Other features and advantages of this invention will become more apparent in the following detailed description of the preferred embodiments of this invention, with reference to the accompanying drawings, in which:
a illustrates a schematic view of a first embodiment of a heat-dissipating structure of a disc drive of the present invention;
b illustrates a schematic cross sectional view of a line aa′ of
c illustrates a schematic cross sectional view of a line bb′ of
a illustrate a schematic view of a third preferred embodiment of the heat-dissipating structure of the disc drive of the present invention; and
b illustrates a schematic cross sectional view of a line bb′ of
The present invention provides a heat-dissipating structure of a tray applied to a disc drive, that can lead airflow produced by a rotated disc into a descent part of the tray. Airflow between the tray and the disc is thus moved downward so as to increase the flowing speed and the flowing quantity of the airflow flowing through an optical pickup unit (OPU), and then improve the heat-dissipating ability of the electronic element in the disc drive.
Please refer to
The diversion plate 21 is mounted on one side of the loading surfaces 2010 and 2012, and comprises an inclined plane 210 between the diversion plate 21 and the loading surfaces 2010 and 2012 as a buffer area of the connection of both. It is to be noted that the surface of the diversion plate 21 is lower than the loading surfaces 2010 and 2012, and the diversion plate 21 is sloped downward along the rotating direction of the disc.
Please refer to
Hence, when the disc is in rotation, the airflow driven by the rotating is moved downward along the diversion plate 21 to increase the speed and the quantity of the airflow passing through the OPU for promoting the heat-dissipating effect to the OPU.
The body 201, the loading surfaces 2010 and 2012, and the diversion plate 21 are integrated as one member and made of the plastics. The member normally adopts the way of an eject-rod or eject-board of the injection molding to de-molded.
Please refer to
The slope direction of the diversion plate 21 in this embodiment is similar to the first embodiment, but the diversion area is larger. Therefore, when the airflow flows to the diversion plate 21 and continuously goes to the extended part 212, comparatively the flow speed and the quantity of the airflow are increased so as to enhance the heat-dissipating effect.
Please refer to
Please be noted that the diversion baffle 2016 is sloped downward and toward the central hole 2014. The surface of the diversion baffle 2016 is higher than that of the diversion plate 21, and there is a gap between the diversion baffle 2016 and the diversion plate 21. Therefore, the airflow driven by the rotated disc can be led out by the diversion baffle 2016 and the diversion plate 21 and flow through the gap. The separated structure speeds up the flow rate in order to effectively direct the airflow to the OPU for better dissipation.
The heat-dissipating structure in the present invention makes a height difference on the surface of the tray of the disc drive. By ways of the airflow driven by the rotated disc and the non-slip boundary condition generated on the surface of the tray, the air may flow downward and through the height difference so as to increase the flow rate of the lower layer airflow; simultaneously, the air may be led to a location with a heat source, such as the OPU. Therefore, the heat can be brought out effectively so as to enhance the heat-dissipation effect of the disc drive.
Number | Date | Country | Kind |
---|---|---|---|
95120627 | Jun 2006 | TW | national |