1. Field of the Invention
The present invention relates to a heat dissipating device for lightings; in particular, a heat dissipating device that directs the airflow to increase heat dissipation.
2.Description of Related Art
A light emitting diode (LED) has several advantages such as being eco-friendly, high brightness, energy saving, and long service life. Therefore, it has been widely used in various lighting applications. However, it produces high temperature during light emitting. If the heat cannot be dissipated properly, the illumination performance would be adversely affected and even burn out the lightings.
Referring to
The heat sink 8 is connected to the light source module 7. The heat sink 8 has a substrate 81 and a plurality of heat dissipating fins 82 extending outward from the outer edge of the substrate 81. A plurality of channels 83 is formed between the heat dissipating fins 82 for air to flow through to take away heat from the heat sink 8. A connector 84 is connected to the middle or bottom of the substrate 81. The light source 71 and the circuit board 72 of the light source module 7 are located on the connector 84, so that the heat generated from the light source module 7 can be transferred to the heat sink 8.
The converter 9 is connected to the top of the heat sink 8. As shown in
Referring to
However, the channels 83 of the conventional heat sink 8 can only direct the airflow between the heat dissipating fins 82 along the outer edge of the heat sink 8. The airflow cannot enter the centre of the heat sink 8. The resulting heat dissipating effect is significantly weakened.
Therefore, there is a need of a novel structure which overcomes the above disadvantages.
The object of the present invention is to provide a heat dissipating device for lightings, which can effectively direct the airflow into the centre of a heat sink so as to enhance the heat dissipating effect of the heat sink.
In order to achieve the aforementioned objects, according to an aspect of the present invention, a heat dissipating device for lightings includes a light source module, having at least one light source; a heat sink connected to the light source module with a substrate and a plurality of heat dissipating fins extending outward from the substrate, wherein a plurality of channels is formed between the heat dissipating fins, where on the inside of each channel having a port open to the centre of the heat sink; and a converter, connected to the heat sink.
According to another aspect of the invention, the heat dissipating device for lightings includes a light source module having at least one light source; a heat sink, connected to the light source module and having a plurality of heat dissipating fins with a connecting section connected to the bottom of the heat dissipating fins, wherein a plurality of channels is formed between the heat dissipating fins, with the inside of every channel having a port open to the centre of the heat sink; and a converter, connected to the heat sink.
The invention offers the following advantages. The channels of the heat sink can direct the air to flow along the heat dissipating fins at the outer edge of the heat sink. Additionally, the air can also flow toward the center of the heat sink so as to enter the centre of the heat sink and outside the converter, enhancing the heat dissipating effect of the heat sink.
In order to further the understanding regarding the present invention, the following embodiments are provided along with illustrations to facilitate the disclosure of the present invention.
The aforementioned illustrations and following detailed descriptions are exemplary for the purpose of further explaining the scope of the present invention. Other objectives and advantages related to the present invention will be illustrated in the subsequent descriptions and appended drawings.
Referring to
The heat sink 2 is connected to the light source module 1. It is made of highly thermal conductive material. It has a substrate 21 and a plurality of heat dissipating fins 22 extending outward from the substrate 21. The heat dissipating fins 22 can be flat or curved. These heat dissipating fins 22 are spaced in intervals around the outer surface of the substrate 21. A plurality of channels 23 is formed between the heat dissipating fins 22 for air to flow through and take away the heat from the heat sink 2.
Bottoms, tops, and sides of these channels 23 can be arranged in a flared position to further allow the airflow. Between the channels 23 have a plurality of port 231, which is arranged in a flared position above the substrate 21. Thereby, the channels 23 are internally opened to the centre of the heat sink 2.
The top of the substrate 21 is connected to a connecting section 24 on which the light source 11 and the circuit board 12 of the light source module 1 are attached. The heat generated by the light source module 1 can be passed to the heat sink 2 via the connecting section 24. The substrate 21 of the heat sink 2 has a first space 25 therein. The first space 25 is located under the connecting section 24 to accommodate the light source module 1. A second space 26 is formed above the connecting section 24 of the heat sink 2 to accommodate the converter 3.
The converter 3 is connected to the top of the heat sink 2. In this embodiment, the converter 3 is of type MR 16 and has an insulating socket 31 and two pins 32. The two pins 32 are fixed to one end (top) of the insulating socket 31. The two pins 32 are further electrically connected to the circuit board 12 of the light source module 1 so as to transmit the power to the circuit board 12 and the light source 11. The lower part of the converter 3 is accommodated in the second space 26 of the heat sink 2. The converter 3 is properly secured onto the connecting section 24. Thereby, a heat dissipating device for lightings according to the invention is accomplished.
Referring to
Referring to
Referring to
The heat sink 5 is connected to the light source module 4. The heat sink 5 has a plurality of heat dissipating fins 52 and a connecting section 54 connecting to the bottom of the heat dissipating fins 52. The heat dissipating fins 52 can be flat or curved. These heat dissipating fins 52 are spaced in intervals on top of the connecting section 54. A plurality of channels 53 is formed between the heat dissipating fins 52 for the air to flow through and take away the heat from the heat sink 5.
The tops and outer edges of these channels 53 can be arranged in a flared positions to promote airflow. Each of the channels 53 has a port 531 arranged in flared position to connect the channels 53 internally with the centre of the heat sink 5.
The light source 41, the circuit board 42, and the lens 43 of the light source module 4 are attached to the connecting section 54 so that the heat generated by the light source module 4 can be passed onto the heat sink 5 via the connecting section 54. The heat sink 5 has a space 55 above the connecting section 54 for accommodating the converter 6.
The converter 6 can be connected to the top of the heat sink 5 or onto the connecting section 54. In this embodiment, the converter 6 is of type E27, and has an insulating socket 61 and an electrically conductive terminal 62. The electrically conductive terminal 62 is electrically connected to the light source 41 and the circuit board 42 of the light source module 4 so as to transmit the power to the circuit board 42 and the light source 41. The lower part of the converter 6 is accommodated in the space 55 of the heat sink 5. The converter 6 is properly secured onto the heat sink 5.
Referring to
The descriptions illustrated supra set forth simply the preferred embodiments of the present invention; however, the characteristics of the present invention are by no means restricted thereto. All changes, alternations, or modifications conveniently considered by those skilled in the art are deemed to be encompassed within the scope of the present invention delineated by the following claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 98130356 | Sep 2009 | TW | national |
This application is a Divisional patent application of co-pending application Ser. No. 12/833,248, filed on 9 Jul. 2010, now pending. The entire disclosure of the prior application, Ser. No. 12/833,248, from which an oath or declaration is supplied, is considered a part of the disclosure of the accompanying Divisional application and is hereby incorporated by reference.
| Number | Date | Country | |
|---|---|---|---|
| Parent | 12833248 | Jul 2010 | US |
| Child | 13332428 | US |