The following relates to a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV).
Automotive vehicles powered by an electric motor or an electric motor and a gasoline engine are commonly referred to as electric vehicles (EV) or hybrid-electric vehicles (HEV). As is well known in the art, such vehicles include batteries for supplying power to the electric motors thereof. Electric and hybrid-electric vehicles typically provide for charging such batteries using an interface configured to rectify electrical power from a 120 volt or 240 volt alternating current (AC) utility power line for storage by the vehicle batteries.
Electric and hybrid-electric vehicles also include an inverter for use in converting the direct current (DC) voltage provided by the vehicle batteries to an AC voltage for use in powering the electric motor or motors of the vehicle. Such an inverter may comprise switching modules, such as integrated gate bipolar transistor (IGBT) modules, and a DC link capacitor, which itself may comprise a plurality of film capacitors.
In converting an input DC voltage to an AC voltage output, the film capacitors of the DC link capacitor generate heat as a result of the switching operations of the IGBT power modules. The heat generated as a result of such operations should be dissipated so that the inverter may continue to operate efficiently. Such heat generated by the operation of the IGBT power modules and the DC link capacitor may be dissipated using a coldplate provided as part of the inverter.
In that regard, an exemplary power converter for use in electric or hybrid-electric vehicles is shown in U.S. Pat. No. 7,974,101 entitled “Power Converter.” Exemplary heat dissipating devices, as well as various features thereof, are shown in U.S. Pat. No. 6,466,441 entitled “Cooling Device Of Electronic Part Having High And Low Heat Generating Elements,” in U.S. Patent Application Publication No. 2010/0081191 entitled “Anisotropic Heat Spreader For Use With A Thermoelectric Device,” and in U.S. Patent Application Publication No. 2010/0078807 entitled “Power Semiconductor Module Assembly With Heat Dissipating Element.”
However, due to the heat generated as a result of the operation of an inverter used in an EV or HEV, there exists a need for additional heat dissipation beyond that which may be provided by standard coldplates currently in use with an EV or HEV inverter. Such an inverter would include a heat conductor configured to contact the DC link capacitor in order to provide for additional dissipation of the heat generated by inverter operation.
According to one embodiment disclosed herein, a heat conductor is provided for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV). The inverter includes a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism. Each film capacitor has orthotropic characteristics such that a thermal conductivity across a thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitors.
The heat conductor comprises a first substantially planar member configured to contact a first side of the polygonal prism formed by a single one of the film capacitors. The first substantially planar member comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The heat conductor also comprises a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the rectangular prism, the second side of the rectangular prism formed by another single one of the film capacitors. The second substantially planar member comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The heat conductor further comprises an interconnect for fixedly attaching the first and second substantially planar members. The first and second substantially planar members have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.
According to another embodiment disclosed herein, a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) is provided. The inverter includes a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism. Each film capacitor has orthotropic characteristics such that a thermal conductivity across the thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor.
In this embodiment, the heat conductor comprises a first plate configured to contact a first side of the polygonal prism formed by a single one of the film capacitors. The first plate is substantially coextensive with the first side of the prism and comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The heat conductor also comprises a second plate configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the prism formed by another single one of the film capacitors. The second plate is substantially coextensive with the second side of the prism and comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The first and second plates have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.
According to a further embodiment disclosed herein, an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) comprises a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism. Each film capacitor has orthotropic characteristics such that a thermal conductivity across the thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor.
The inverter further comprises a heat conductor comprising a first substantially planar member configured to contact a first side of the polygonal prism formed by a single one of the film capacitors, and a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the prism formed by another single one of the film capacitors. The first and second substantially planar members each comprise a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The first and second substantially planar members have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.
A detailed description of these embodiments of an inverter for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), including embodiments of a heat conductor for use with such an inverter, are set forth below together with accompanying drawings.
With reference to
As noted above, electric and hybrid-electric vehicles include an inverter for use in converting the direct current (DC) voltage stored and provided by the vehicle batteries to an AC voltage for use in powering the electric motor or motors of the vehicle. Such an inverter may comprise IGBT switching modules and a DC link capacitor, which itself may comprise a plurality of film capacitors.
In converting an input DC voltage to a AC voltage output, the film capacitors of the DC link capacitor generate heat as a result of the switching operations of the IGBT power modules. The heat generated as a result of such operations should be dissipated, such as through a coldplate, so that the inverter may continue to operate efficiently.
An exemplary power converter for use in electric or hybrid-electric vehicles is shown in U.S. Pat. No. 7,974,101 entitled “Power Converter.” Exemplary heat dissipating devices, as well as various features thereof, are shown in U.S. Pat. No. 6,466,441 entitled “Cooling Device Of Electronic Part Having High And Low Heat Generating Elements,” in U.S. Patent Application Publication No. 2010/0081191 entitled “Anisotropic Heat Spreader For Use With A Thermoelectric Device,” and in U.S. Patent Application Publication No. 2010/0078807 entitled “Power Semiconductor Module Assembly With Heat Dissipating Element.”
There exists, however, a need for additional heat dissipation beyond that which may be provided by standard coldplates currently in use with an EV or HEV inverter. Such an inverter would include a heat conductor configured to contact the DC link capacitor in order to provide for additional dissipation of the heat generated by inverter operation.
Referring now to
As is well known in the art, IBGT power modules (12) and DC link capacitor (14) are provided in electrical communication and are for use in converting an DC voltage input from vehicle batteries (not shown) to an AC output voltage for powering an electric motor (not shown) of the vehicle. As is also well known, coldplate (16) is provided for use in dissipating heat produced by the operation of inverter (10).
As seen in
With reference again to
Each film capacitor (24) may have orthotropic characteristics such that a thermal conductivity across a thickness (t) of each film capacitor (24) differs from a thermal conductivity across another dimension of the film capacitor (24), such as a length (l) or a width (w). The orthotropic characteristics of the film capacitors (24) may also be such that a stiffness across the thickness (t) of each film capacitor (24) is less than a stiffness across another dimension of the film capacitor (24), such as length (l) or width (w).
Referring now to
Heat conductor (18) may further comprise a second substantially planar or plate-like member (22) configured to contact a second side of the polygonal prism opposite the first side of the rectangular prism of the DC link capacitor (14), where the second side of the rectangular prism is formed by another single one of the film capacitors (24). Here again, the description of member (22) as substantially planar or plate-like refers to the general shape of member (22), rather than to the surfaces thereof. As described in greater detail below, member (22) may include features such that a surface or surfaces thereof are not substantially planar. As also previously noted, the second substantially planar or plate-like member (22) may comprise a thermally conductive material for dissipating heat generated by the plurality of film capacitors (24).
As seen in
As depicted in
Still referring to
As seen in
In that same regard, the third substantially planar or plate-like member (36) may comprise a first piece (38) extending from the first substantially planar or plate-like member (20) and a second piece (40) extending from the second substantially planar or plate-like member (22). The first and second pieces (38, 40), which may be integral with the first and second substantially planar or plate-like members (20, 22), respectively, may be provided with attachment features configured to cooperate for attachment of the first and second pieces (38, 40). As seen in
As is readily apparent from the foregoing, a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) have been described. The embodiments of the heat conductor described provide for additional heat dissipation beyond that which may be supplied by a standard coldplate used with an EV or HEV inverter. Such embodiments include a heat conductor configured to contact a DC link capacitor used in the inverter in order to provide for additional dissipation of the heat generated by inverter operation, thereby providing for efficient operation of the inverter.
While various embodiments of a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) have been illustrated and described herein, they are exemplary only and it is not intended that these embodiments illustrate and describe all those possible. Instead, the words used herein are words of description rather than limitation, and it is understood that various changes may be made to these embodiments without departing from the spirit and scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3604082 | McBrayer et al. | Sep 1971 | A |
3622846 | Reimers | Nov 1971 | A |
3656035 | Corman et al. | Apr 1972 | A |
4628407 | August et al. | Dec 1986 | A |
4670814 | Matsui et al. | Jun 1987 | A |
4872102 | Getter | Oct 1989 | A |
5091823 | Kanbara et al. | Feb 1992 | A |
5239443 | Fahey et al. | Aug 1993 | A |
5367437 | Anderson | Nov 1994 | A |
5408209 | Tanzer et al. | Apr 1995 | A |
5469124 | O'Donnell et al. | Nov 1995 | A |
5498030 | Hill et al. | Mar 1996 | A |
5504655 | Underwood et al. | Apr 1996 | A |
5634262 | O'Donnell et al. | Jun 1997 | A |
5740015 | Donegan et al. | Apr 1998 | A |
5749597 | Saderholm | May 1998 | A |
5940263 | Jakoubovitch | Aug 1999 | A |
5959191 | Lewis et al. | Sep 1999 | A |
5973923 | Jitaru | Oct 1999 | A |
6031751 | Janko | Feb 2000 | A |
6045151 | Wu | Apr 2000 | A |
6087916 | Kutkut et al. | Jul 2000 | A |
6144276 | Booth | Nov 2000 | A |
6201701 | Linden et al. | Mar 2001 | B1 |
6206466 | Komatsu | Mar 2001 | B1 |
6222733 | Gammenthaler | Apr 2001 | B1 |
6262891 | Wickelmaier et al. | Jul 2001 | B1 |
6313991 | Nagashima et al. | Nov 2001 | B1 |
6326761 | Tareilus | Dec 2001 | B1 |
6386577 | Kan et al. | May 2002 | B1 |
6450528 | Suezawa et al. | Sep 2002 | B1 |
6466441 | Suzuki | Oct 2002 | B1 |
6529394 | Joseph et al. | Mar 2003 | B1 |
6819561 | Hartzell et al. | Nov 2004 | B2 |
6839240 | Skofljanec et al. | Jan 2005 | B2 |
6844802 | Drummond et al. | Jan 2005 | B2 |
6943293 | Jeter et al. | Sep 2005 | B1 |
7050305 | Thorum | May 2006 | B2 |
7109681 | Baker et al. | Sep 2006 | B2 |
7130197 | Chin | Oct 2006 | B2 |
7164584 | Walz | Jan 2007 | B2 |
7173823 | Rinehart et al. | Feb 2007 | B1 |
7204299 | Bhatti et al. | Apr 2007 | B2 |
7212407 | Beihoff et al. | May 2007 | B2 |
7236368 | Maxwell et al. | Jun 2007 | B2 |
7264045 | Mehendale et al. | Sep 2007 | B2 |
7289329 | Chen et al. | Oct 2007 | B2 |
7295448 | Zhu | Nov 2007 | B2 |
7375287 | Rathmann | May 2008 | B2 |
7375974 | Kirigaya | May 2008 | B2 |
7471534 | Andersson et al. | Dec 2008 | B2 |
7479020 | Whitton | Jan 2009 | B2 |
7554817 | Nakakita et al. | Jun 2009 | B2 |
7579805 | Saito et al. | Aug 2009 | B2 |
7646606 | Rytka et al. | Jan 2010 | B2 |
7660099 | Imamura et al. | Feb 2010 | B2 |
7710723 | Korich et al. | May 2010 | B2 |
7726440 | Aisenbrey | Jun 2010 | B2 |
7788801 | Oggioni et al. | Sep 2010 | B2 |
7791887 | Ganev et al. | Sep 2010 | B2 |
7798833 | Holbrook | Sep 2010 | B2 |
7800257 | Lu | Sep 2010 | B2 |
7804688 | Wakabayashi et al. | Sep 2010 | B2 |
7864506 | Pal et al. | Jan 2011 | B2 |
7869714 | Patel et al. | Jan 2011 | B2 |
7907385 | Korich et al. | Mar 2011 | B2 |
7920039 | Shabany et al. | Apr 2011 | B2 |
7952225 | Reichard et al. | May 2011 | B2 |
7952876 | Azuma et al. | May 2011 | B2 |
7957166 | Schnetzka et al. | Jun 2011 | B2 |
7974101 | Azuma et al. | Jul 2011 | B2 |
8040005 | Bhatti | Oct 2011 | B2 |
8064198 | Higashidani et al. | Nov 2011 | B2 |
8064234 | Tokuyama et al. | Nov 2011 | B2 |
8072758 | Groppo et al. | Dec 2011 | B2 |
8098479 | Parler et al. | Jan 2012 | B1 |
8110415 | Knickerbocker et al. | Feb 2012 | B2 |
8169780 | Yoshino et al. | May 2012 | B2 |
8376069 | Nakatsu et al. | Feb 2013 | B2 |
8416574 | Tokuyama et al. | Apr 2013 | B2 |
8422230 | Aiba et al. | Apr 2013 | B2 |
8582291 | Nakasaka et al. | Nov 2013 | B2 |
8582294 | Guerin et al. | Nov 2013 | B2 |
8654527 | Wei et al. | Feb 2014 | B2 |
8665596 | Brereton | Mar 2014 | B2 |
8675364 | Tokuyama et al. | Mar 2014 | B2 |
20020106414 | Gernert | Aug 2002 | A1 |
20020130495 | Lotspih et al. | Sep 2002 | A1 |
20030053298 | Yamada et al. | Mar 2003 | A1 |
20050263273 | Crumly | Dec 2005 | A1 |
20070240867 | Amano et al. | Oct 2007 | A1 |
20070246191 | Behrens et al. | Oct 2007 | A1 |
20080117602 | Korich et al. | May 2008 | A1 |
20100078807 | Schulz | Apr 2010 | A1 |
20100081191 | Woods | Apr 2010 | A1 |
20100157640 | Azuma et al. | Jun 2010 | A1 |
20100254093 | Oota et al. | Oct 2010 | A1 |
20100328883 | Ledezma et al. | Dec 2010 | A1 |
20100328893 | Higashidani et al. | Dec 2010 | A1 |
20110116235 | Ryu et al. | May 2011 | A1 |
20110214629 | Benoit | Sep 2011 | A1 |
20110235276 | Hentschel et al. | Sep 2011 | A1 |
20110267778 | Eckstein et al. | Nov 2011 | A1 |
20120031598 | Han et al. | Feb 2012 | A1 |
20120206950 | Duppong et al. | Aug 2012 | A1 |
20130039009 | Shin et al. | Feb 2013 | A1 |
20130044434 | Sharaf et al. | Feb 2013 | A1 |
20130170269 | Sharaf et al. | Jul 2013 | A1 |
20130215573 | Wagner et al. | Aug 2013 | A1 |
20130223009 | Nakatsu et al. | Aug 2013 | A1 |
20130258596 | Sharaf et al. | Oct 2013 | A1 |
20140069615 | Kusaka | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2742712 | Nov 2005 | CN |
101606210 | Dec 2009 | CN |
101981638 | Feb 2011 | CN |
102013319 | Apr 2011 | CN |
102007054618 | Jun 2008 | DE |
102008033473 | May 2009 | DE |
1028439 | Aug 2000 | EP |
1484774 | Dec 2004 | EP |
2903057 | Jan 2008 | FR |
4256397 | Sep 1992 | JP |
07297043 | Nov 1995 | JP |
2004254358 | Sep 2004 | JP |
2007273774 | Oct 2007 | JP |
2008078350 | Apr 2008 | JP |
2008085168 | Apr 2008 | JP |
2011182500 | Sep 2011 | JP |
2010144399 | Dec 2010 | WO |
2011138156 | Nov 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20130170269 A1 | Jul 2013 | US |