Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer

Information

  • Patent Grant
  • 11074934
  • Patent Number
    11,074,934
  • Date Filed
    Friday, September 25, 2015
    8 years ago
  • Date Issued
    Tuesday, July 27, 2021
    2 years ago
Abstract
HAMR media with a magnetic recording layer having a reduced Curie temperature and methods of fabricating the HAMR media are provided. One such HAMR medium includes a substrate, a heat sink layer on the substrate, an interlayer on the heat sink layer, and a multi-layer magnetic recording layer on the interlayer. In such case, the multi-layer magnetic recording layer includes a first magnetic recording layer including an alloy selected from FePtX and CoPtX, where X is a material selected from the group consisting of Cu, Ni, and combinations thereof, a second magnetic recording layer on the first magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer, and a third magnetic recording layer on the second magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer.
Description
BACKGROUND

Magnetic storage systems, such as a hard disk drive (HDD), are utilized in a wide variety of devices in both stationary and mobile computing environments. Examples of devices that incorporate magnetic storage systems include desktop computers, portable notebook computers, portable hard disk drives, digital versatile disc (DVD) players, high definition television (HDTV) receivers, vehicle control systems, cellular or mobile telephones, television set top boxes, digital cameras, digital video cameras, video game consoles, and portable media players.


A typical disk drive includes magnetic storage media in the form of one or more flat disks. The disks are generally formed of two main substances, namely, a substrate material that gives it structure and rigidity, and a magnetic media coating that holds the magnetic impulses or moments that represent data in a recording layer within the coating. The typical disk drive also includes a read head and a write head, generally in the form of a magnetic transducer which can sense and/or change the magnetic fields stored on the recording layer of the disks.


Energy/Heat Assisted Magnetic Recording (EAMR/HAMR) systems can potentially increase the areal density of information recorded magnetically on various magnetic media. For example, to achieve magnetic information storage levels beyond 1 terabit per square inch, smaller grain size (e.g., less than 6 nm) media may be required. Such designs can demand higher Ku materials for a recording layer to sustain thermal stability, such as L10 ordered FePt alloys. Due to high anisotropy, FePt media is not writable with conventional recording heads. Therefore, either an exchange coupled composite media structure or heat-assisted magnetic recording (HAMR) are generally needed. HAMR media generally includes a magnetic recording layer and a heat sink positioned beneath the magnetic recording layer. To facilitate efficient HAMR, including the use of minimal laser power to achieve heat assisted writing and reading of information on the media, it is often necessary to dissipate heat and/or light energy from the magnetic recording layer. Typically, this is achieved to a certain degree by the heat sink layer. However, the use of minimal and/or reduced laser power may also be helpful.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top schematic view of a disk drive configured for heat assisted magnetic recording (HAMR) including a slider and a magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention.



FIG. 2 is a side schematic view of the slider and HAMR magnetic medium of FIG. 1 with the magnetic recording layer having the reduced Curie temperature in accordance with one embodiment of the invention.



FIG. 3 is a side schematic view of a HAMR magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention.



FIG. 4 is a graph of magnetic susceptibility versus temperature for a HAMR magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention.



FIG. 5a is a schematic view of a comparative HAMR magnetic medium without a magnetic recording layer having a reduced Curie temperature and associated heat spreading among grains of the magnetic recording layer.



FIG. 5b is a schematic view of a HAMR magnetic medium with a magnetic recording layer having a reduced Curie temperature and associated heat spreading among grains of the magnetic recording layer in accordance with one embodiment of the invention.



FIG. 6 is a graph of initial weighted signal to noise ratio (SNR) versus laser current for a HAMR system including a magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention.



FIG. 7 is a graph of final weighted signal to noise ratio (SNR) versus laser current for a HAMR system including a magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention.



FIG. 8 is a flowchart of a process for fabricating a HAMR magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention.





DETAILED DESCRIPTION

It has recently been found that a laser power reduction is beneficial for lifetime improvement in heat assisted magnetic recording (HAMR) applications. More specifically, conventional HAMR systems including HAMR media based on L10 FePt type materials suffer from short lifetimes. Such short lifetimes often result from being unable to decrease laser power (e.g., without signal to noise ratio (SNR) penalties) during HAMR recording. In order to reduce laser power requirements and lower writing temperatures, it is useful to adjust the Curie temperature of the FePt magnetic recording layer. HAMR media with magnetic recording layers having reduced Curie temperatures are described herein and involve a low cost and fabrication friendly approach to control the Curie temperature of the magnetic recording layer for improvement of SNR characteristics and laser power reduction.


Referring now to the drawings, HAMR media with a magnetic recording layer having a reduced Curie temperature and methods of fabricating the HAMR media are illustrated. One such HAMR medium includes a substrate, a heatsink layer on the substrate, an interlayer on the heatsink layer, and a multi-layer magnetic recording layer on the interlayer. In such case, the multi-layer magnetic recording layer includes a first magnetic recording layer including an alloy selected from FePtX and CoPtX, where X is a material selected from Cu, Ni, and combinations thereof, a second magnetic recording layer on the first magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer, and a third magnetic recording layer on the second magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer. In one aspect, a method for fabricating this HAMR medium is described. The HAMR media described herein can provide a reduced Curie temperature as compared to current HAMR media designs, thereby reducing HAMR laser power and extending lifetimes of HAMR components including the media. In addition, the HAMR media described herein can provide a low cost and highly manufacturable approach for improvement of SNR while reducing the HAMR laser power.



FIG. 1 is a top schematic view of a disk drive 100 configured for heat assisted magnetic recording (HAMR) including a slider 108 and a magnetic medium 102 with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention. The laser (not visible in FIG. 1 but see 114 in FIG. 2) is positioned with a head/slider 108. Disk drive 100 may include one or more disks/media 102 to store data. Disk/media 102 resides on a spindle assembly 104 that is mounted to drive housing. Data may be stored along tracks in the magnetic recording layer of disk 102. The reading and writing of data is accomplished with the head 108 that may have both read and write elements. The write element is used to alter the properties of the magnetic recording layer of disk 102 and thereby write information thereto. In one embodiment, head 104 may have magneto-resistive (MR), or giant magneto-resistive (GMR) elements. In an alternative embodiment, head 104 may be another type of head, for example, an inductive read/write head or a Hall effect head.


In operation, a spindle motor (not shown) rotates the spindle assembly 104, and thereby rotates disk 102 to position head 108 at a particular location along a desired disk track 107. The position of head 104 relative to disk 102 may be controlled by position control circuitry 110.



FIG. 2 is a side schematic view of the slider 108 and HAMR magnetic medium 102 of FIG. 1 with the magnetic recording layer having the reduced Curie temperature in accordance with one embodiment of the invention. The HAMR system components also include a sub-mount attached 112 to a top surface of the slider 108. The laser 114 is attached to the sub-mount 112, and possibly to the slider 108. The slider 108 includes the write element (e.g., writer) 108a and the read element (e.g., reader) 108b positioned along an air bearing surface (ABS) 108c of the slider for writing information to, and reading information from, respectively, the media 102.


In operation, the laser 114 is configured to generate and direct light energy to a waveguide (possibly along the dashed line) in the slider which directs the light to a near field transducer (NFT) near the air bearing surface (e.g., bottom surface) 108c of the slider 108. Upon receiving the light from the laser 114 via the waveguide, the NFT generates localized heat energy that heats a portion of the media 102 near the write element 108a and the read element 108b. FIGS. 1 and 2 illustrate a specific embodiment of a HAMR system. In other embodiments, the HAMR magnetic medium 102 with the magnetic recording layer having the reduced Curie temperature can be used in other suitable HAMR systems.



FIG. 3 is a side schematic view of a HAMR magnetic medium 300 with a magnetic recording layer 310 having a reduced Curie temperature in accordance with one embodiment of the invention. The medium 300 has a stacked structure with a glass substrate 302 at a bottom/base layer, an adhesion layer 304 on the glass substrate 302, a heat sink layer (e.g., “heatsink layer”) 306 on the adhesion layer 304, an interlayer 308 on the heat sink layer 306, a multi-layer magnetic recording layer (MRL) 310 on the interlayer 308, a capping layer 312 on the multi-layer MRL 310, an overcoat layer 314 on the capping layer 312, and a lubricant layer 316 on the overcoat layer 314. The multi-layer MRL 310 includes a first magnetic recording layer (MRL) 310a on the interlayer 308, a second magnetic recording layer (MRL) 310b on the first MRL 310a, and a third magnetic recording layer (MRL) 310c on the second MRL 310b.


The first MRL 310a may be made of an alloy selected from FePtX and CoPtX, where X is a material selected from Cu, Ni, and combinations thereof. In one embodiment, the first MRL 310a includes a number of magnetic grains segregated by carbon segregants, where the magnetic grains are made of the alloy. In one embodiment, X may be Cu. In one embodiment, X has a atomic percentage of 1 to 30 percent or about 1 to 30 percent. In another embodiment, X has a atomic percentage of 7.5 to 10 percent or about 7.5 to 10 percent. In one embodiment, the first MRL 310a includes, or consists of, L10 FePtCAgX where X is Cu and has an atomic percentage of 1 to 30 percent. In one embodiment, the first MRL 310a is made of an alloy selected from FePtXX2 and CoPtXX2, where X2 is a material selected from the group consisting of Ag, C, BN, and combinations thereof. In several embodiments, the first MRL 310a is magnetic and configured to remain magnetic at temperatures sufficiently high to enable information to be recorded to the multi-layer MRL 310. In several embodiments, the first MRL 310a may include one or more segregant additives such as Cu, Ag, C, Ni, BN.


In several embodiments, the second MRL 310b may have at least one material different from the materials of the first MRL 310a. For example, in one embodiment, the second MRL 310b may be made of an alloy selected from L10 FePtX3 and L10 CoPt X3, where X3 is a material selected from BN, C, and combinations thereof. In such case, the BN, C materials may act as segregant additives. In one embodiment, the second MRL 310b may be made of FePtCBN.


In a number of embodiments, the third MRL 310c may have at least one material different from the materials of the first MRL 310a. For example, in one embodiment, the third MRL 310c may be made of an alloy selected from L10 FePtX4 and L10 CoPtX4, where X4 is a material selected from the group consisting of BN, SiO2, B2O3, ZrO2, and combinations thereof. In such case, the BN, SiO2, B2O3, ZrO2 materials may act as segregant additives. In several embodiments, the third MRL 310c includes at least one material different from the materials of the second MRL 310b. In one embodiment, the third MRL 310c may be made of FetPtBNSiO2.


In several embodiments, the Curie temperature of the first MRL 310a is lower than the Curie temperature of either the second MRL 310b or the third MRL 310c. In such case, the overall Curie temperature of the multi-layer MRL 310 may be reduced as compared to conventional magnetic recording media. In several embodiments, the first MRL 310a, the second MRL 310b, and the third MRL 310c operate collectively (e.g., effectively operate as a single MRL or entity) to enable information to be recorded to the multi-layer magnetic recording layer 310. For example, in one embodiment, one bit of information may collectively be stored within one grain from each MRL, where the grains are positioned at roughly the same horizontal position along the layers and may collectively act like a single vertically oriented grain extending through all three of the layers. This can be the case even if the grains on each MRL are physically distinct based on having different materials. In other embodiments, the one single grain may be replaced by multiple grains on any given layer to store the single bit of information.


In one embodiment, the substrate 302 can be made of one or more materials such as an Al alloy, NiP plated Al, glass, glass ceramic, and/or combinations thereof. In one embodiment, the adhesion layer 304 can include one or more materials such as CrTi, CrTa, NiTa, CoCrTaZr, CoFeZrBCr, CoTaZr, CoFeTaZr, CoCrWTaZr, CoCrMoTaZr, CoZrWMo, combinations thereof, and/or other suitable materials known in the art.


In one embodiment, the heat sink layer 306 can be made of one or more materials such as Ag, Al, Au, Cu, Cr, Mo, Ru, W, CuZr, MoCu, AgPd, CrRu, CrV, CrW, CrMo, CrNd, NiAl, NiTa, combinations thereof, and/or other suitable materials known in the art.


In one embodiment, the interlayer 308 provides a preselected texture for the multi-layer MRL 310. The interlayer 308 can be made of MgO, TiN, TiC, amorphous under layer such as CoCrTaZr, CoWZrMo, body centered cubic (bec) Cr or Cr alloy, W or W alloy, M or Mo alloy, B2RuAl, NiAl, or other suitable materials. In one embodiment, the interlayer 308 is made of MgO and the amorphous under layer is made of CoWZrMo.


In one embodiment, the capping layer 312 is made of Co, Pt, or Pd. In one embodiment, the capping layer 312 can be a bi-layer structure having a top layer including Co and a bottom layer including Pt or Pd. In addition to the Co/Pt and Co/Pd combinations of top layer and the bottom layer, specific combinations of the top layer materials and the bottom layer materials may include, for example, Co/Au, Co/Ag, Co/Al, Co/Cu, Co/Ir, Co/Mo, Co/Ni, Co/Os, Co/Ru, Co/Ti, Co/V, Fe/Ag, Fe/Au, Fe/Cu, Fe/Mo, Fe/Pd, Ni/Au, Ni/Cu, Ni/Mo, Ni/Pd, Ni/Re, etc. In additional embodiments, top layer materials and bottom layer materials include any combination of Pt and Pd (e.g., alloys), or any of the following elements, alone or in combination: Au, Ag, Al, Cu, Ir, Mo, Ni, Os, Ru, Ti, V, Fe, Re, and the like.


In one embodiment, the overcoat layer 314 is made of carbon. In one embodiment, the lubricant layer 316 is made of a polymer based lubricant. In one embodiment, the HAMR magnetic medium 300 further includes a thermal resistive layer between the heat sink layer 306 and the interlayer 308. The thermal resistive layer can be made of oxides such as ZrO2, SiO2, HfO2, Mg2SiO4, and/or other materials with low thermal conductivity.


The terms “above,” “below,” and “between” as used herein refer to a relative position of one layer with respect to other layers. As such, one layer deposited or disposed above or below another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer deposited or disposed between layers may be directly in contact with the layers or may have one or more intervening layers.



FIG. 4 is a graph of magnetic susceptibility versus temperature (in Celsius or C) for a HAMR magnetic medium with a magnetic recording layer (e.g., FePt-X-Cu 5%) having a reduced Curie temperature in accordance with one embodiment of the invention. The graph also illustrates a conventional HAMR magnetic medium made of FePt-X but without the Cu providing the Curie temperature reduction. As can be seen in the graph the improved HAMR magnetic medium has a Curie temperature that is about 50 degrees C. less than that of the conventional HAMR magnetic medium.



FIG. 5a is a schematic view of a comparative HAMR magnetic medium without a magnetic recording layer having a reduced Curie temperature and associated heat spreading among grains of the magnetic recording layer. The arrows depict the direction (e.g., arrow direction) and magnitude (e.g., arrow size) of heat spreading among grains of the magnetic recording layer. As can be seen in FIG. 5a, the comparative HAMR magnetic medium has a certain amount of lateral heat spreading (e.g., in a direction along the top surface of the cap layer) and a certain amount of heat spreading in a downward direction toward a heat sink layer (not shown). In one aspect, the reference labels “M1”, “M2”, and “M3” for the layers can correspond to a first MRL (e.g., such as 310a in FIG. 3), a second MRL (e.g., such as 310b in FIG. 3), and a third MRL (e.g., such as 310c in FIG. 3). In one aspect, the reference label “Cap” can correspond to the capping layer 312 in FIG. 3.



FIG. 5b is a schematic view of a HAMR magnetic medium with a magnetic recording layer having a reduced Curie temperature and associated heat spreading among grains of the magnetic recording layer in accordance with one embodiment of the invention. The heat spreading of FIG. 5b can be compared to the heat spreading of the comparative HAMR magnetic medium of FIG. 5a. In particular, the downward heat spreading of the magnetic recording layer, and M1 (e.g., the first MRL 310a of FIG. 3) in particular, is substantially greater than the corresponding heat spreading of the comparative HAMR magnetic medium of FIG. 5a. In addition, while the downward heat spreading is substantially greater in FIG. 5b, the lateral heat spreading is substantially the same. This desirable result is somewhat unexpected since one might expect the heat spreading to increase in all directions. While not bound by any particular theory, it may be that the segregants disposed between the magnetic grains in M1 limit the lateral heat spreading even when M1 has been configured to increase heat spreading by adding the appropriate materials (e.g., Cu, Ni, etc.).


In one embodiment, the first magnetic recording layer (e.g., M1 or first MRL 310a of FIG. 3) is configured to facilitate a heat transfer from the second magnetic recording layer (e.g., M2 or second MRL 310b of FIG. 3) to the heat sink layer that is greater than a lateral heat transfer within the first magnetic recording layer. This can be observed in FIG. 5b based on the relative sizes of the arrows depicted heat spreading.



FIG. 6 is a graph of initial weighted signal to noise ratio (SNR in decibels or dB) versus laser current (in milliamps or mA) for a HAMR system including a magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention. In the graph, data from a comparative magnetic medium “POR M1 @ 425” is shown along with data for four HAMR magnetic mediums (“7.5% Cu M1@ 375”, “7.5% Cu M1@ 425”, “7.5% Cu M1@ 475”, and “7.5% Cu M1@ 525”), each with a magnetic recording layer having a reduced Curie temperature at various writing temperatures. As can be seen in the graph, the comparative magnetic medium “POR M1 @ 425” needs a maximum laser current or LC of about 46.75 mA at about 13.75 dB, while the corresponding minimum LC of the HAMR magnetic medium with the magnetic recording layer having the reduced Curie temperature (e.g., SNR curves for “7.5% Cu M1@ 475” or “7.5% Cu M1@ 525”) is about 42.75 mA also at about 13.75 dB, thereby illustrating a reduction of the required laser current by about 4 mA. In addition, the highest SNR for the HAMR magnetic medium with the magnetic recording layer having the reduced Curie temperature is about 14.4 dB while the average SNR for the comparative magnetic medium is about 14.1 dB, thereby illustrating an increase in SNR of about 0.3 dB. Thus, for a given laser power of say 44 mA, the SNR might be slightly improved, while a more notable improvement might relate to the reduction in laser power/current.



FIG. 7 is a graph of final weighted signal to noise ratio (SNR) versus laser current for a HAMR system including a magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention. While FIG. 6 depicts the results of the SNR tests at initial writing conditions, FIG. 7 depicts the results of the SNR tests at final writing conditions where one or more adjacent track writes have been performed to test lateral heat spreading. As can be seen in FIG. 7, the overall SNR and SNR improvement (e.g., delta of POR compared with improved HAMR media) decreases somewhat because of the adjacent track writing. However, the laser current reduction of about 4 mA appears to remain.



FIG. 8 is a flowchart of a process 800 for fabricating a HAMR magnetic medium with a magnetic recording layer having a reduced Curie temperature in accordance with one embodiment of the invention. In one embodiment, the process 800 can be used to fabricate the HAMR magnetic medium of FIG. 3. In block 802, the process provides a substrate. In block 804, the process provides a heat sink layer on the substrate. In block 806, the process provides an interlayer on the heat sink layer. In block 808, the process provides a multi-layer magnetic recording layer on the interlayer, where the multi-layer magnetic recording layer includes a first magnetic recording layer comprising an alloy selected from FePtX and CoPtX, where X is a material selected from the group consisting of Cu, Ni, and combinations thereof, a second magnetic recording layer on the first magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer, and a third magnetic recording layer on the second magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer.


In one embodiment, the process can perform the sequence of actions in a different order. In another embodiment, the process can skip one or more of the actions. In other embodiments, one or more of the actions are performed simultaneously. In some embodiments, additional actions can be performed.


In several embodiments, the deposition of such layers can be performed using a variety of deposition sub-processes, including, but not limited to physical vapor deposition (PVD), sputter deposition and ion beam deposition, and chemical vapor deposition (CVD) including plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD) and atomic layer chemical vapor deposition (ALCVD). In other embodiments, other suitable deposition techniques known in the art may also be used.


While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as examples of specific embodiments thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain method, event, state or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other suitable manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.

Claims
  • 1. A magnetic recording medium for heat assisted magnetic recording, the medium comprising: a substrate;a heatsink layer on the substrate;an interlayer on the heatsink layer; anda multi-layer magnetic recording layer on the interlayer and comprising: a first magnetic recording layer comprising an alloy selected from the group consisting of FePtX and CoPtX, where X is a material selected from the group consisting of Cu, Ni, and combinations thereof;a second magnetic recording layer on the first magnetic recording layer and having at least one element different from materials of the first magnetic recording layer; anda third magnetic recording layer on the second magnetic recording layer and having at least one element different from the materials of the first magnetic recording layer, and at least one element different from materials of the second magnetic recording layer,wherein the first magnetic recording layer further comprises a plurality of magnetic grains segregated by carbon segregants, wherein the plurality of magnetic grains comprise the alloy such that a heat transfer from the second magnetic recording layer to the heatsink layer is greater than a lateral heat transfer within the first magnetic recording layer.
  • 2. The medium of claim 1: wherein the first magnetic recording layer is magnetic and configured to remain magnetic at temperatures sufficiently high to enable information to be recorded to the multi-layer magnetic recording layer.
  • 3. The medium of claim 1, wherein the first magnetic recording layer, the second magnetic recording layer, and the third magnetic recording layer operate collectively to enable information to be recorded to the multi-layer magnetic recording layer.
  • 4. The medium of claim 1: wherein the first magnetic recording layer comprises an alloy selected from the group consisting of FePtXX2 and CoPtXX2, where X2 is a material selected from the group consisting of Ag, C, BN, and combinations thereof;wherein the second magnetic recording layer comprises an alloy selected from the group consisting of L10 FePtX3 and L10 CoPt X3, where X3 is a material selected from the group consisting of BN, C, and combinations thereof; andwherein the third magnetic recording layer comprises an alloy selected from the group consisting of L10 FePtX4 and L10 CoPt X4, where X4 is a material selected from the group consisting of BN, SiO2, B2O3, ZrO2, and combinations thereof.
  • 5. The medium of claim 1, wherein X has a atomic percentage of 1 to 30 percent.
  • 6. The medium of claim 1, wherein X is Cu.
  • 7. The medium of claim 1, wherein the first magnetic recording layer comprises L10 FePtCAgX where X is Cu and has a atomic percentage of 1 to 30 percent.
  • 8. The medium of claim 1, further comprising: an adhesion layer on the substrate, wherein the heatsink layer is on the adhesion layer;a thermal resistive layer on the heatsink layer, wherein the interlayer is on the thermal resistive layer;a cap layer on the multi-layer magnetic recording layer; andan overcoat layer on the cap layer.
  • 9. The medium of claim 1, wherein a curie temperature of the first magnetic recording layer is less than a curie temperature of either the second magnetic recording layer or the third magnetic recording layer.
  • 10. The apparatus of claim 1, wherein the first magnetic recording layer comprising an alloy selected from the group consisting of FePtCuAg and CoPtCuAg.
  • 11. A method for manufacturing a magnetic recording medium for heat assisted magnetic recording, the method comprising: providing a substrate;providing a heatsink layer on the substrate;providing an interlayer on the heatsink layer; andproviding a multi-layer magnetic recording layer on the interlayer and comprising: a first magnetic recording layer comprising an alloy selected from the group consisting of FePtX and CoPtX, where X is a material selected from the group consisting of Cu, Ni, and combinations thereof;a second magnetic recording layer on the first magnetic recording layer and having at least one element different from materials of the first magnetic recording layer; anda third magnetic recording layer on the second magnetic recording layer and having at least one element different from the materials of the first magnetic recording layer, and at least one element different from materials of the second magnetic recording layer,wherein the first magnetic recording layer further comprises a plurality of magnetic grains segregated by carbon segregants, wherein the plurality of magnetic grains comprise the alloy such that a heat transfer from the second magnetic recording layer to the heatsink layer is greater than a lateral heat transfer within the first magnetic recording layer.
  • 12. The method of claim 11: wherein the first magnetic recording layer is magnetic and configured to remain magnetic at temperatures sufficiently high to enable information to be recorded to the multi-layer magnetic recording layer.
  • 13. The method of claim 11, wherein the first magnetic recording layer, the second magnetic recording layer, and the third magnetic recording layer operate collectively to enable information to be recorded to the multi-layer magnetic recording layer.
  • 14. The method of claim 11: wherein the first magnetic recording layer comprises an alloy selected from the group consisting of FePtXX2 and CoPtXX2, where X2 is a material selected from the group consisting of Ag, C, BN, and combinations thereof;wherein the second magnetic recording layer comprises an alloy selected from the group consisting of L10 FePtX3 and L10 CoPt X3, where X3 is a material selected from the group consisting of BN, C, and combinations thereof; andwherein the third magnetic recording layer comprises alloy selected from the group consisting of L10 FePtX4 and L10 CoPt X4, where X4 is a material selected from the group consisting of BN, SiO2, B2O3, ZrO2, and combinations thereof.
  • 15. The method of claim 11, wherein X has a atomic percentage of 1 to 30 percent.
  • 16. The method of claim 11, wherein X is Cu.
  • 17. The method of claim 11, wherein the first magnetic recording layer comprises L10 FePtCAgX where X is Cu and has a atomic percentage of 1 to 30 percent.
  • 18. The method of claim 11, further comprising: providing an adhesion layer on the substrate, wherein the heatsink layer is on the adhesion layer;providing a thermal resistive layer on the heatsink layer, wherein the interlayer is on the thermal resistive layer;providing a cap layer on the multi-layer magnetic recording layer; andproviding an overcoat layer on the cap layer.
  • 19. The method of claim 11, wherein a curie temperature of the first magnetic recording layer is less than a curie temperature of either the second magnetic recording layer or the third magnetic recording layer.
  • 20. The method of claim 11, wherein the first magnetic recording layer comprising an alloy selected from the group consisting of FePtCuAg and CoPtCuAg.
US Referenced Citations (338)
Number Name Date Kind
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gomicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6964819 Girt et al. Nov 2005 B1
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7282277 Munteanu et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7862912 Hellwig et al. Jan 2011 B2
7879467 Chang et al. Feb 2011 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8084149 Soeya Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8509039 Huang et al. Aug 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8630060 Mosendz et al. Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
8696404 Sun et al. Apr 2014 B2
8711499 Desai et al. Apr 2014 B1
8743666 Bertero et al. Jun 2014 B1
8758912 Srinivasan et al. Jun 2014 B2
8787124 Chernyshov et al. Jul 2014 B1
8787130 Yuan Jul 2014 B1
8791391 Bourez Jul 2014 B2
8795765 Koike et al. Aug 2014 B2
8795790 Sonobe et al. Aug 2014 B2
8795857 Ayama et al. Aug 2014 B2
8800322 Chan et al. Aug 2014 B1
8811129 Yuan et al. Aug 2014 B1
8817410 Moser et al. Aug 2014 B1
9406329 Ho Aug 2016 B1
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20040022387 Weikle Feb 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050202287 Lu Sep 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120307398 Kanbe et al. Dec 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130208578 Kanbe Aug 2013 A1
20130209835 Qui Aug 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130235491 Mosendz Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yi et al. Feb 2014 A1
20140151360 Gregory et al. Jun 2014 A1
20140234666 Knigge et al. Aug 2014 A1