Heat assisted magnetic recording write apparatus having a dielectric gap

Abstract
A heat assisted magnetic recording (HAMR) write apparatus coupled with a laser is described. The HAMR write apparatus includes a pole, coil(s), a near-field transducer (NFT), and a dielectric gap. The pole writes to the media. The coil(s) energize the pole. The waveguide is optically coupled with the laser and directs energy toward the ABS. The NFT is optically coupled with the waveguide and includes a metal nose and a metal cap. Part of the metal cap adjoins part of the main pole. The dielectric gap is between a first portion of the NFT and the main pole. The dielectric gap has a media-facing surface and back, top, bottom and side surfaces. The top surface adjoins the main pole. The bottom surface adjoins the first portion of the NFT. The side surfaces adjoin a second portion of the NFT. The back surface adjoins a portion of the metal cap.
Description
BACKGROUND

A conventional heat assisted magnetic recording (HAMR) transducer typically includes at least a waveguide, a near-field transducer (NFT), a main pole and a coil for energizing the main pole. The conventional HAMR transducer uses light, or energy, received from a conventional laser in order to write to a magnetic recording media. Light from the laser is incident on and coupled into the waveguide. Light is guided by the conventional waveguide to the NFT near the ABS. The NFT focuses the light to magnetic recording media (not shown), such as a disk. This region is thus heated. The main pole is energized and field from the pole tip is used to write to the heated portion of the recording media.


Although the conventional HAMR transducer functions, improvements in performance are still desired. For example, the location of the hot spot on the media, temperature gradient and distance between the media hot spot and the write pole are desired to be controlled.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a diagram depicting a side view of an exemplary embodiment of a HAMR disk drive.



FIGS. 2A, 2B and 2C are diagrams depicting plan, apex and ABS views of an exemplary embodiment of a portion of a HAMR disk drive.



FIGS. 3A and 3B are diagrams depicting apex and ABS views of another exemplary embodiment of a portion of a HAMR disk drive.



FIGS. 4A and 4B are diagrams depicting apex and ABS views of another exemplary embodiment of a portion of a HAMR disk drive.



FIG. 5 is a diagram depicting an apex view of another exemplary embodiment of a HAMR disk drive.



FIG. 6 is a diagram depicting an apex view of another exemplary embodiment of a HAMR disk drive.



FIG. 7 is a diagram depicting an apex view of another exemplary embodiment of a HAMR disk drive.



FIG. 8 is a diagram depicting an apex view of another exemplary embodiment of a HAMR disk drive.



FIG. 9 is a flow chart depicting an exemplary embodiment of a method for fabricating a HAMR write apparatus.



FIG. 10 is a flow chart depicting an exemplary embodiment of a method for fabricating an NFT for a HAMR write apparatus.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 depicts a side view of an exemplary embodiment of a portion of a heat-assisted magnetic recording (HAMR) write apparatus, or disk drive 100. FIGS. 2A, 2B AND 2C depict plan, apex and ABS views of a portion of the HAMR disk drive 100. For clarity, FIGS. 1, 2A, 2B and 2C are not to scale. For simplicity not all portions of the HAMR disk drive 100 are shown. In addition, although the HAMR disk drive 100 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the HAMR disk drive 100 is not shown. For simplicity, only single components are shown. However, multiples of each component and their sub-components, might be used.


The HAMR disk drive 100 includes media 102, a slider 110, a laser subassembly 120 and a HAMR transducer 130. Additional and/or different components may be included in the HAMR disk drive 100. Although not shown, the slider 110, and thus the laser assembly 120 and HAMR transducer 130 are generally attached to a suspension. The laser assembly 120 includes a laser 122 and a submount 124. The submount 124 is a substrate to which the laser 122 may be affixed for improved mechanical stability, heat sinking, ease of manufacturing and better robustness. The laser 122 may be a chip such as a laser diode or other laser. Although not shown, the laser subassembly 120 may include a photodetector which sample light tapped from the waveguide of the HAMR transducer 130.


The HAMR transducer 130 is fabricated on the slider 110 and includes an air-bearing surface (ABS) proximate to the media 102 during use. In general, the HAMR write transducer 130 and a read transducer are present in the HAMR write apparatus 100. However, for clarity, only the HAMR write transducer 130 is shown. The HAMR transducer 130 includes coil(s) 132, a waveguide 140, write pole 150, dielectric gap 160 and near-field transducer (NFT) 170. The waveguide 140 is optically coupled with the laser 122. The waveguides 140 carry light energy from the laser 122 toward the ABS. The NFT 170 couples a portion of this energy from the waveguides 140 to the media 102. The write pole 150 is energized by the coils 132 and writes to the heated portion of the media 102. The coil(s) 132 may be solenoidal or spiral (pancake) coils. Other components including but not limited to other poles and/or shields may also be present.


One configuration of the dielectric gap 160, NFT 170, and portion of the waveguide 140 near the ABS may be better seen in FIGS. 2A-2C. Note that the structure labeled as the waveguide 140 may be considered to be the waveguide core. The surrounding cladding, though functionally part of the waveguide is not separately labeled in the drawings. The NFT 170 includes an optional plasmonic ridge 172, cap 174 and nose 176, each of which are typically formed of a metal such as Au. The plasmonic ridge 172 generally runs along the direction of transmission of the waveguide 140. In the embodiment shown, this direction is at an acute angle from the ABS. However, other angles are possible in other embodiments. The NFT cap 174 extends over a relatively large area, greater than the pole at the ABS. For example, the NFT cap 174 may be semicircular with a radius of approximately seven hundred through nine hundred nanometers. Other shapes and sizes are, however, possible. The NFT cap 174 aids in heat dissipation and provides a boundary for the optical field of the NFT. Part of the NFT cap 174 adjoins the pole 150 near the ABS. The NFT nose 176 is smaller than the NFT cap. In some embodiments, the NFT nose 176 is not more than fifty nanometers wide in the cross-track direction. In some such embodiments, the NFT nose 176 is nominally forty nanometers wide in the cross-track direction. In some embodiments the thickness of the nose 176 in the down track direction is on the order of fifteen through twenty-five nanometers. Other sizes are, however, possible.


The dielectric gap 160 resides between a portion of the NFT 170 and the main pole 150 at and near the ABS. The NFT cap 174 does cover the sides and the back (distal from the ABS) of the dielectric gap 160. Similarly, the NFT nose 176 adjoins the bottom of the dielectric gap 160. In the embodiment shown in FIGS. 2A-2C, therefore, the dielectric gap 160 is surrounded by the NFT 170 except for the surface that occupies the ABS. In some embodiments, the dielectric gap 150 is an oxide, such as silicon oxide. Thus, the dielectric gap 160 may be formed of the same material as the cladding of the waveguide 140. However, other dielectrics/oxides, including those not used in the waveguide 140, may be used. In general, the dielectric gap 160 may be desired to have a relatively low index of refraction. Consequently, the materials used in the core of the waveguide 140 might not be used for the dielectric gap 160 in some embodiments. For reliability, the dielectric gap 160 materials are also desired to be able to sustain high temperatures developed in the region of the NFT 160 without breaking down. In addition, the dielectric gap 160 may be unlikely to allow for diffusion of surrounding materials, such as Fe in the pole 150 and/or Au in the NFT 170. In the embodiment shown, the width of the dielectric gap 160 is slightly less than that of the NFT nose 176. In some embodiments, the width of the oxide gap 160 is substantially the same as the width of the NFT nose 176. However, other widths are possible. The dielectric gap 160 also has a thickness in the down track direction and a length in the yoke direction. In general, the thickness, width and length of the dielectric gap 160 may be similar to those of the NFT nose 176. However, in other embodiments, these features differ. In some embodiments, the dielectric gap 160 may be desired to be the same size as or larger than the NFT nose 176. In general, if the dielectric gap 160 extends further in the yoke direction, the thickness in the down track direction and/or the width in the cross-track direction may be reduced.


As discussed above, the NFT 170 couples the optical energy carried by the waveguide 140 into the media 102. The optical spot formed on the media 102 has a characteristic spot size, peak intensity location, and power gradient. The thermal spot on the media 102 has a corresponding size, peak temperature location and thermal gradient. The presence of the dielectric gap 160 between the NFT nose 176 and the main pole 150 may shift a peak in the energy delivered to the media 102 by the NFT 170 in the down track direction. Thus, the peak may be closer to the main pole 150. In addition, the gradient in the energy may be higher on the side of the peak that is closer to the main pole 150. Because the shape and location of the energy peak delivered to the media 102 have been changed, the heating of the media is also affected. In particular, the peak in temperature of the thermal spot for the media 102 is shifted in the down track direction to be closer to the main pole 150. Further, the temperature gradient for the thermal spot his higher closer to the main pole 150. Both the closer proximity to the main pole 150 and the higher thermal gradient are desirable.


This benefit can be seen in curves 192, 194 and 196 in FIG. 2B. Note that curves 192, 194 and 196 are representative only and not meant to depict actual data. Curve 192 depicts the thermal profile due to individual optical peaks. Curve 194 is the superposition of the peaks and represents the thermal profile due to the laser power coupled into the media 102 via the NFT 170. The dashed curve 196 indicates the thermal profile in the absence of the dielectric gap. As can be seen, the presence of the dielectric gap 160 shifts the peak in the thermal profile 194 toward the main pole 150 from the position it would occupy in the absence of the dielectric gap 160 (shown by dashed curve 196). In addition, the gradient in the thermal profile 194 is higher in the region closer to the main pole 150. Thus, the thermal profile 194 may allow for a higher magnetic field amplitude in the higher temperature region of the media. In addition, the presence of the dielectric gap 160 may result in flattening of isothermal lines in the cross-track direction. Flatter isothermal lines may lead to less curvature in the written bits. This may lead to bits which better match the profile of the reader (not shown). This may lead to a higher read signal to noise ratio. As such performance of the HAMR transducer 100 and reader (not shown) of the HAMR disk drive 100 may be improved.



FIGS. 3A and 3B depict apex and ABS views of another exemplary embodiment of a portion of the HAMR disk drive 100′ and transducer 130′. For clarity, FIGS. 3A-3B are not to scale. For simplicity not all portions of the HAMR disk drive 100′ are shown. In addition, although the HAMR disk drive 100′ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The HAMR disk drive 100′ is analogous to the HAMR disk drive 100. Consequently, similar components have analogous labels. The HAMR transducer 130′ thus includes waveguide 140, main pole 150, dielectric gap 160′ and NFT 170′ that are analogous to the waveguides 140, main pole 150, dielectric gap 160 and NFT 170, respectively. For clarity, components such as the laser, media, optional plasmonic ridge and other components are not shown.


The NFT 170′ includes the NFT nose 176′ and the NFT cap 174′ that are analogous to the NFT nose 176 and NFT cap 174, respectively. In the embodiment shown, a portion of the NFT cap 174′ resides between the NFT nose 176′ and the dielectric gap 160′.


The disk drive 100′ and transducer 130′ share the benefits of the HAMR disk drive 100 and transducer 130. The presence of the dielectric gap 160′ between a portion of the NFT 170′ (the cap 174′ and nose 176′) and the main pole 150 at and near the ABS. Thus, the peak in the thermal profile is shifted in the down track direction toward the main pole 150 for the HAMR transducer 130′. In addition, the gradient in the thermal profile may be increased. The isothermal lines in the cross-track direction may also be flattened. Thus, writing and reading for the transducer 130′ and HAMR disk drive 100′ may be improved.



FIGS. 4A and 4B depict apex and ABS views of another exemplary embodiment of a portion of the HAMR disk drive 100″ and transducer 130″. For clarity, FIGS. 4A-4B are not to scale. For simplicity not all portions of the HAMR disk drive 100″ are shown. In addition, although the HAMR disk drive 100″ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The HAMR disk drive 100″ is analogous to the HAMR disk drive 100 and/or 100′. Consequently, similar components have analogous labels. The HAMR transducer 130″ thus includes waveguide 140, main pole 150, dielectric gap 160″ and NFT 170″ that are analogous to the waveguides 140, main pole 150, dielectric gap 160/160′ and NFT 170/170′, respectively. For clarity, components such as the laser, media, optional plasmonic ridge and other components are not shown.


The NFT 170″ includes the NFT nose 176″ and the NFT cap 174″ that are analogous to the NFT nose 176/176′ and NFT cap 174/174′, respectively. The NFT cap 174″ does cover the sides and a portion of the back of the dielectric gap 160″. Similarly, the NFT nose 176″ adjoins a portion of the bottom of the dielectric gap 160″. In the embodiment shown, there is a small space between the NFT cap 174″ and the NFT nose 176″ in the region opposite to the ABS. Thus, the dielectric gap 160″ is not surrounded by the NFT 170″.


The disk drive 100″ and transducer 130″ share the benefits of the HAMR disk drive 100/100′ and transducer 130/130′. The presence of the dielectric gap 160″ between a portion of the NFT 170″ (the nose 176″) and the main pole 150 at and near the ABS. Thus, the peak in the thermal profile is shifted in the down track direction toward the main pole 150 for the HAMR transducer 130″. In addition, the gradient in the thermal profile may be increased. The isothermal lines in the cross-track direction may also be flattened. Thus, writing and reading for the transducer 130″ and HAMR disk drive 100″ may be improved.



FIG. 5 depicts an apex view of another exemplary embodiment of a portion of the HAMR disk drive 200 and transducer 230. For clarity, FIG. 5 is not to scale. For simplicity not all portions of the HAMR disk drive 200 are shown. In addition, although the HAMR disk drive 200 is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The HAMR disk drive 200 is analogous to the HAMR disk drives 100, 100′ and/or 100″. Consequently, similar components have analogous labels. The HAMR transducer 230 thus includes waveguide 240, main pole 250, dielectric gap 260 and NFT 270 that are analogous to the waveguides 140, main pole 150, dielectric gap 160/160′/160″ and NFT 170/170′/170″, respectively. For clarity, components such as the laser, media, optional plasmonic ridge and other components are not shown.


The NFT 270 includes the NFT nose 276 and the NFT cap 274 that are analogous to the NFT nose 176/176′/176″ and NFT cap 174/174′/174″, respectively. The NFT cap 274 adjoins the sides and a portion of the back of the dielectric 260. Similarly, the NFT nose 276 adjoins the bottom of the dielectric gap 260. In addition, the NFT nose 276 has a media-facing surface (MFS) 273 that does not reside only at the ABS. Instead, the MFS 273 is shaped. In particular, the MFS 273 is angled from the ABS. In the embodiment shown, the MFS 273 is a smooth ramp. In other embodiments, the MFS 273 may be stepped, curved or have another geometry. However, the MFS 273 is shaped such that the portion of the NFT nose 276 closest to the main pole 250 is also closest to, or occupies, the ABS. Because the MFS 273 is angled, the MFS 273 further directs the laser power coupled into the media toward the pole 250. Thus, subtle changes in the system may be less likely to affect performance of the HAMR transducer 230. Note that in order to facilitate formation of the MFS, the NFT nose 272 and/or gap 264 the NFT 270 may be thicker in the down track direction. For example, in some embodiments, the NFT thickness may be on the order of at least fifty nanometers. In some embodiments, the thickness may be in excess of eighty nanometers. However, other thicknesses for the NFT cap 272 may be used.


The disk drive 200 and transducer 230 share the benefits of the HAMR disk drive 100, 100′ and/or 100″ and transducer 130, 130′ and/or 130″. The presence of the dielectric gap 260 between a portion of the NFT 270 and the main pole 250 at and near the ABS. Thus, the peak in the thermal profile is shifted in the down track direction toward the main pole 250 for the HAMR transducer 230. In addition, the gradient in the thermal profile may be increased. The isothermal lines in the cross-track direction may also be flattened. Inclusion of the MFS 273 further directs the thermal profile toward the main pole 250. Thus, writing and reading for the transducer 230 and HAMR disk drive 200 may be improved.



FIG. 6 depicts an apex view of another exemplary embodiment of a portion of the HAMR disk drive 200′ and transducer 230′. For clarity, FIG. 6 is not to scale. For simplicity not all portions of the HAMR disk drive 200′ are shown. In addition, although the HAMR disk drive 200′ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The HAMR disk drive 200′ is analogous to the HAMR disk drives 100, 100′, 100″ and/or 200. Consequently, similar components have analogous labels. The HAMR transducer 230′ thus includes waveguide 240, main pole 250, dielectric gap 260 and NFT 270′ that are analogous to the waveguides 140, main pole 150, dielectric gap 160/160′/160″/260 and NFT 170/170′/170″/270, respectively. For clarity, components such as the laser, media, optional plasmonic ridge and other components are not shown.


The NFT 270′ includes the NFT nose 276′ and the NFT cap 274′ that are analogous to the NFT nose 176/176′/176″/276 and NFT cap 174/174′/174″/274, respectively. The NFT cap 274′ adjoins the sides and the back of the dielectric gap 260. The NFT nose 276′ adjoins the bottom of the dielectric gap 260. In addition, the NFT nose 276′ has a MFS 273′ that is analogous to the MFS 273 and, therefore, is shaped. In the embodiment shown in FIG. 6, the MFS 273′ has a portion at the ABS and a portion that is angled from the ABS. The angled portion of the MFS 273′ is shown as smooth, but may have another geometry. The remaining portion having height, d, occupies a part of the ABS. In some embodiments, d is at least five nanometers. In addition, d may be less than forty nanometers. In some cases, d is not more than approximately twenty nanometers. In some such embodiments, d is at least ten nanometers. Because a portion of the MFS 273′ is angled, the MFS 273′ further directs the laser power coupled into the media toward the pole 250. Because a portion of the MFS resides at the ABS, power through the MFS 273′ may be not overheat. Thus, subtle changes in the system may be less likely to affect performance of the HAMR transducer 230′ without adversely affecting the reliability of the HAMR transducer 230′.


The disk drive 200′ and transducer 230′ share the benefits of the HAMR disk drive 100, 100′, 100″ and/or 200 and transducer 130, 130′, 130″ and/or 200. The presence of the dielectric gap 260 between a portion of the NFT 270′ and the main pole 250 at and near the ABS. Thus, the peak in the thermal profile is shifted in the down track direction toward the main pole 250 for the HAMR transducer 230′. In addition, the gradient in the thermal profile may be increased. The isothermal lines in the cross-track direction may also be flattened. In addition, the MFS 273′ further directs the thermal profile toward the main pole 250 but may be less likely to fail. Thus, writing and reading for the transducer 230′ and HAMR disk drive 200′ may be improved.



FIG. 7 depicts an apex view of another exemplary embodiment of a portion of the HAMR disk drive 200″ and transducer 230″. For clarity, FIG. 7 is not to scale. For simplicity not all portions of the HAMR disk drive 200″ are shown. In addition, although the HAMR disk drive 200″ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The HAMR disk drive 200″ is analogous to the HAMR disk drives 100, 100′, 100″, 200 and/or 200′. Consequently, similar components have analogous labels. The HAMR transducer 230″ thus includes waveguide 240, main pole 250, dielectric gap 260 and NFT 270″ that are analogous to the waveguides 140, main pole 150, dielectric gap 160/160′/160″/260 and NFT 170/170′/170″/270/270′, respectively. For clarity, components such as the laser, media, optional plasmonic ridge and other components are not shown.


The NFT 270″ includes the NFT nose 276″ and the NFT cap 274″ that are analogous to the NFT nose 176/176′/176″/276/276′ and NFT cap 174/174′/174″/274/274′, respectively. The NFT cap 274″ adjoins the sides and back of the dielectric gap 260′. A portion of the NFT cap 274″ also adjoins the bottom of the dielectric gap 260′. The NFT nose 276″ adjoins part of the bottom of the NFT cap 274″. Thus, the HAMR transducer 230″ is analogous to the transducer 130′. In addition, the NFT nose 276″ has a MFS 273″ that is analogous to the MFS 273/273′ and, therefore, is shaped. The NFT nose 276″ thus has a shape analogous to the NFT nose 276′.


The disk drive 200″ and transducer 230″ share the benefits of the HAMR disk drive 100, 100′, 100″, 200 and/or 200′ and transducer 130, 130′, 130″, 200 and/or 200′. The presence of the dielectric gap 260 between a portion of the NFT 270″ and the main pole 250 at and near the ABS. Thus, the peak in the thermal profile is shifted in the down track direction toward the main pole 250 for the HAMR transducer 230″. In addition, the gradient in the thermal profile may be increased. The isothermal lines in the cross-track direction may also be flattened. In addition, the MFS 273″ further directs the thermal profile toward the main pole 250 but may be less likely to fail. Thus, writing and reading for the transducer 230″ and HAMR disk drive 200″ may be improved.



FIG. 8 depicts an apex view of another exemplary embodiment of a portion of the HAMR disk drive 200′″ and transducer 230′″. For clarity, FIG. 8 is not to scale. For simplicity not all portions of the HAMR disk drive 200′″ are shown. In addition, although the HAMR disk drive 200′″ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The HAMR disk drive 200′″ is analogous to the HAMR disk drives 100, 100′, 100″, 200, 200′ and/or 200″. Consequently, similar components have analogous labels. The HAMR transducer 230′″ thus includes waveguide 240, main pole 250, dielectric gap 260′ and NFT 270′″ that are analogous to the waveguides 140, main pole 150, dielectric gap 160/160′/160″/260/260′ and NFT 170/170′/170″/270/270′, respectively. For clarity, components such as the laser, media, optional plasmonic ridge and other components are not shown.


The NFT 270″ includes the NFT nose 276″ and the NFT cap 274″ that are analogous to the NFT nose 176/176′/176″/276/276′ and NFT cap 174/174′/174″/274/274′, respectively. The NFT cap 274″ adjoins the sides, back and bottom of the dielectric gap 260″. In the embodiment shown in FIG. 8, the dielectric gap 260″ extends further in the yoke direction, along the bottom of the main pole 250. However, other configurations are possible. The NFT nose 276′″ adjoins part of the bottom of the NFT cap 274′″. In addition, the NFT nose 276′″ has a MFS 273′″ that is curved. The curved MFS 273′″ is shown as smooth. In other embodiments, however, the curved MFS 273′″ may be stepped or have another geometer. Like the MFS 273, 273′ and 273″, the curved MFS 273 is configured such that the NFT nose 276′″ closest to the main pole 250 is also closest to, or occupies, the ABS. The NFT nose 276′″ thus tends to shift the peak in the energy delivered to the media closer to the main pole 250.


The disk drive 200′″ and transducer 230′″ share the benefits of the HAMR disk drive 100, 100′, 100″, 200, 200′, and/or 200″ and transducer 130, 130′, 130″, 200, 200′ and/or 200″. The presence of the dielectric gap 260 between a portion of the NFT 270″ and the main pole 250 at and near the ABS. Thus, the peak in the thermal profile is shifted in the down track direction toward the main pole 250 for the HAMR transducer 230″. In addition, the gradient in the thermal profile may be increased. The isothermal lines in the cross-track direction may also be flattened. In addition, the MFS 273″ further directs the thermal profile toward the main pole 250 but may be less likely to fail. Thus, writing and reading for the transducer 230″ and HAMR disk drive 200″ may be improved.


Various features of the HAMR transducer, NFT, and dielectric gap are highlighted in FIGS. 2A-8. One of ordinary skill in the art will readily recognize that one or more of these features may be combined in manners not explicitly described herein.



FIG. 9 is a flow chart depicting an exemplary embodiment of a method 300 for fabricating a HAMR write apparatus. The method 300 may be used in fabricating disk drives such as the disk drives 100, 100′, 100″, 200, 200′, 200″ and/or 200′″, though other transducers might be so fabricated. For clarity, the method 300 is described in the context of the disk drives 100 and 200 depicted in FIGS. 2A-2C and 5. For simplicity, some steps may be omitted, performed in another order, interleaved and/or combined. The HAMR disk drives being fabricated may include a write transducer and a read transducer (not shown) and resides on a slider. For simplicity, however, the read transducer is not discussed. The method 300 is also described in the context of forming a transducer. However, the method 300 may be used to fabricate multiple transducer(s) at substantially the same time. The method 300 and system are also described in the context of particular layers. However, in some embodiments, such layers may include multiple sub-layers. The method 300 also may commence after formation of other portions of the disk drive.


The waveguide 140/240 may be provided, via step 302. Step 302 may include depositing a layer of core material on a cladding layer, patterning the core material and refilling the region with an additional cladding layer. However, other method may be used.


The NFT 170/270 is provided, via step 304. Step 304 includes providing the NFT nose 176/276 and the NFT cap 174/274. Step 304 may include one or more steps of depositing metal layers and patterning the layers.


The dielectric gap 160/260 is fabricated, via step 306. Because the dielectric gap 160/260 resides between the NFT nose 176/276 and the NFT cap 174/274, at least part of step 306 may be interleaved with part(s) of step 302.


A main pole 150/250 is formed, via step 308. Step 308 may include multiple substeps such as forming a trench for the main pole in a layer, plating the high saturation magnetization material(s) for the main pole and planarizing these materials. At least one coil 132 for energizing the main pole is provided, via step 309. Step 309 generally includes multiple deposition and removal steps to form the coil. The coil 132 may be a spiral coil, a toroidal coil or have another shape.


Using the method 300, the HAMR devices 100, 100′, 100″, 200, 200′, 200″ and/or 200′″ may be fabricated. The benefit(s) of one or more of the HAMR disk drive(s) 100, 100′, 100″, 200, 200′, 200″ and/or 200′″ may thus be achieved.



FIG. 10 is a flow chart depicting an exemplary embodiment of a method 310 for fabricating a portion of a HAMR disk drive. For example, the method 310 may primarily be used in forming the NFTs 170, 170′, 170″, 270, 270′, 270″ and/or 270′″. However, other waveguides might be fabricated. For clarity, the method 310 is described in the context of the disk drives 100 and 200 depicted in FIGS. 2A-2C and 5. For simplicity, some steps may be omitted, performed in another order, interleaved and/or combined. The HAMR disk drives being fabricated may include a write transducer and a read transducer (not shown) and resides on a slider. For simplicity, however, the reader is not discussed. The method 310 is also described in the context of forming a transducer. However, the method 310 may be used to fabricate multiple transducer(s) at substantially the same time. The method 310 and system are also described in the context of particular layers. However, in some embodiments, such layers may include multiple sub-layers. The method 310 also may commence after formation of other portions of the disk drive.


The metal nose for the NFT 170/270 is provided, via step 312. Step 312 typically includes depositing and shaping the NFT 170/270. Thus, step 312 may include shaping the MFS 273 to the desired configuration. The plasmonic ridge 172 may also be formed, via step 314. The metal cap 174/274 may also be provided, via step 316. Step 316 may also include performing multiple deposition and patterning steps.


Using the method 310, the NFTs for the HAMR devices 100, 100′, 100″, 200, 200′, 200″ and/or 200′″ may be fabricated. The benefit(s) of one or more of the HAMR disk drive(s) 100, 100′, 100″, 200, 200′, 200″ and/or 200′″ may thus be achieved.

Claims
  • 1. A heat assisted magnetic recording (HAMR) write apparatus coupled with a laser for providing energy and having an air-bearing surface (ABS) configured to reside in proximity to a media during use, the HAMR apparatus comprising: a main pole configured to write to a region of the media;at least one coil for energizing the main pole;a waveguide optically coupled with the laser and directing a portion of the energy toward the ABS;near-field transducer (NFT) optically coupled with the waveguide, the NFT including a metal nose and a metal cap, a portion of the metal cap adjoining a portion of the main pole; anda dielectric gap between a first portion of the NFT and the main pole, the dielectric gap having a media-facing surface occupying a portion of the ABS, a back surface, a top surface, a bottom surface and a plurality of side surfaces, the top surface adjoining the main pole, the bottom surface adjoining the first portion of the NFT, the plurality of side surfaces adjoining a second portion of the NFT, and the back surface adjoining a portion of the metal cap.
  • 2. The HAMR write apparatus of claim 1 wherein the plurality of side surfaces adjoin an additional portion of the metal cap.
  • 3. The HAMR write apparatus of claim 1 wherein the bottom surface adjoins an additional portion of the metal cap.
  • 4. The HAMR write apparatus of claim 1 wherein the bottom surface adjoins a portion of the metal nose.
  • 5. The HAMR write apparatus of claim 1 wherein the portion of the metal cap resides between the metal nose and the main pole.
  • 6. The HAMR write apparatus of claim 1 wherein the NFT further includes: a plasmonic ridge aligned with a portion of the waveguide.
  • 7. The HAMR write apparatus of claim 6 wherein the waveguide directs the portion of the energy toward the ABS at an acute angle from the ABS, the plasmonic ridge being oriented at the angle from the ABS.
  • 8. The HAMR write apparatus of claim 1 wherein the metal nose includes a media-facing surface, at least a portion of the media-facing surface being oriented at a nonzero angle from the ABS.
  • 9. The HAMR write apparatus of claim 8 wherein all of the media-facing surface is oriented at a nonzero angle from the ABS.
  • 10. The HAMR write apparatus of claim 8 wherein the media-facing surface is a curved surface.
  • 11. The HAMR write apparatus of claim 1 wherein the dielectric gap is substantially surrounded by a combination of the NFT and the ABS.
  • 12. A heat assisted magnetic recording (HAMR) data storage device comprising: a media,a laser for providing energy; anda slider including a HAMR write transducer having an air-bearing surface, the HAMR transducer including a main pole, at least one coil for energizing the main pole, near-field transducer (NFT), and a dielectric gap, the main pole being configured to write to a region of the media, the waveguide being optically coupled with the laser and for directing a portion of the energy toward the ABS, the NFT being optically coupled with the waveguide, the NFT including a metal nose and a metal cap, a portion of the metal cap adjoining a portion of the main pole; the dielectric gap being between a first portion of the NFT and the main pole, the dielectric gap having a media-facing surface occupying a portion of the ABS, a back surface, a top surface, a bottom surface and a plurality of side surfaces, the top surface adjoining the main pole, the bottom surface adjoining the first portion of the NFT, the plurality of side surfaces adjoining a second portion of the NFT, and the back surface adjoining a portion of the metal cap such that the dielectric gap is substantially surrounded by a combination of the NFT and the ABS.
  • 13. A method for fabricating a heat assisted magnetic recording (HAMR) write apparatus coupled with a laser for providing energy and having an air-bearing surface (ABS) configured to reside in proximity to a media during use, the method comprising: providing a main pole configured to write to a region of the media, the main pole including a media-facing surface;providing at least one coil for energizing the main pole;providing a waveguide optically coupled with the laser and directing a portion of the energy toward the ABS;providing near-field transducer (NFT) optically coupled with the waveguide, the NFT including a metal nose and a metal cap, a portion of the metal cap adjoining a portion of the main pole; andproviding a dielectric gap between a first portion of the NFT and the main pole, the dielectric gap having a media-facing surface occupying a portion of the ABS, a back surface, a top surface, a bottom surface and a plurality of side surfaces, the top surface adjoining the main pole, the bottom surface adjoining the first portion of the NFT, the plurality of side surfaces adjoining a second portion of the NFT, and the back surface adjoining a portion of the metal cap.
  • 14. The method of claim 13 wherein the dielectric gap is substantially surrounded by a combination of the NFT and the ABS.
  • 15. The method of claim 13 wherein the portion of the metal cap resides between the metal nose and the main pole.
  • 16. The method of claim 13 wherein the step of providing the NFT further includes: providing a plasmonic ridge aligned with a portion of the waveguide.
  • 17. The method of claim 13 wherein the step of providing the NFT further includes: forming a media-facing surface on the metal nose, at least a portion of the media-facing surface being oriented at a nonzero angle from the ABS.
  • 18. The method of claim 17 wherein all of the media-facing surface is oriented at a nonzero angle from the ABS.
  • 19. The method of claim 17 wherein the media-facing surface is a curved surface.
US Referenced Citations (617)
Number Name Date Kind
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Chen et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Spallas et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et May 2007 B1
7212384 Stoev et a May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8451705 Peng et al. May 2013 B2
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8711662 Lee et al. Apr 2014 B2
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
8929698 Peng et al. Jan 2015 B2
8953272 Peng et al. Feb 2015 B2
9129634 Boone, Jr. Sep 2015 B1
9183856 Balamane Nov 2015 B1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20120111826 Chen et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20130279035 Peng et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
20140209664 Takayama Jul 2014 A1
20140313872 Rawat Oct 2014 A1
20140362674 Tanaka Dec 2014 A1
20140376349 Cheng Dec 2014 A1
20150179204 Mosendz Jun 2015 A1
20150262595 Aoki Sep 2015 A1
20150340052 Sankar Nov 2015 A1