The present invention relates to heat dissipating structures, and specifically to heat dissipating structures for projector lamps and lamps with the heat dissipating structures.
Light Emitting Diode (LED) has benefits of providing high illumination, low electrical consumption and long service life, which is widely used in illumination lamps. Since LED has poor heat resistance, and if a LED is not cooled for long time use, the service life of the LED will be seriously reduced. Therefore, it is an important issue in this art to provide a lamp and a heat dissipating structure thereof.
A conventional lamp and a heat dissipating structure thereof, as disclosed in Taiwan Patent No. M285661, includes a cover, a step-shaped circled portion formed on an outer surface of the cover and a mount of fins protruding from the circled portion. Heat can be transferred and dissipated therefrom through the circled portion and the fins thereof. The structure of this lamp is used for replacing a conventional projection lamp with the halogen lamp light source. If this lamp is used under the same working environment as the conventional lamp, the size of the lamp will be restricted by the original working environment.
The heat dissipating structure of the conventional lamp may be capable of transferring and dissipating heat from the LED. However, when the size of the lamp (e.g. projection lamp) is restricted by the working environment, it is very limited to enlarge the surface area for heat dissipating, and thereby the heat generated from the LED can not be sufficiently removed and dissipated. In addition, an effective heat dissipating surface area of the lamp which is composed with heat dissipating structure is difficult to extend outwardly, so that the heat generated from the LED can not be rapidly dissipated therefrom. In this way, a service life of the LED is greatly reduced.
The present invention relates to a heat dissipating structure. The heat dissipating structure includes an inner heat dissipating body cooperated with an outer heat dissipating body, thereby more heat dissipating fins and larger heat dissipating surface area can be formed to enhance heat conduction and dissipation effect when restricted by the size of cover.
The present invention relates to a heat dissipating structure. The heat dissipating structure includes a cover. The cover includes an inner heat dissipating body and an outer heat dissipating body. The inner heat dissipating body includes a cylinder and a plurality of first fins extending from an outer surface of the cylinder. The outer heat dissipating body includes a ring portion encircling a part of the inner heat dissipating body and a plurality of second fins extending from one side of the ring portion. One end of each second fin is connected to the cylinder.
The present invention relates to a lamp with a heat dissipating structure. By enhancing a heat dissipating surface area, heat generated from the LED or other light source can be rapidly dissipated therefrom, so that a service life of the LED can be greatly prolonged.
The present invention relates to a lamp with a heat dissipating structure. The lamp includes a cover, a plug module and an illumination module. The cover includes an inner heat dissipating body and an outer heat dissipating body. The inner heat dissipating body includes a cylinder and a plurality of first fins extending from an outer surface of the cylinder. The outer heat dissipating body includes a ring portion encircling a part of the inner heat dissipating body and a plurality of second fins extending from one side of the ring portion. One end of each second fin is connected to the cylinder. The plug module connects to one end of the cylinder. The illumination module connects to the other end of the cylinder. The illumination module is electrically connected to the plug module.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
Referring to
The outer heat dissipating body 20 includes a ring portion 21 encircling a part of the inner heat dissipating body 10, and a mount of second fins 22 radially extending from an inner side of the ring portion 21. Every two adjacent second fins 22 may have an equal interval or an unequal interval. In the exemplary embodiment of the present invention, the second fins 22 have an equal interval. A bottom end of each second fin 22 is connected to an outer surface of a bottom portion of the cylinder 11. A heat dissipating passage 23 is defined between every two adjacent second fins 22. An interval passage “a” is defined between an inner surface of the second fins 22 and the outer surface of the first fins 12. The second fins 22 may be arranged aligned to the first fins 11 or arranged in staggered form with the first fins 12. In the exemplary embodiment of the present invention, the second fins 22 are arranged in staggered form with the first fins 11 (as shown in
Referring also to
Referring also to
Referring also to
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including configurations ways of the recessed portions and materials and/or designs of the attaching structures. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
Number | Date | Country | Kind |
---|---|---|---|
96220113 U | Nov 2007 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20040244948 | Luo | Dec 2004 | A1 |
20050111234 | Martin et al. | May 2005 | A1 |
20080175003 | Tsou et al. | Jul 2008 | A1 |
20090016063 | Hu | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
285661 | Jan 2006 | TW |
Number | Date | Country | |
---|---|---|---|
20090135613 A1 | May 2009 | US |