Heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)

Information

  • Patent Grant
  • 9076593
  • Patent Number
    9,076,593
  • Date Filed
    Thursday, December 29, 2011
    13 years ago
  • Date Issued
    Tuesday, July 7, 2015
    9 years ago
Abstract
A heat conductor for use with an inverter in an electric or hybrid-electric vehicle, the inverter including a direct current link capacitor having multiple film capacitors configured in a stack to form a substantially polygonal prism. Each film capacitor has orthotropic characteristics. The heat conductor has a first substantially planar member configured to contact a first side of the polygonal prism formed by one of the film capacitors, and a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the rectangular prism, the second side of the rectangular prism formed by another one of the film capacitors. The first and second planar member are thermally conductive for dissipating heat generated by the film capacitors, are attached by an interconnect, and have sufficient rigidity to confine expansion of the film capacitors across the thicknesses thereof.
Description
TECHNICAL FIELD

The following relates to a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV).


BACKGROUND

Automotive vehicles powered by an electric motor or an electric motor and a gasoline engine are commonly referred to as electric vehicles (EV) or hybrid-electric vehicles (HEV). As is well known in the art, such vehicles include batteries for supplying power to the electric motors thereof. Electric and hybrid-electric vehicles typically provide for charging such batteries using an interface configured to rectify electrical power from a 120 volt or 240 volt alternating current (AC) utility power line for storage by the vehicle batteries.


Electric and hybrid-electric vehicles also include an inverter for use in converting the direct current (DC) voltage provided by the vehicle batteries to an AC voltage for use in powering the electric motor or motors of the vehicle. Such an inverter may comprise switching modules, such as integrated gate bipolar transistor (IGBT) modules, and a DC link capacitor, which itself may comprise a plurality of film capacitors.


In converting an input DC voltage to an AC voltage output, the film capacitors of the DC link capacitor generate heat as a result of the switching operations of the IGBT power modules. The heat generated as a result of such operations should be dissipated so that the inverter may continue to operate efficiently. Such heat generated by the operation of the IGBT power modules and the DC link capacitor may be dissipated using a coldplate provided as part of the inverter.


In that regard, an exemplary power converter for use in electric or hybrid-electric vehicles is shown in U.S. Pat. No. 7,974,101 entitled “Power Converter.” Exemplary heat dissipating devices, as well as various features thereof, are shown in U.S. Pat. No. 6,466,441 entitled “Cooling Device Of Electronic Part Having High And Low Heat Generating Elements,” in U.S. Patent Application Publication No. 2010/0081191 entitled “Anisotropic Heat Spreader For Use With A Thermoelectric Device,” and in U.S. Patent Application Publication No. 2010/0078807 entitled “Power Semiconductor Module Assembly With Heat Dissipating Element.”


However, due to the heat generated as a result of the operation of an inverter used in an EV or HEV, there exists a need for additional heat dissipation beyond that which may be provided by standard coldplates currently in use with an EV or HEV inverter. Such an inverter would include a heat conductor configured to contact the DC link capacitor in order to provide for additional dissipation of the heat generated by inverter operation.


SUMMARY

According to one embodiment disclosed herein, a heat conductor is provided for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV). The inverter includes a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism. Each film capacitor has orthotropic characteristics such that a thermal conductivity across a thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitors.


The heat conductor comprises a first substantially planar member configured to contact a first side of the polygonal prism formed by a single one of the film capacitors. The first substantially planar member comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The heat conductor also comprises a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the rectangular prism, the second side of the rectangular prism formed by another single one of the film capacitors. The second substantially planar member comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The heat conductor further comprises an interconnect for fixedly attaching the first and second substantially planar members. The first and second substantially planar members have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.


According to another embodiment disclosed herein, a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) is provided. The inverter includes a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism. Each film capacitor has orthotropic characteristics such that a thermal conductivity across the thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor.


In this embodiment, the heat conductor comprises a first plate configured to contact a first side of the polygonal prism formed by a single one of the film capacitors. The first plate is substantially coextensive with the first side of the prism and comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The heat conductor also comprises a second plate configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the prism formed by another single one of the film capacitors. The second plate is substantially coextensive with the second side of the prism and comprises a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The first and second plates have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.


According to a further embodiment disclosed herein, an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) comprises a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism. Each film capacitor has orthotropic characteristics such that a thermal conductivity across the thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor.


The inverter further comprises a heat conductor comprising a first substantially planar member configured to contact a first side of the polygonal prism formed by a single one of the film capacitors, and a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the prism formed by another single one of the film capacitors. The first and second substantially planar members each comprise a thermally conductive material for dissipating heat generated by the plurality of film capacitors. The first and second substantially planar members have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.


A detailed description of these embodiments of an inverter for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), including embodiments of a heat conductor for use with such an inverter, are set forth below together with accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an inverter for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), including an embodiment of a heat conductor for use with such an inverter as disclosed herein;



FIG. 2 is a side view of an inverter for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), including an embodiment of a heat conductor for use with such an inverter as disclosed herein;



FIG. 3 is an exploded view of an inverter for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), including an embodiment of a heat conductor for use with such an inverter as disclosed herein;



FIG. 4 is a perspective view of an embodiment of a portion of a heat conductor for use with an inverter as disclosed herein; and



FIG. 5 is a perspective view of an embodiment of a portion of a heat conductor for use with an inverter as disclosed herein.





DETAILED DESCRIPTION

With reference to FIGS. 1-5, a more detailed description of embodiments of in inverter for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), including embodiments of a heat conductor for use with such an inverter, will be described. For ease of illustration and to facilitate understanding, like reference numerals have been used herein for like components and features throughout the drawings.


As noted above, electric and hybrid-electric vehicles include an inverter for use in converting the direct current (DC) voltage stored and provided by the vehicle batteries to an AC voltage for use in powering the electric motor or motors of the vehicle. Such an inverter may comprise IGBT switching modules and a DC link capacitor, which itself may comprise a plurality of film capacitors.


In converting an input DC voltage to a AC voltage output, the film capacitors of the DC link capacitor generate heat as a result of the switching operations of the IGBT power modules. The heat generated as a result of such operations should be dissipated, such as through a coldplate, so that the inverter may continue to operate efficiently.


An exemplary power converter for use in electric or hybrid-electric vehicles is shown in U.S. Pat. No. 7,974,101 entitled “Power Converter.” Exemplary heat dissipating devices, as well as various features thereof, are shown in U.S. Pat. No. 6,466,441 entitled “Cooling Device Of Electronic Part Having High And Low Heat Generating Elements,” in U.S. Patent Application Publication No. 2010/0081191 entitled “Anisotropic Heat Spreader For Use With A Thermoelectric Device,” and in U.S. Patent Application Publication No. 2010/0078807 entitled “Power Semiconductor Module Assembly With Heat Dissipating Element.”


There exists, however, a need for additional heat dissipation beyond that which may be provided by standard coldplates currently in use with an EV or HEV inverter. Such an inverter would include a heat conductor configured to contact the DC link capacitor in order to provide for additional dissipation of the heat generated by inverter operation.


Referring now to FIGS. 1 and 2, perspective and side views of an inverter for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), including an embodiment of a heat conductor for use with such an inverter, are shown. The inverter, denoted generally by reference numeral (10), may comprise integrated bipolar gate transistor (IBGT) power modules (12), a DC link capacitor (14), a coldplate (16), and a heat conductor (18).


As is well known in the art, IBGT power modules (12) and DC link capacitor (14) are provided in electrical communication and are for use in converting an DC voltage input from vehicle batteries (not shown) to an AC output voltage for powering an electric motor (not shown) of the vehicle. As is also well known, coldplate (16) is provided for use in dissipating heat produced by the operation of inverter (10).



FIG. 3 depicts an exploded view of the inverter (10) for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV). As seen therein, inverter (10) again may comprise IBGT power modules (12), a DC link capacitor (14), and a coldplate (16). Inverter (10) may further comprise an embodiment of a heat conductor (18) for use in providing further dissipation of heat generated by the operation of inverter (10). In that regard, heat conductor (18) may comprise a thermally conductive material such as aluminum, another metal, an alloy, a ceramic, a composite, or any other suitably thermally conductive material, which may also have isotropic or anisotropic thermal characteristics.


As seen in FIG. 3, heat conductor (18) may comprise first and second members (20, 22). With reference to FIGS. 4 and 5, perspective views of an embodiment of first and second members (20, 22) of a heat conductor (18) for use in an inverter (10) are shown.


With reference again to FIGS. 1-3, the DC link capacitor (14) may comprise a plurality of film capacitors (24) (shown in dashed lines) configured in a stack to form a substantially rectangular prism. In that regard, while DC link capacitor (14) is depicted herein as a rectangular prism, other polygonal prism shapes may be employed.


Each film capacitor (24) may have orthotropic characteristics such that a thermal conductivity across a thickness (t) of each film capacitor (24) differs from a thermal conductivity across another dimension of the film capacitor (24), such as a length (l) or a width (w). The orthotropic characteristics of the film capacitors (24) may also be such that a stiffness across the thickness (t) of each film capacitor (24) is less than a stiffness across another dimension of the film capacitor (24), such as length (l) or width (w).


Referring now to FIGS. 3-5, the heat conductor (18) may comprise a first substantially planar or plate-like member (20) configured to contact a first side of the polygonal prism formed by a single one of the film capacitors (24) of the DC link capacitor (14). In that regard, the description of member (20) as substantially planar or plate-like refers to the general shape of member (20), rather than to the surfaces thereof. As described in greater detail below, member (20) may include features such that a surface or surfaces thereof are not substantially planar. As previously noted, the first substantially planar or plate-like member (20) may comprise a thermally conductive material for dissipating heat generated by the plurality of film capacitors (24).


Heat conductor (18) may further comprise a second substantially planar or plate-like member (22) configured to contact a second side of the polygonal prism opposite the first side of the rectangular prism of the DC link capacitor (14), where the second side of the rectangular prism is formed by another single one of the film capacitors (24). Here again, the description of member (22) as substantially planar or plate-like refers to the general shape of member (22), rather than to the surfaces thereof. As described in greater detail below, member (22) may include features such that a surface or surfaces thereof are not substantially planar. As also previously noted, the second substantially planar or plate-like member (22) may comprise a thermally conductive material for dissipating heat generated by the plurality of film capacitors (24).


As seen in FIGS. 3-5, the heat conductor (18) may also comprise an interconnect (30), which may be provided for fixedly attaching the first and second substantially planar or plate-like members (20, 22). As well, the first and second substantially planar or plate-like members (20, 22) may be provided with sufficient rigidity, which may result from the material properties, thicknesses, shape and/or other characteristics of the first and second substantially planar or plate-like members (20, 22), to confine expansion of the plurality of film capacitors (24) across the thicknesses (t) thereof.


As depicted in FIGS. 1-3, the first and second substantially planar or plate-like members (20, 22) may be substantially coextensive with the first and second sides of the prism formed by the film capacitors (24) of the DC link capacitor (14) to thereby substantially contain expansion of the plurality of film capacitors (24) across the thicknesses (t) thereof. As previously described, first and second substantially planar or plate-like members (20, 22) may be provided with sufficient rigidity for that purpose, which again may result from the material properties, thicknesses, shape or other characteristics of the first and second substantially planar or plate-like members (20, 22). It should be noted, however, that the first and second substantially planar or plate-like members (20, 22) may alternatively be less than substantially coextensive with the first and second sides of the prism formed by the film capacitors (24) of the DC link capacitor (14).


Still referring to FIGS. 3-5, the first and/or second substantially planar or plate-like member (20, 22) may comprises one or more features to increase a surface area of the first and/or second substantially planar or plate-like members (20, 22) to facilitate heat dissipation. As seen in FIGS. 3-5, such features may take the form of multiple stacks (32), fins (34) or both, although any other such features for increasing a surface area known in the art, such as surface grooves or other features (not shown), may also or alternatively be employed. As seen in FIG. 5, the heat conductor (18) may also comprise one or more features for use in attaching the first substantially planar or plate-like member (20) to coldplate (16). In that regard, while such features are depicted in FIG. 5 as through-holes (26) for use with cooperating screws or bolts (not shown), any other attachment feature or features known in the art may be employed.


As seen in FIGS. 2-5, the previously discussed interconnect (30) may comprises a third substantially planar or plate-like member (36). In that regard, the description of member (36) as substantially planar or plate-like refers to the general shape of member (36), rather than to the surfaces thereof. As described in greater detail below, member (36) may include features such that a surface or surfaces thereof are not substantially planar. The third substantially planar or plate-like member (36) may also comprise a thermally conductive material, such as aluminum, another metal, an alloy, a ceramic, a composite or other suitably conductive material, which again may have isotropic or anisotropic thermal characteristics. The third substantially planar or plate-like member (36) may also be substantially coextensive with and configured to contact a third side of the substantially polygonal prism of the DC link capacitor (14), and oriented between the previously described first and second sides of that prism associated with the first and second substantially planar or plate-like members (20, 22) of the heat conductor (18). The third substantially planar or plate-like member (36) may also be provided with sufficient rigidity, which may result from the material properties, thicknesses, shape or other characteristics of the third substantially planar or plate-like member (36), to assist in confining expansion of the plurality of film capacitors (24) of the DC link capacitor (14) across the thicknesses (t) of the film capacitors (24).


In that same regard, the third substantially planar or plate-like member (36) may comprise a first piece (38) extending from the first substantially planar or plate-like member (20) and a second piece (40) extending from the second substantially planar or plate-like member (22). The first and second pieces (38, 40), which may be integral with the first and second substantially planar or plate-like members (20, 22), respectively, may be provided with attachment features configured to cooperate for attachment of the first and second pieces (38, 40). As seen in FIGS. 3-5, the attachment features of the first and second pieces (38) may be further configured to operate as heat dissipating features (such as fins (30)) by increasing a surface area of the third substantially planar or plate-like member (36). The third substantially planar or plate-like member (36) may also comprise one or more other features to increase a surface area of the third substantially planar or plate-like member (36) to facilitate heat dissipation, which may take the form of fins or any other such features for increasing a surface area known in the art, such as stacks, surface grooves or other features (not shown).


As is readily apparent from the foregoing, a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) have been described. The embodiments of the heat conductor described provide for additional heat dissipation beyond that which may be supplied by a standard coldplate used with an EV or HEV inverter. Such embodiments include a heat conductor configured to contact a DC link capacitor used in the inverter in order to provide for additional dissipation of the heat generated by inverter operation, thereby providing for efficient operation of the inverter.


While various embodiments of a heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV) have been illustrated and described herein, they are exemplary only and it is not intended that these embodiments illustrate and describe all those possible. Instead, the words used herein are words of description rather than limitation, and it is understood that various changes may be made to these embodiments without departing from the spirit and scope of the following claims.

Claims
  • 1. A heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), the inverter including a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism, wherein each film capacitor has orthotropic characteristics such that a thermal conductivity across a thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor, the heat conductor comprising: a first substantially planar member configured to contact a first side of the polygonal prism formed by a single one of the film capacitors, the first substantially planar member comprising a thermally conductive material for dissipating heat generated by the plurality of film capacitors;a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the polygonal prism formed by another single one of the film capacitors, the second substantially planar member comprising a thermally conductive material for dissipating heat generated by the plurality of film capacitors; andan interconnect for fixedly attaching the first and second substantially planar members, wherein the interconnect comprises a third substantially planar member comprising a thermally conductive material, the third planar member substantially coextensive with a third side of the substantially polygonal prism oriented between the first and second sides of the prism, wherein the third substantially planar member comprises a first piece extending from the first substantially planar member and a second piece extending from the second substantially planar member, the first and second pieces each having an attachment feature, the attachment features of the first and second pieces configured to cooperate for attachment of the first and second pieces, and wherein the attachment features of the first and second pieces are further configured to operate as heat dissipating features by increasing a surface area of the third substantially planar member;wherein the first and second substantially planar members have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.
  • 2. The heat conductor of claim 1 wherein the first and second substantially planar members comprise a metal.
  • 3. The heat conductor of claim 1 wherein the first and second substantially planar members are substantially coextensive with the first and second sides of the prism.
  • 4. The heat conductor of claim 3 wherein the first and second substantially planar members are substantially coextensive with the first and second sides of the prism to substantially contain expansion of the film capacitors.
  • 5. The heat conductor of claim 1 wherein the first substantially planar member comprises at least one feature to increase a surface area of the first substantially planar member to facilitate heat dissipation.
  • 6. The heat conductor of claim 1 further comprising a feature configured to attach the first substantially planar member to a cold plate.
  • 7. A heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), the inverter including a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism, wherein each film capacitor has orthotropic characteristics such that a thermal conductivity across the thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor, the heat conductor comprising: a first plate configured to contact a first side of the polygonal prism formed by a single one of the film capacitors, the first plate substantially coextensive with the first side of the prism and comprising a thermally conductive material for dissipating heat generated by the plurality of film capacitors;a second plate configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the prism formed by another single one of the film capacitors, the second plate substantially coextensive with the second side of the prism and comprising a thermally conductive material for dissipating heat generated by the plurality of film capacitors; anda third plate fixedly connecting the first and second plates, wherein the third plate comprises a thermally conductive material and is substantially coextensive with a third side of the polygonal prism between the first and second sides of the prism, wherein the third plate comprises a first piece extending from the first plate and a second piece extending from the second plate, the first and second pieces each having an attachment feature, the attachment features of the first and second pieces configured to cooperate for attachment of the first and second pieces, wherein the attachment feature of the first and second pieces are further configured to operate as heat dissipating features by increasing the surface area of the third plate;wherein the first and second plates have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.
  • 8. The heat conductor of claim 7 wherein the first and second plates comprise a metal.
  • 9. The heat conductor of claim 7 wherein the first plate comprises at least one feature to increase a surface area of the first substantially planar member to facilitate heat dissipation.
  • 10. The heat conductor of claim 7 wherein the first and second plates are substantially coextensive with the first and second sides of the prism to substantially contain expansion of the film capacitors.
  • 11. The heat conductor of claim 7 wherein the third plate comprises a metal.
  • 12. An inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), the inverter comprising: a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism, wherein each film capacitor has orthotropic characteristics such that a thermal conductivity across the thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor;a heat conductor comprising a first substantially planar member configured to contact a first side of the polygonal prism formed by a single one of the film capacitors, and a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the prism formed by another single one of the film capacitors, the first and second substantially planar members comprising a thermally conductive material for dissipating heat generated by the plurality of film capacitors; andan interconnect for fixedly attaching the first and second substantially planar members, wherein the interconnect comprises a third substantially planar member comprising a thermally conductive material, the third planar member substantially coextensive with a third side of the substantially polygonal prism oriented between the first and second sides of the prism, wherein the third substantially planar member comprises a first piece extending from the first substantially planar member and a second piece extending from the second substantially planar member, the first and second pieces each having an attachment feature, the attachment features of the first and second pieces configured to cooperate for attachment of the first and second pieces, and wherein the attachment features of the first and second pieces are further configured to operate as heat dissipating features by increasing a surface area of the third substantially planar member;wherein the first and second substantially planar members have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.
  • 13. The inverter of claim 12 further comprising a cold plate for attachment to the heat conductor.
US Referenced Citations (112)
Number Name Date Kind
3604082 McBrayer et al. Sep 1971 A
3622846 Reimers Nov 1971 A
3656035 Corman et al. Apr 1972 A
4628407 August et al. Dec 1986 A
4670814 Matsui et al. Jun 1987 A
4872102 Getter Oct 1989 A
5091823 Kanbara et al. Feb 1992 A
5239443 Fahey et al. Aug 1993 A
5367437 Anderson Nov 1994 A
5408209 Tanzer et al. Apr 1995 A
5469124 O'Donnell et al. Nov 1995 A
5498030 Hill et al. Mar 1996 A
5504655 Underwood et al. Apr 1996 A
5634262 O'Donnell et al. Jun 1997 A
5740015 Donegan et al. Apr 1998 A
5749597 Saderholm May 1998 A
5940263 Jakoubovitch Aug 1999 A
5959191 Lewis et al. Sep 1999 A
5973923 Jitaru Oct 1999 A
6031751 Janko Feb 2000 A
6045151 Wu Apr 2000 A
6087916 Kutkut et al. Jul 2000 A
6144276 Booth Nov 2000 A
6201701 Linden et al. Mar 2001 B1
6206466 Komatsu Mar 2001 B1
6222733 Gammenthaler Apr 2001 B1
6262891 Wickelmaier et al. Jul 2001 B1
6313991 Nagashima et al. Nov 2001 B1
6326761 Tareilus Dec 2001 B1
6386577 Kan et al. May 2002 B1
6450528 Suezawa et al. Sep 2002 B1
6466441 Suzuki Oct 2002 B1
6529394 Joseph et al. Mar 2003 B1
6819561 Hartzell et al. Nov 2004 B2
6839240 Skofljanec et al. Jan 2005 B2
6844802 Drummond et al. Jan 2005 B2
6943293 Jeter et al. Sep 2005 B1
7050305 Thorum May 2006 B2
7109681 Baker et al. Sep 2006 B2
7130197 Chin Oct 2006 B2
7164584 Walz Jan 2007 B2
7173823 Rinehart et al. Feb 2007 B1
7204299 Bhatti et al. Apr 2007 B2
7212407 Beihoff et al. May 2007 B2
7236368 Maxwell et al. Jun 2007 B2
7264045 Mehendale et al. Sep 2007 B2
7289329 Chen et al. Oct 2007 B2
7295448 Zhu Nov 2007 B2
7375287 Rathmann May 2008 B2
7375974 Kirigaya May 2008 B2
7471534 Andersson et al. Dec 2008 B2
7479020 Whitton Jan 2009 B2
7554817 Nakakita et al. Jun 2009 B2
7579805 Saito et al. Aug 2009 B2
7646606 Rytka et al. Jan 2010 B2
7660099 Imamura et al. Feb 2010 B2
7710723 Korich et al. May 2010 B2
7726440 Aisenbrey Jun 2010 B2
7788801 Oggioni et al. Sep 2010 B2
7791887 Ganev et al. Sep 2010 B2
7798833 Holbrook Sep 2010 B2
7800257 Lu Sep 2010 B2
7804688 Wakabayashi et al. Sep 2010 B2
7864506 Pal et al. Jan 2011 B2
7869714 Patel et al. Jan 2011 B2
7907385 Korich et al. Mar 2011 B2
7920039 Shabany et al. Apr 2011 B2
7952225 Reichard et al. May 2011 B2
7952876 Azuma et al. May 2011 B2
7957166 Schnetzka et al. Jun 2011 B2
7974101 Azuma et al. Jul 2011 B2
8040005 Bhatti Oct 2011 B2
8064198 Higashidani et al. Nov 2011 B2
8064234 Tokuyama et al. Nov 2011 B2
8072758 Groppo et al. Dec 2011 B2
8098479 Parler et al. Jan 2012 B1
8110415 Knickerbocker et al. Feb 2012 B2
8169780 Yoshino et al. May 2012 B2
8376069 Nakatsu et al. Feb 2013 B2
8416574 Tokuyama et al. Apr 2013 B2
8422230 Aiba et al. Apr 2013 B2
8582291 Nakasaka et al. Nov 2013 B2
8582294 Guerin et al. Nov 2013 B2
8654527 Wei et al. Feb 2014 B2
8665596 Brereton Mar 2014 B2
8675364 Tokuyama et al. Mar 2014 B2
20020106414 Gernert Aug 2002 A1
20020130495 Lotspih et al. Sep 2002 A1
20030053298 Yamada et al. Mar 2003 A1
20050263273 Crumly Dec 2005 A1
20070240867 Amano et al. Oct 2007 A1
20070246191 Behrens et al. Oct 2007 A1
20080117602 Korich et al. May 2008 A1
20100078807 Schulz Apr 2010 A1
20100081191 Woods Apr 2010 A1
20100157640 Azuma et al. Jun 2010 A1
20100254093 Oota et al. Oct 2010 A1
20100328883 Ledezma et al. Dec 2010 A1
20100328893 Higashidani et al. Dec 2010 A1
20110116235 Ryu et al. May 2011 A1
20110214629 Benoit Sep 2011 A1
20110235276 Hentschel et al. Sep 2011 A1
20110267778 Eckstein et al. Nov 2011 A1
20120031598 Han et al. Feb 2012 A1
20120206950 Duppong et al. Aug 2012 A1
20130039009 Shin et al. Feb 2013 A1
20130044434 Sharaf et al. Feb 2013 A1
20130170269 Sharaf et al. Jul 2013 A1
20130215573 Wagner et al. Aug 2013 A1
20130223009 Nakatsu et al. Aug 2013 A1
20130258596 Sharaf et al. Oct 2013 A1
20140069615 Kusaka Mar 2014 A1
Foreign Referenced Citations (18)
Number Date Country
2742712 Nov 2005 CN
101606210 Dec 2009 CN
101981638 Feb 2011 CN
102013319 Apr 2011 CN
102007054618 Jun 2008 DE
102008033473 May 2009 DE
1028439 Aug 2000 EP
1484774 Dec 2004 EP
2903057 Jan 2008 FR
4256397 Sep 1992 JP
07297043 Nov 1995 JP
2004254358 Sep 2004 JP
2007273774 Oct 2007 JP
2008078350 Apr 2008 JP
2008085168 Apr 2008 JP
2011182500 Sep 2011 JP
2010144399 Dec 2010 WO
2011138156 Nov 2011 WO
Related Publications (1)
Number Date Country
20130170269 A1 Jul 2013 US