The present invention relates to an easy heat-dissipating lamp structure, and more particularly to a lamp structure with easy heat-dissipation enabling to improve the effect of heat dissipation of the lamp and further enhance the using efficiency and life of the lamp.
A lamp is a device that converts electrical energy into optical energy. A conventional lamp normally has an outer shell. Inside the shell, a light-emitting component (can be in any light-emitting mode) is installed. The shell can be installed at any position (e.g., the ceiling or any other positions with no limitation). The light-emitting component is connected through a power cord to an external power source (e.g., commercial power or any other power sources with no limitation), which powers the lamp to emit light. Thus, by controlling the switch of the power source, the electricity supplied to the light-emitting component can be connected or disconnected, so that it is turned on or off.
The light-emitting component inside the lamp device converts electrical energy into optical energy. During the conversion, thermal energy is generated. The current advanced technology can already convert electrical energy into optical energy efficiently. However, in spite of the high efficiency, the generation of thermal energy is inevitable. Therefore, in the development of light-emitting components and/or lamp devices, it has always been an aim to reduce the thermal energy generated by the light-emitting component or to quickly dissipate the heat inside the lamp device. The outer shell of a lamp device is usually formed by mold casting. Therefore, the outer shell is always a solid wall body. After the necessary components like the light-emitting component are installed inside the outer shell, a heat-dissipating component will be installed. One common example is light-emitting component with aluminum fins which helps dissipating the heat generated by the light-emitting component, so that the light-emitting component can work in a normal condition. However, in such a structure, the heat is only dissipated from the light-emitting component and is still kept inside the outer shell, After long time of use, the efficiency and service life of the overall lamp device will still be reduced. Obviously, in terms of heat dissipation for the whole lamp device, the prior-art lamp device is not ideal and needs to be improved.
In view of the fact that the heat-dissipating efficiency of the prior-art lamp device is low, the present invention provides an improved design for the structure of the lamp device, so as to overcome the above problem. This invention is a result of a great amount of effort.
Therefore, the main object of the invention is to provide an easy heat-dissipating lamp structure to improve the heat dissipation efficiency, enhance the functional performance, and extend the service life of the lamp device.
To achieve the above-mentioned objective, the present invention provides an easy heat-dissipating lamp structure, made up of at least an outer shell, a heat dissipator, a light emitting plate, and a power connection cord, the inside of the outer shell is divided into an upper half space and a lower half space, inside the upper half space of the outer shell, multiple rib plates are formed, the heat dissipator is in the shape of a flat plate, placed in from the lower half space of the outer shell, and is attached to the lower edge of the multiple rib plates, the light emitting plate is in the shape of a flat plate, made up of a plate body and multiple light-emitting components, the multiple light-emitting components are installed below the plate body, the light emitting plate is placed from the lower half space of the outer shell, and is attached and fixed on the bottom face of the heat dissipator, the power connection cord goes from above the outer shell into the space between the rib plates, and extends to the light-emitting component for electrical connection, the lamp device structure is characterized in that: the multiple rib plates inside the outer shell are all formed in straight shapes extending from top to bottom, straight and vertical gaps are formed between the rib plates, the heat generated by the multiple light-emitting components during operation is received by the heat dissipator, and is discharged through the straight gaps between the multiple rib plates.
According to the above-mentioned easy heat-dissipating lamp structure, wherein the outer shell is divided into long side walls located on the left and right sides, short side walls located on the front and rear sides, and multiple rib plates located inside, the outer face of the long side wall is respectively provided with an insertion slot going upward at position near the front end and the rear end, the lower end is extended outward to form a shield wall, the upper half part of the short side wall is a wall body, and the lower half part is a port, specifically, the wall body of the short side wall is provided with a crevice, the inside of the outer shell is divided into an upper half space and a lower half space, the multiple rib plates are formed inside the upper half space of the outer shell, and are formed between the two insertion slots on the same side, inside the upper half space of the outer shell, the lower edge on the outside of the insertion slot is formed with a middle plate, the middle plate is connected between the outermost rib plate and the short side wall, specifically, a dent is formed on the middle plate at the position corresponding to the crevice of the short side wall, and a through hole is formed on the outermost rib plate at the position corresponding to the crevice, the lower half space of the outer shell is communicated to the ports of the front and rear ends, the bottom of the outer shell is configured with multiple first connection slots, the middle position of the outermost rib plate is configured with a second connection slot, and the middle position of the long side wall is configured with a third connection slot.
According to the above-mentioned easy heat-dissipating lamp structure, wherein the end face of the short side wall can be connected with a side cap to cover the wall body of the upper half part, the port and the crevice of the lower half part, the top face of the side cap is configured with a connection hole, which can be aligned to the second connection slot, and a connecting component can go through the connection hole and be locked with the connection slot.
According to the above-mentioned easy heat-dissipating lamp structure, wherein the heat dissipator is formed in the shape of a flat plate using aluminum-based materials, the positions on the two sides corresponding to the insertion slot of the outer shell is configured with a clamping slot, an open slot is provided respectively on the edges of the two ends, specifically, the position of the open slot corresponds to the dent, the heat dissipator is sporadically configured with several perforations, and the position of the perforation corresponds to the above-mentioned first connection slot, when the heat dissipator is placed in from the lower half space of the outer shell, each clamping slot clamps the corresponding insertion slot, one open slot is aligned with the dent of the middle plate, the perforations are all aligned to the first connection slot, the light emitting plate is made up of a plate body and multiple light-emitting components, the light-emitting component is installed below the plate body, a clamping slot is configured at the position corresponding to the clamping slot of the heat dissipator on the two sides of the light emitting plate, an open slot is configured at the position corresponding to the open slot of the heat dissipator on the two end edges, specifically, the open slot is aligned to the dent, the light emitting plate is sporadically configured with several perforations, the perforations are aligned to the perforations of the heat dissipator, when the light emitting plate is placed in from the lower half space of the outer shell and is attached on the bottom face of the heat dissipator, the clamping slot of the light emitting plate and the clamping slot of the heat dissipator correspondingly clamp the insertion slot of the outer shell, one open slot of the light emitting plate is aligned to the open slot corresponding to the heat dissipator, and the dent of the middle plate of the outer shell, the perforation of the light emitting plate and the perforation of the heat dissipator are aligned to the first connection slot.
According to the above-mentioned easy heat-dissipating lamp structure, wherein the lamp device further comprises a reflector plate and a cup plate, the plate body of the reflector plate is arranged with multiple reflectors and multiple connection holes, the reflector corresponds to the light-emitting component of the light emitting plate, the connection hole corresponds to the perforation of the light emitting plate, the left side and right side of the reflector plate is formed with raised plates, the reflector plate is placed in from the lower half space of the outer shell, when the through hole on the reflector holds the corresponding light-emitting component inside, a connecting component can be inserted from the downside upward, passing the connection hole of the reflector plate, the perforation of the light emitting plate, the perforation of the heat dissipator, and be locked with the first connection slot.
According to the above-mentioned easy heat-dissipating lamp structure, wherein the lamp device further comprises a spring clip, the spring clip is a plate extending downward and then outward and upward for several cycles so that becomes elastic, the inner end face of the spring clip is provided with a connection hole, When the inner end face of the spring clip is attached to the central point of the long side wall, the connection hole of the spring clip corresponds to the third connection slot, and a connecting component can be inserted from downside upward, passing through the connection hole of the spring clip, and be locked with the third connection slot.
The technical means to realize the above object and the expected functional performance are described in detail below, with respect to the preferred embodiment and with reference to the accompanying drawings, so that they can be readily understood.
Referring to
Referring to
Referring to
The light emitting plate 30 is made of a metallic material and is formed in the shape of a flat plate. It comprises a plate body and multiple light-emitting components. The multiple light-emitting components are installed under the plate body. The light-emitting components are of a small body. Therefore, when the multiple light-emitting components are installed under the plate body, they only protrude slightly below the plate body. The multiple light-emitting components are collectively connected to the power source, and the conductive wire is buried inside the plate body. On the two sides of the light emitting plate 30 and at the position corresponding to the clamping slot 21 of the heat dissipator 20, a clamping slot 31 is provided. The two end edges are also provided with an open slot 32 respectively. The position of each open slot 32 is aligned to the open slot 22 of the heat dissipator 20. Therefore, one open slot 32 will be aligned to the dent 132. The plate body of the light emitting plate 30 is sporadically distributed with several perforations 33. The position of each perforation 33 corresponds to the above-mentioned perforation 22. During assembly, the light emitting plate 30 is placed in from the lower half space of the outer shell 10, and is attached to the bottom face of the heat dissipator 20. Now, each of the clamping slots 31 and the corresponding clamping slots 21 work together to clamp the insertion slot 111. One open slot 32 and the corresponding open slot 22 are both aligned to the dent 141 of the middle plate 14. Meanwhile, each perforation 33 and the corresponding perforation 23 are both aligned to a first connection slot 131.
The power connection cord 40 is in the shape of a bar and has an appropriate hardness. Its top end is connected to an external power source (e.g., commercial power, with no limitation), so as to power the light-emitting component of the light emitting plate 30 to emit light. The tail end of the power connection cord 40 enters from the top downward from the space in the rib plate 13 adjacent to the through hole 13b, and is bent to the horizontal direction to go through the through hole 13b, and continues to enter the range of the middle plate 14. When touching the position of the dent 141, it is bent downward to go through the dent 141 and the crevice 122, and continues to go through the open slot 22 and the open slot 32. Then, when passing the open slot 32, it is electrically connected to the light-emitting component of the light emitting plate 30. Then, within the range of the middle plate 14, a pressing plate 41 is used to press the power connection cord 40 from above, and a pair of connecting components 42 (e.g., screws, with no limitation) are inserted through the two ends of the pressing plate 41 and are fixed with the middle plate 14, so that the power connection cord 40 is well positioned.
The reflector plate 50 is formed by distributing multiple reflectors 51 and multiple connection holes 52 on a plate body. The positions of the multiple reflectors 51 are aligned to the light-emitting components of the light emitting plate 30. The positions of the multiple connection holes 52 are aligned to the perforations 33 of the light emitting plate 30. The left, and right sides of the reflector plate 50 are formed with protruding plates 53 raised upward. During assembly, the reflector plate 50 is placed from the lower half space of the outer shell 10, so that the through hole on the multiple reflectors 51 covers the corresponding light-emitting component, so that the light emitted by the light-emitting component can fully enter the reflector 51, and can provide illumination under the guide of the reflector 51. Meanwhile, when the multiple connection holes 52 are aligned to the perforations 33 of the light emitting plate 30, a connecting component 54 (e.g., a screw, with no limitation) can be inserted from blow to go through the connection hole 52, the perforation 33, and the perforation 23 and be locked with the first connection slot 131.
The plate body of the cup plate 60 is arranged with multiple cups 61 and multiple locking bars 62. The positions of the multiple cups 61 correspond to the multiple reflectors 51. During assembly, the cup plate 60 is placed in from the lower half space of the outer shell 10, so that the multiple cups 61 are supported on the bottom edge of the reflector 51. The multiple locking bars 62 are inserted from the gap between the protruding plate 53 and the outer shell 10, and are connected and fixed with the outer shell 10, so that the light passing the reflector 51 will have an expanded illumination range under the guide of outward expanding curved edge the cup 61.
The spring clip 70 is a plate extending downward and then outward and upward for several cycles to have an elasticity. The inner end face of the spring clip 70 is provided with a connection hole 71. During assembly, the inner end face of the spring clip 70 is attached to the center position of the long side wall 11, so that the connection hole 71 is aligned to the third connection slot 113. Thus, a connecting component 72 (e.g., a screw, with no limitation) can be inserted from below to go through the connection hole 71 and be fixed with the third connection slot 113.
Based on the structure described above, the appearance of the assembled lamp device 1 is shown in
As seen from the above descriptions, the present invention claims an easy heat-dissipating lamp structure, which at least comprises an outer shell, a heat dissipator, a light emitting plate, and a power connection cord. The inside of the outer shell is divided into upper half space and lower half space. Inside the upper half space of the outer shell, multiple rib plates are formed. The heat dissipator is in the shape of a flat plate, placed in from the lower half space of the outer shell, and is attached to the lower edge of the multiple rib plates. The light emitting plate is in the shape of a flat plate, made up of a plate body and multiple light-emitting components. The multiple light-emitting components are installed below the plate body. The light emitting plate is placed in from the lower half space of the outer shell, and is attached to and fixed on the bottom face of the heat dissipator. The power connection cord goes from above the outer shell into the space between the rib plates, and is extended to the light-emitting component for electrical connection. The invention is characterized in that: the multiple rib plates inside the outer shell are all formed in the vertical direction, so that vertical gaps are formed between the rib plates. The heat generated by the multiple light-emitting components during operation is received by the heat dissipator and is discharged from the vertical gaps between the multiple rib plates. In short, based on the principle that hot air goes upward, the present invention adopts multiple vertical gaps formed between multiple vertical rib plates configured inside the upper half space of the outer shell of the lamp device, so that the heat can be discharged upward quickly, so as to reduce the heat accumulated around the light-emitting component. The invention can dramatically enhance the heat dissipation effect of the lamp device, and consequently improve the functional performance as well as the service life of the light-emitting lamp device,
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Name | Date | Kind |
---|---|---|---|
20100110683 | Fang | May 2010 | A1 |
20120033431 | Martinez | Feb 2012 | A1 |
20160040839 | Driscoll | Feb 2016 | A1 |
20200103104 | Cercone | Apr 2020 | A1 |
20210080091 | Gao | Mar 2021 | A1 |
20210116121 | Xu | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
109488918 | Mar 2019 | CN |