2014 | B2 |
8623529 | Suzuki | Jan 2014 | B2 |
8630060 | Mosendz et al. | Jan 2014 | B2 |
8634155 | Yasumori et al. | Jan 2014 | B2 |
8658003 | Bourez | Feb 2014 | B1 |
8658292 | Mallary et al. | Feb 2014 | B1 |
8665541 | Saito | Mar 2014 | B2 |
8668953 | Buechel-Rimmel | Mar 2014 | B1 |
8674327 | Poon et al. | Mar 2014 | B1 |
8685214 | Moh et al. | Apr 2014 | B1 |
8696404 | Sun et al. | Apr 2014 | B2 |
8711499 | Desai et al. | Apr 2014 | B1 |
8743666 | Bertero et al. | Jun 2014 | B1 |
8758912 | Srinivasan et al. | Jun 2014 | B2 |
8787124 | Chernyshov et al. | Jul 2014 | B1 |
8787130 | Yuan | Jul 2014 | B1 |
8791391 | Bourez | Jul 2014 | B2 |
8795765 | Koike et al. | Aug 2014 | B2 |
8795790 | Sonobe et al. | Aug 2014 | B2 |
8795857 | Ayama et al. | Aug 2014 | B2 |
8800322 | Chan et al. | Aug 2014 | B1 |
8811129 | Yuan et al. | Aug 2014 | B1 |
8817410 | Moser et al. | Aug 2014 | B1 |
9406329 | Ho | Aug 2016 | B1 |
20020060883 | Suzuki | May 2002 | A1 |
20030022024 | Wachenschwanz | Jan 2003 | A1 |
20040022387 | Weikle | Feb 2004 | A1 |
20040132301 | Harper et al. | Jul 2004 | A1 |
20040202793 | Harper et al. | Oct 2004 | A1 |
20040202865 | Homola et al. | Oct 2004 | A1 |
20040209123 | Bajorek | Oct 2004 | A1 |
20040209470 | Bajorek | Oct 2004 | A1 |
20050036223 | Wachenschwanz et al. | Feb 2005 | A1 |
20050142990 | Homola | Jun 2005 | A1 |
20050150862 | Harper et al. | Jul 2005 | A1 |
20050151282 | Harper et al. | Jul 2005 | A1 |
20050151283 | Bajorek et al. | Jul 2005 | A1 |
20050151300 | Harper et al. | Jul 2005 | A1 |
20050155554 | Saito | Jul 2005 | A1 |
20050167867 | Bajorek et al. | Aug 2005 | A1 |
20050202287 | Lu | Sep 2005 | A1 |
20050263401 | Olsen et al. | Dec 2005 | A1 |
20060147758 | Jung et al. | Jul 2006 | A1 |
20060181697 | Treves et al. | Aug 2006 | A1 |
20060207890 | Staud | Sep 2006 | A1 |
20070070549 | Suzuki et al. | Mar 2007 | A1 |
20070245909 | Homola | Oct 2007 | A1 |
20080075845 | Sonobe et al. | Mar 2008 | A1 |
20080093760 | Harper et al. | Apr 2008 | A1 |
20090117408 | Umezawa et al. | May 2009 | A1 |
20090136784 | Suzuki et al. | May 2009 | A1 |
20090169922 | Ishiyama | Jul 2009 | A1 |
20090191331 | Umezawa et al. | Jul 2009 | A1 |
20090202866 | Kim et al. | Aug 2009 | A1 |
20090311557 | Onoue et al. | Dec 2009 | A1 |
20100143752 | Ishibashi et al. | Jun 2010 | A1 |
20100190035 | Sonobe et al. | Jul 2010 | A1 |
20100196619 | Ishiyama | Aug 2010 | A1 |
20100196740 | Ayama et al. | Aug 2010 | A1 |
20100209601 | Shimokawa et al. | Aug 2010 | A1 |
20100215992 | Horikawa et al. | Aug 2010 | A1 |
20100232065 | Suzuki et al. | Sep 2010 | A1 |
20100247965 | Onoue | Sep 2010 | A1 |
20100261039 | Itoh et al. | Oct 2010 | A1 |
20100279151 | Sakamoto et al. | Nov 2010 | A1 |
20100300884 | Homola et al. | Dec 2010 | A1 |
20100304186 | Shimokawa | Dec 2010 | A1 |
20110097603 | Onoue | Apr 2011 | A1 |
20110097604 | Onoue | Apr 2011 | A1 |
20110171495 | Tachibana et al. | Jul 2011 | A1 |
20110206947 | Tachibana et al. | Aug 2011 | A1 |
20110212346 | Onoue et al. | Sep 2011 | A1 |
20110223446 | Onoue et al. | Sep 2011 | A1 |
20110244119 | Umezawa et al. | Oct 2011 | A1 |
20110299194 | Aniya et al. | Dec 2011 | A1 |
20110311841 | Saito et al. | Dec 2011 | A1 |
20120069466 | Okamoto et al. | Mar 2012 | A1 |
20120070692 | Sato et al. | Mar 2012 | A1 |
20120077060 | Ozawa | Mar 2012 | A1 |
20120127599 | Shimokawa et al. | May 2012 | A1 |
20120127601 | Suzuki et al. | May 2012 | A1 |
20120129009 | Sato et al. | May 2012 | A1 |
20120140359 | Tachibana | Jun 2012 | A1 |
20120141833 | Umezawa et al. | Jun 2012 | A1 |
20120141835 | Sakamoto | Jun 2012 | A1 |
20120148875 | Hamakubo et al. | Jun 2012 | A1 |
20120156523 | Seki et al. | Jun 2012 | A1 |
20120164488 | Shin et al. | Jun 2012 | A1 |
20120170152 | Sonobe et al. | Jul 2012 | A1 |
20120171369 | Koike et al. | Jul 2012 | A1 |
20120175243 | Fukuura et al. | Jul 2012 | A1 |
20120189872 | Umezawa et al. | Jul 2012 | A1 |
20120196049 | Azuma et al. | Aug 2012 | A1 |
20120207919 | Sakamoto et al. | Aug 2012 | A1 |
20120225217 | Itoh et al. | Sep 2012 | A1 |
20120251842 | Yuan | Oct 2012 | A1 |
20120251846 | Desai et al. | Oct 2012 | A1 |
20120276417 | Shimokawa et al. | Nov 2012 | A1 |
20120307398 | Kanbe et al. | Dec 2012 | A1 |
20120308722 | Suzuki et al. | Dec 2012 | A1 |
20130040167 | Alagarsamy et al. | Feb 2013 | A1 |
20130071694 | Srinivasan et al. | Mar 2013 | A1 |
20130165029 | Sun et al. | Jun 2013 | A1 |
20130175252 | Bourez | Jul 2013 | A1 |
20130208578 | Kanbe | Aug 2013 | A1 |
20130209835 | Qui | Aug 2013 | A1 |
20130216865 | Yasumori et al. | Aug 2013 | A1 |
20130230647 | Onoue et al. | Sep 2013 | A1 |
20130235491 | Mosendz | Sep 2013 | A1 |
20130314815 | Yuan et al. | Nov 2013 | A1 |
20140011054 | Suzuki | Jan 2014 | A1 |
20140044992 | Onoue | Feb 2014 | A1 |
20140050843 | Yi et al. | Feb 2014 | A1 |
20140151360 | Gregory et al. | Jun 2014 | A1 |
20140234666 | Knigge et al. | Aug 2014 | A1 |