Heat assisted magnetic recording method for media having moment keeper layer

Information

  • Patent Grant
  • 9047880
  • Patent Number
    9,047,880
  • Date Filed
    Monday, September 30, 2013
    11 years ago
  • Date Issued
    Tuesday, June 2, 2015
    9 years ago
Abstract
Systems and methods for providing media having a moment keeper layer for heat assisted magnetic recording (HAMR). One such method for writing information to a magnetic media having a moment keeper layer using heat assisted magnetic recording includes heating a portion of the media to a preselected temperature, where the media includes a magnetic recording layer adjacent to the keeper layer, where a Curie temperature of the keeper layer is greater than a Curie temperature of the recording layer, and where the preselected temperature is about equal to, or greater than, the Curie temperature of the recording layer, allowing the portion of the media to cool, and writing information to the media during the cooling.
Description
FIELD

The present invention relates to magnetic recording technology, and more specifically to systems and methods for providing media having a moment keeper layer for heat assisted magnetic recording (HAMR).


BACKGROUND

To achieve high areal density for current magnetic storage drives, energy-assisted magnetic recording (EAMR) is commonly applied. In EAMR, the recording medium is locally heated to decrease the coercivity of the magnetic material during write operations. The local area is then rapidly cooled to retain the written information. This allows for magnetic write heads to be used with high coercivity magnetic materials. The heating of a local area may be accomplished by, for example, a heat or thermal source such as a laser. As such, one type of energy-assisted magnetic recording is heat assisted magnetic recording (HAMR).


Conventional HAMR media is typically composed of a substrate, a heat sink layer, seed and nucleation layers, and a magnetic recording layer. Desirable properties of the magnetic recording layer in HAMR media include a moderate Curie temperature and a uniform, well-segregated, high magnetic anisotropy grain structure with highly developed crystallographic texture. Writing to magnetic media in HAMR involves heating a localized area of the media to temperatures near or above the Curie temperature of the storage layer. This is done to locally lower the coercivity of the media. The direction of magnetization in the recorded bit is then set by an applied field. The recording process in HAMR media is important for defining the magnetization transitions. Sharp, well defined transitions are needed in order to achieve high recording linear densities. As such, an improved magnetic media for HAMR applications that can provide such well defined transitions to achieve the high recording linear densities is desirable.


SUMMARY

Aspects of the invention relate to systems and methods for providing media having a moment keeper layer for heat assisted magnetic recording. In one embodiment, the invention relates to a method for writing information to a magnetic media having a moment keeper layer using heat assisted magnetic recording, the method including heating a portion of the media to a preselected temperature, where the media includes a magnetic recording layer adjacent to the keeper layer, where a Curie temperature of the keeper layer is greater than a Curie temperature of the recording layer, and where the preselected temperature is about equal to, or greater than, the Curie temperature of the recording layer, allowing the portion of the media to cool, and writing information to the media during the cooling.


In another embodiment, the invention relates to a magnetic media for heat assisted magnetic recording, the magnetic media including a substrate, at least one intermediate layer on the substrate, a magnetic recording layer on the at least one intermediate layer, and a keeper layer on the at least one intermediate layer, where a Curie temperature of the keeper layer is greater than a Curie temperature of the recording layer, and where the keeper layer includes a one to one grain correspondence with the recording layer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a magnetic media structure including a recording layer on a moment keeper layer for use with heat assisted magnetic recording in accordance with one embodiment of the invention.



FIG. 2 is a side view of another magnetic media structure including a moment keeper layer on a recording layer for use with heat assisted magnetic recording in accordance with one embodiment of the invention.



FIG. 3 is a side view of a single grain column of the magnetic media structure of FIG. 1 including the recording layer on the moment keeper layer for use with heat assisted magnetic recording in accordance with one embodiment of the invention.



FIG. 4 is a flowchart of a process for writing information to a magnetic media structure including a moment keeper layer for use with heat assisted magnetic recording in accordance with one embodiment of the invention.





DETAILED DESCRIPTION

Referring now to the drawings, embodiments of magnetic media including a moment keeper layer and processes for writing to the media are illustrated. The media include a recording or storage layer positioned on a substrate and the moment keeper layer positioned on the substrate where the Curie temperature of the keeper layer is greater than the Curie temperature of the recording layer. In several embodiments, the keeper layer has a one to one grain correspondence with the recording layer. In one embodiment, the recording layer is on the keeper layer. In another embodiment, the keeper layer is on the recording layer. In some embodiments, an exchange break layer is positioned between the recording layer and the keeper layer.


The processes for writing to the media include heating a portion of the media to a preselected temperature, allowing the portion of the media to cool, and writing information to the media during the cooling. In several embodiments, the magnetic anisotropy and magnetization of the keeper layer is greater than that of the recording layer at the preselected temperature. In a number of embodiments, the improved media and writing processes provide for high recording linear densities.



FIG. 1 is a side view of a magnetic media structure 100 including a recording layer 110 on a moment keeper layer 106 for use with heat assisted magnetic recording in accordance with one embodiment of the invention. The media structure 100 includes a stacked structure with a substrate 102 at a base of the stack, one or more intermediate layers 104 on the substrate 102, the keeper layer 106 on the intermediate layers 104, an exchange break layer 108 on the keeper layer 106, and the recording layer 110 on the exchange break layer 108. In some embodiments, the exchange break layer 108 is not used in the media structure 100.


The materials of the keeper layer 106 are selected such that the Curie temperature of the keeper layer 106 is greater than the Curie temperature of the recording layer 110. In one embodiment, for example, the keeper layer 106 is made of FeCo, FeCoNi. FePdCo, Co2XY(X:Cr, Mn, Fe, Nb, Y:Al, Ga, Sn), Cu2MnGa, Au2MnAl, CuMnAl, FeMoNi, (FeCo)2MnSi, CoCrPt, FeCr, or another suitable material known in the art. In such case, the recording layer 110 is made of FePt, FeNiPt, FeCoPt, FeCuPt, FePtC, FePtAgC, or another suitable material known in the art. The EBL 108, intermediate layers 104, and substrate 102 can be made of suitable materials known in the art.


In a number of embodiments, the keeper layer 106 is configured to have a one to one grain correspondence with grains of the recording layer 110. In such case, the keeper layer 106 can provide for minimal or no intergranular/lateral exchange coupling while providing for strong vertical exchange coupling with the recording layer 110. In some embodiments, the keeper layer 106, in having the one to one grain correspondence, is effectively configured to substantially avoid or suppress lateral exchange coupling. In several embodiments, other beneficial effects associated with the one to one grain correspondence include better coercivity, lower noise during reading and writing, and as a consequence of the lower noise, higher signal to noise ratios. In several embodiments, the recording layer 110 has relatively high magnetic anisotropy (e.g., Ku).


In operation, an EAMR heat source such as a laser can heat a spot or portion of the media 100 to a preselected temperature that is about equal to, or greater than, the Curie temperature of the recording layer. As the media is heated, the coercivity of the recording layer 110 is lowered as well as the magnetization and magnetic anisotropy of the recording layer. Once the preselected temperature is reached, the media can be allowed to cool for a preselected time period or to cool to a preselected temperature. During the cooling process (e.g., refreeze process), information can be written to the media by applying a magnetic field.


While not bound by any particular theory, the purpose of the keeper layer 106 is to help orient (order) the magnetic moment of the recording/storage layer 110 grains during the refreeze process under the influence of the applied field when the magnetization of the recording layer 110 is very small as it cools from its Curie point. At that time, the magnetization of the keeper layer 106 is well defined and of higher magnitude compared to that of the recording layer 110 as it is further away from its own Curie point. With intergranular exchange coupling substantially suppressed in the keeper layer 106, the location of the transitions should be minimally influenced by the presence of the keeper layer 106. However, the transition sharpness should be enhanced by the presence of the keeper layer, thus improving the linear density capability of the system.



FIG. 2 is a side view of another magnetic media structure 200 including a moment keeper layer 206 on a recording layer 210 for use with heat assisted magnetic recording in accordance with one embodiment of the invention. The media structure 200 includes a stacked structure with a substrate 202 at a base of the stack, one or more intermediate layers 204 on the substrate 202, the recording layer 210 on the intermediate layers 204, an exchange break layer 208 on the recording layer 210, and the keeper layer 206 on the exchange break layer 208. In some embodiments, the exchange break layer 208 is not used in the media structure 200. The materials of the keeper layer 206 are selected such that the Curie temperature of the keeper layer 206 is greater than the Curie temperature of the recording layer 210. In operation, the media 200 can perform and/or operate in the manner described above for the media 100 of FIG. 1. In several embodiments, the layers of the media structure 200 can be formed of the same materials as described above for the media 100 of FIG. 1.



FIG. 3 is a side view of a single grain column of the magnetic media structure of FIG. 1 including the recording layer 110 on the moment keeper layer 106 for use with heat assisted magnetic recording in accordance with one embodiment of the invention. While not bound by any particular theory, the total energy of the single grain column of FIG. 3 can be analyzed to get an idea of the magnitude of the effects being discussed. The hard recording layer (e.g., layer 1) 110 of the single grain column includes characteristics K1, M1 and t1 which are the magneto-crystalline anisotropy energy, magnetization and thickness, respectively. Meanwhile, K2, M2 and t2 are the corresponding values for the lower anisotropy keeper layer 106 (e.g., layer 2). The bilinear coupling constant, J1, and bi-quadratic coupling constant, J2, are interfacial exchange coupling constants mediated by the exchange break layer 108 of thickness t3. Since the exchange break layer material would be typically be weakly magnetic or non-magnetic, J1 and J2 will be strong functions of t3 decreasing in strength as t3 increases. In the absence of an exchange break layer (EBL), J1 and J2 will correspond to fully exchange coupled layers, recording layer 110 and keeper layer 106.


Under the influence of an applied field H (Happ), the total energy of the system is given by adding the contributions from the magneto-crystalline energy and Zeeman energy terms for the recording layer 110 and the keeper layer 106 and the interfacial energy terms provided by the EBL 108.

E=K1·t1·Sin2(θ)+K2·t2·Sin2(ψ)−H·M1 Cos(θ)−H·M2 Cos(ψ)−J1·Cos(ψ−θ)−J2·Cos2(ψ−θ)


The presence of the keeper layer 106 helps to order the magnetization of the recording layer 110 during the refreeze process under the influence of the applied field H. As stated previously, the Curie temperature for the keeper layer 106 is higher than that of the recording layer 110, and therefore it is expected that M2 will be much higher than M1 at the moment of writing. For a given thickness t3, the magnitude of J1 and J2 will depend on M1, M2 and temperature (T). Typical interfacial energy values for J1 at room temperature range from about 0.2 to 10 erg/cm2 corresponding to effective fields of a few hundred to a few thousand Oe. The bi-quadratic coupling energy J2 is normally half to one order of magnitude smaller than J1.


Phenomenologically, the magneto-crystalline anisotropy will be a function of temperature. Normally it is expressed as:









K
1



(
T
)




K
1



(

T
0

)



=


[



M
s



(
T
)




M
s



(

T
0

)



]

n





The value of the exponent, n, is experimentally found to be between about 1.5 and 3 for magnetic materials with uni-axial anisotropy. This relation should apply to the recording layer and the keeper layer but not necessarily with the same exponent n.


For fully L10 ordered FePt, K1(T0) provides about 4.5×107 erg/cc and M1 is about 1125 emu/cm3. At the Curie temperature for this material, approximately 770K, both K1 and M1 vanish. The expected applied field H magnitude in a HAMR application is about 0.5 to 1.5 Tesla.


The value of K2 should be such that it is easily switchable magnetically by the applied field H at the writing temperature but high enough to keep M2 perpendicular in the media at remanence at room temperature (K2 will depend on the value of interfacial exchange J1,2 and M2 among other parameters). M2 should also be as high as possible at the writing temperature. This generally requires that the Curie point of the keeper layer material be significantly higher than that of the recording layer. Thus, it is expected that during magnetization refreeze, the exchange energy exerted by the keeper layer on the recording layer can significant in assisting the ferromagnetic ordering and switching of the magnetic grains in the recording layer.



FIG. 4 is a flowchart of a process 300 for writing information to a magnetic media structure including a moment keeper layer for use with heat assisted magnetic recording in accordance with one embodiment of the invention. In particular embodiments, the process 300 can be used in conjunction with the media structures of FIGS. 1-3. The process first heats (302) a portion of the media to a preselected temperature, where the media includes a magnetic recording layer adjacent to the keeper layer, where a Curie temperature of the keeper layer is greater than a Curie temperature of the recording layer, and where the preselected temperature is about equal to, or greater than, the Curie temperature of the recording layer. The process then allows (304) the portion of the media to cool. The process then writes (306) information to the media during the cooling.


In one embodiment, the process can perform the sequence of actions in a different order. In another embodiment, the process can skip one or more of the actions. In other embodiments, one or more of the actions are performed simultaneously. In some embodiments, additional actions can be performed.


While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as examples of specific embodiments thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.


In several of the figures, components appear to have particular dimensions. However, the components are not drawn to scale and can have other suitable dimensions in other embodiments.

Claims
  • 1. A method for writing information to a magnetic media having a moment keeper layer using heat assisted magnetic recording (HAMR), the method comprising: heating a portion of the media to a preselected temperature, wherein the media comprises a magnetic recording layer adjacent to the keeper layer, wherein a Curie temperature of the keeper layer is greater than a Curie temperature of the recording layer, and wherein the preselected temperature is about equal to, or greater than, the Curie temperature of the recording layer;allowing the portion of the media to cool; andwriting information to the media during the cooling,wherein the keeper layer is configured to orient a magnetic moment of grains of the magnetic recording layer when a magnetic recording field is applied to the media.
  • 2. The method of claim 1, wherein a magnetic anisotropy of the keeper layer is greater than a magnetic anisotropy of the recording layer at the preselected temperature.
  • 3. The method of claim 1, wherein a magnetization of the keeper layer is greater than a magnetization of the recording layer at the preselected temperature.
  • 4. The method of claim 1, wherein the keeper layer comprises a one to one grain correspondence with the recording layer.
  • 5. The method of claim 1, wherein a lateral exchange coupling between grains of the keeper layer is substantially suppressed.
  • 6. The method of claim 1, wherein the media comprises a vertical exchange coupling between grains of the keeper layer and grains of the recording layer.
  • 7. The method of claim 1, wherein the recording layer is on the keeper layer.
  • 8. The method of claim 1, wherein the keeper layer is on the recording layer.
  • 9. The method of claim 1, further comprising an exchange break layer positioned between the keeper layer and the recording layer.
  • 10. The method of claim 1, wherein the preselected temperature is less than the Curie temperature of the keeper layer.
  • 11. The method of claim 1, wherein the writing the information to the media during the cooling comprises writing the information to the media during a refreeze process of the media.
REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/332,290, filed on Dec. 20, 2011 entitled “SYSTEMS AND METHODS FOR PROVIDING MEDIA HAVING A MOMENT KEEPER LAYER FOR HEAT ASSISTED MAGNETIC RECORDING”, the entire content of which is incorporated herein by reference.

US Referenced Citations (354)
Number Name Date Kind
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6200673 Miyamoto et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6388956 Mori et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6468670 Ikeda et al. Oct 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6495252 Richter et al. Dec 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6551728 Acharya et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6707766 Mori et al. Mar 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6754020 Hikosaka et al. Jun 2004 B1
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6834026 Fullerton et al. Dec 2004 B2
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6881497 Coffey et al. Apr 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6950260 Coffey et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7060375 Lee et al. Jun 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7582368 Berger et al. Sep 2009 B2
7588841 Berger et al. Sep 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7678476 Weller et al. Mar 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8179637 Takeshita May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8416646 Huang et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
8696404 Sun et al. Apr 2014 B2
8711499 Desai et al. Apr 2014 B1
8743666 Bertero et al. Jun 2014 B1
8758912 Srinivasan et al. Jun 2014 B2
8787124 Chernyshov et al. Jul 2014 B1
8787130 Yuan et al. Jul 2014 B1
8791391 Bourez Jul 2014 B2
8795765 Koike et al. Aug 2014 B2
8795790 Sonobe et al. Aug 2014 B2
8795857 Ayama et al. Aug 2014 B2
8800322 Chan et al. Aug 2014 B1
8811129 Yuan et al. Aug 2014 B1
8817410 Moser et al. Aug 2014 B1
20010051287 Kikitsu et al. Dec 2001 A1
20020060883 Suzuki May 2002 A1
20020192506 Coffey et al. Dec 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20040022387 Weikle Feb 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050163962 Kawato et al. Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060002026 Stipe et al. Jan 2006 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20070026263 Kubota et al. Feb 2007 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080068748 Olson et al. Mar 2008 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20080226817 Lee Sep 2008 A1
20090040644 Lu et al. Feb 2009 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100053811 Takeshita Mar 2010 A1
20100110576 Akagi et al. May 2010 A1
20100110577 Weller et al. May 2010 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100182714 Kanbe et al. Jul 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100290148 Tawa et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yi et al. Feb 2014 A1
20140151360 Gregory et al. Jun 2014 A1
20140234666 Knigge et al. Aug 2014 A1
Foreign Referenced Citations (1)
Number Date Country
2003085702 Mar 2003 JP
Non-Patent Literature Citations (3)
Entry
Takenoiri et al., “Structural Control Method for Perpendicular Magnetic Recording Film,” Fuji Electric Review, vol. 50, No. 3, pp. 81-84, 2004.
Thiele et al., “Temperature Dependent Magnetic Properties of Highly Chemically Ordered Fe55-xNixPt45L1o Films,” Journal of Applied Physics, vol. 91, No. 10, pp. 6595-6600, May 15, 2002.
Notice of Allowance dated Jun. 21, 2013 from U.S. Appl. No. 13/332,290 11 pages.
Divisions (1)
Number Date Country
Parent 13332290 Dec 2011 US
Child 14042199 US