Various thermal management systems are available for heat generating devices, such as computer systems and electronics. A simple thermal management system includes a heat sink and a cooling fan. The heat sink is positioned in contact with the electronic components generating heat to transfer this heat into the surrounding air. A cooling fan may be positioned to blow air across the heat sink to dissipate heat into the surrounding environment.
While cooling fans can often be effectively implemented in stand-alone devices, large data centers often locate many heat-generating devices in closely packed arrangements. In such environments, “heat shadowing” remains an issue. Heat shadowing is caused by carryover heat from adjacent or “upstream” devices. For example, a fan that blows heat away from one device may transport that heat across other devices, negatively impacting the operation of those devices.
In addition, fans alone may not provide sufficient cooling for the high power dissipation of devices in large data centers, and fan noise and power consumption are problematic. It is noted that temperature rises if heat is not removed as fast as the heat is produced. Most of the electrical power supplied to computing devices is turned to heat during their operation.
Air conditioning systems, such as chillers, often consume large amounts of electrical power to operate. The inefficiencies of the air conditioning systems reduce overall efficiency of the data center.
Rack mounted electronic equipment (e.g., computing, networking, and storage devices) can generate large quantities of heat by the very nature of their operation. This heat needs to be dissipated to help prevent damage to the electronic equipment, and enhance operation and lifetime of the electronic equipment. Data centers have traditionally utilized front-to-rear air convection cooling for cooling rack mounted electronic equipment. But equipment density has increased to the point that heat shadowing renders these cooling systems impractical in many environments. Energy efficiency and operating expense considerations also call air cooling into question.
By way of illustration, in order to satisfy device temperature requirements using forced air cooling, large volumes of heat need to be handled by heat sinks and fans. Heat sinks and fans are significant impediments to system board and processor layout. As an example, the volume of space for an air cooled GPU heat sink is approximately 25 mm×100 mm×200 mm for a 225 W configuration and about 80 mm×80 mm×30 mm for a 120 W configuration. The size may correspond at least to some extent on ambient temperatures, air flow, and the neighboring components. In addition to the footprint for the heat sink itself, a fan is needed to bring cool air to the heat sink fins.
Difficulties cooling electronic equipment are compounded, for example, in rack system configurations where multiple GPUs are closely spaced on the system board along the air flow path. For example, the warm air exiting one heat sink feeds directly into the second and third heat sinks, resulting in significantly reduced cooling capacity for those heat sinks.
Rapid increases in equipment power density have also strained the viability of operating models using air cooled racks and Computer Room Air Handlers (CRAHs) supported by chiller-based air conditioning. These systems suffer from poor efficiency and high energy costs.
Proposed legislation has increased pressure on customers to reduce their carbon footprint. These customers view liquid-cooling as an acceptable way to reduce energy consumption by increasing the ability to use so-called “free-cooling” (direct induction of cool outside air used for air cooling, or the use of low temperature water from natural sources such as lakes and rivers). Liquid-cooing also facilitates re-using “waste” heat generated by the data center in other applications. For example, the waste heat may be used to heat nearby buildings during cooler seasons. Projects have also been implemented to reuse waste heat for industrial processes in the United States.
While liquid cooling is more efficient than chiller-based air conditioning, implementation of traditional liquid cooled systems has been hampered by the need for a highly invasive plumbing infrastructure. For example, water lines often need to be extended into the electronic equipment itself (e.g., within the server housing), and directly attached to the central processing unit(s) (CPU), graphics processing unit(s) (GPU), or other heat sources. These plumbing requirements also introduce the risk of water damage during connecting/disconnecting the electronics equipment. Achieving density goals for rack systems while meeting device temperature requirements and electrical design rules can be difficult. Existing systems with plumbing in the server may also impact upgrades and service events due to the extensive amount of interconnection between the devices. For example, the tubes are typically designed for series flow, and often the entire tube network needs to be removed.
Heat dissipating systems and methods disclosed herein provide direct cooling options for servers and other equipment. An example device includes a dry disconnect interface, which provides a cooling “socket” along a side of the equipment tray. During operation, heat may be transported from the heat generating device, across the dry disconnect interface, and “dumped” into a thermal bus bar for removal by liquid or other transport mechanism.
The server tray design may combine air convection, solid conduction, thermo-siphon/heat-pipe phase change thermal transport, pumped liquid loop heat transfer, or other cooling approaches. The combination and design of these elements may be optimized for individual equipment tray configurations, without affecting rack level cooling design. The dry disconnect interface provides a point of separation between the server and the rack, without introducing the risk of water damage during connecting/disconnecting the electronics equipment in the rack system.
It is noted that the server design is independent of the rack design. Each may be optimized for a specific application, as long as the common interface (the dry disconnect) removes the heat generated by the server equipment.
The heat dissipating system provides improved cooling when compared to conventional air cooled, liquid cooled, or air conditioning systems. The heat dissipating system provides better cooling of multiple devices in series, without heat shadowing. It is noted that the coolant may be directed to the devices in parallel, even if there are multiple devices from front to rear of the rack. The dry disconnect interface eliminates concerns with liquid cooling techniques by eliminating plumbing inside the server equipment, and costly “dripless quick disconnects” are not needed to meet electrical design guidelines. And, the heat dissipating system can be implemented with less support infrastructure (e.g., air conditioning) for managing heated air. In addition, the heat that is removed can be readily reused for other applications and therefore is not “wasted.”
The heat dissipating system may also have a smaller footprint than traditional air cooled systems. The smaller size enables more efficient system design and layout. For example, motherboard components can be more densely packed in a server tray, more components can be provided on each board, smaller boards can be used, and/or the boards themselves can be more densely spaced. Electrical signal routing constraints can also be reduced or altogether eliminated. For example, components can be oriented in a manner which blocks air flowing through the system, if that is advantageous for electrical layout.
It is noted that the heat dissipating systems and methods described herein are not limited to use with any particular type of device or in any particular environment.
Before continuing, the terms “includes” and “including” are defined to mean, but are not limited to, “includes” or “including” and “includes at least” or “including at least.” The term “based on” is defined to mean “based on” and “based at least in part on.”
In an example, heat source 12 may be connected to a heat sink 14. The heat sink 14 may include any suitable structure. For example, the heat sink 14 may be a metal structure and may include a plurality of fins, which are spread apart and face away from the heat source 12 so that heat can be transferred away from the heat source 12. The heat sink may be manufactured as aluminum conduction plates. The aluminum conduction plates may have a thermal conductivity of about 200 W/mK and offer a low resistance. The aluminum conduction plates may also be relatively thin (e.g., about 4 mm thick). Use of this material enables efficient heat removal (e.g., providing a heat flux of about 30 W/cm2) in relatively flat configurations. Other configurations of the heat sink 14 are also contemplated. For example, the heat sink may not have any fins at all, and the heat may be moved by heat pipe into the heat exchanger without heating the surrounding air.
The heat sink 14 is connected to a heat transport device 16, such as a heat pipe. In another example, the heat source 12 may be connected directly to the heat transport device 16, without using a heat sink 14. In either case, the heat transport device 16 moves heat from the electronic component to a primary heat exchanger 18. The primary heat exchanger 18 may be connected via a dry disconnect interface 20 to a secondary heat exchanger 22, such as the thermal bus bar described in more detail below.
The secondary heat exchanger may be liquid cooled and deliver heat outside of the rack system and/or to another suitable location for dissipating heat to the surrounding environment and/or for reuse in downstream heat harvesting applications (e.g., heating buildings). For example, the secondary heat exchanger may be implemented as a closed loop system with air cooled radiator 24 and pump 26 for recirculating the cooling fluid through the secondary heat exchanger 22. The process is substantially continuous and cyclical during operation.
It is noted that the diagram shown in
The secondary heat exchanger 22′ may also be fluid cooled, and delivers heat outside of the rack system and/or to another suitable location for dissipating heat. For example, the secondary heat exchanger 22′ may be a closed loop system with radiator 24′ and pump 26′ for circulating the cooling fluid.
Any suitable fluid may be used in the fluid cooling systems (e.g., thermal transport 16′ and/or secondary heat exchanger 22′). In an example, the fluid is water or a fluid mixture. In another example, the fluid may be a liquid which can rapidly undergo phase change from a liquid to a vapor and back to a liquid again. The fluid undergoes phase changes to absorb, transport, and release heat. Examples of such fluids include, but are not limited to, helium, nitrogen, ammonia, acetone, methanol, ethanol, water, and toluene, to name only a few examples. The specific fluid may be selected based on design considerations, such as but not limited to system pressure, system operating temperature, and thermal conductivity.
It is noted that while fluid cooling is implemented in the heat dissipating system 10′, both inside the electronic component and at the rack infrastructure (e.g., in the thermal bus bar), no fluid is exchanged at the dry disconnect interface 20′ between the thermal bus bar and the electronic component.
The architecture described above with reference to
Before continuing, it is noted that the heat dissipating system, the components of the heat dissipating system, and the configuration is provided for purposes of illustration. These examples are not intended to be limiting. Other devices, components, and configurations are also contemplated. While the heat dissipating system is described herein as it may be used in a rack environment for computer systems, such as a data center, the heat dissipating system is not limited to use in any particular operating environment.
The components (e.g., processors, memory and GPU) are provided inside a housing 113 (e.g., a sheet metal enclosure) of the rack server 110. Heat transport 116 may be attached as desired to internal components of the rack server 110 when installed on the rack system (by sliding into the page). The attachment makes a blind mate signal and power connection at the back of server 100 (not shown) into a common backplane interconnect system. The heat transport moves heat to a primary heat exchanger 118 (e.g., metal such as aluminum and/or copper blocks) on a side of the sheet metal enclosure 113.
For purposes of illustration, the two piece configuration shown in
It is noted that the heat sinks 114a and 114b and heat transports 116a and 116b may be pre-attached to GPU, and then the entire assembly 112 can be connected in a server tray. The primary heat exchange 118 is provided on a side of the sheet metal enclosure, and is exposed along the exterior of one side of the rack server 110.
The dry disconnect interface 120 is formed between primary heat exchange 118 and secondary heat exchange or thermal bus bar 122. The housing 113 of rack server 110 is shown in dashed lines so that heat transport 116 (e.g., heat pipes) is visible as the heat transport may extend from the GPU inside the housing 113. The heat transport 116 extends external from the housing 113 and is connected to the primary heat exchange 118. The thermal bus bar 122 may be mounted to a vertical wall 130 (e.g., to conventional support brackets, not shown) of the rack system 105.
The primary heat exchange 118 and a heat block portion of the thermal bus bar 122 connecting to the primary heat exchange 118 may be manufactured of thermal materials which improve thermal conductivity. Accordingly, the primary heat exchange 118 thermally engages with the thermal bus bar 122 to transfer heat from the heat transport 116 to a cooling fluid in the thermal bus bar 122. The cooling fluid transports heat away from the rack server 110 (e.g., out of the rack system 105).
The rack server 110 may be installed into the rack system 105 with blind mate power and signal connectors positioned at the back, similar to a conventional blade server system. After installing in the rack system 105, the rack server 110 may be connected via the dry disconnect interface 120 to the thermal bus bar 122.
The rack server 110 may be constrained and have proper clearance such that the dry disconnect interface 122 does not make contact with the fluid manifold in the thermal bus bar 122, even during typical “front to back” motion during installation. When no further front to back motion is needed, and the server tray makes a proper electrical connection at the back, the entire server tray can then be translated “sideways”. The sideways motion completes a thermal circuit by joining the primary heat exchange 118 to the thermal bus bar 122.
After the rack server 110 is installed in the rack system 105, a clamping mechanism maintains the primary heat exchange 118 in thermal contact with the thermal bus bar 122. The clamping mechanism may be any suitable connection system, such as a spring-loaded connector.
The example clamp mechanism 140 is shown including a sliding bar 142 to slide in rails 149 held by slots (e.g., slot 151 in
The clamp mechanism 140 is shown in a locked state (
After installing the rack server 110 by sliding the rack server 110 horizontally into the brackets 146, the sliding bar 142 can be moved in the opposite direction shown by arrow 148b and back to the locked state (see
According to the above described example, the design of the clamp results in a push and pull design to accomplish installation. That is, the forward/backward movement makes a signal and power connection between the rack component and the rack system, and a side-to-side movement makes a thermal connection and complete a thermal circuit between the thermal transport in the electronic component and a rack level cooling infrastructure.
This side to side movement and general use of the side of the rack component provides an extensive surface area to connect multiple devices, as opposed to the rear of the server which has a limited surface area. This also allows heat pipe solutions to be provided directly in the server, because the transport is small (e.g., under 250 mm), and enables expansion because dry connections can be readily configured and/or added to the system to meet a customer's changing needs.
It is noted that this interface is a dry disconnect, that is, no fluid is exchanged between the thermal bus bar 122 and the primary heat exchange 118. Other clamping mechanisms may also be used to provide a good thermal interface.
As shown in
The pin fin array 156 may be made of thermally conductive polymers, aluminum or copper (or other metals or composites). The pin fin array 156 may be installed using a compliant VHB laminate, which also provides leveling for the dry disconnect mating surfaces. The perimeter of the pin fin array 156 may have a compliant adhesive to create a fluid barrier. Screws may be used in screw holes for retention assurance.
Each passage in the pin fin array 156 may include a pair of thermally actuated valves 158, as seen in
The valves passively regulate the temperature of the outlet water. In an example, the valves may be active valves. For example, active valves may be actuated by a signal, such as an electrical signal, that triggers movement of the valves. In another example, the valves are passive valves, actuated by the thermal expansion of a wax material within a piston, and therefore do not need an electrical connection to operate.
When the coolant temperature is low, the valve 158 is closed (shown fully closed in
The valves (passive or active) may serve a number of purposes. By modulating the flow of fluid through the manifolds (a single manifold forms part of the larger thermal bus bar 122), the volumetric flow rate of the fluid is tailored to the specific thermal needs of the device being cooled. This reduces (and even minimizes) pumping power, system pressure, the potential for leaks, and thus results in several additional benefits. Control at the single manifold level is possible, and allows for individualized device thermal control. For example, “custom thermal control” can be delivered for a 150 W CPU versus a 300 W GPU, all housed in the same server. The valves are also designed to increase (and even maximize) the temperature of the fluid leaving the manifold. By modulating the flow of water in accordance with the thermal load being removed, the temperature of the fluid can be controlled and even maximized.
Removing heat from the rack component may be via a heat pipe in the rack component. Removing heat from the rack component may be via a sealed fluid circulation system in the rack component, and no fluid crosses the dry disconnect interface.
Still further operations may include regulating temperature of a cooling fluid in the thermal bus bar using active valves. Operations may also include regulating temperature of a cooling fluid in the thermal bus bar using passive valves actuated by thermal expansion of a wax material within a piston.
Further operations may also include an electrical connection movement to make a signal and power connection between the rack component and the rack system, and a thermal connection movement different than the electrical connection movement to make a thermal connection and complete a thermal circuit between the thermal transport in the electronic component and a rack level cooling infrastructure.
It is noted that the examples shown and described are provided for purposes of illustration and are not intended to be limiting. Still other examples are also contemplated.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/024564 | 2/9/2012 | WO | 00 | 7/31/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/119243 | 8/15/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
211501 | Doane | Jan 1879 | A |
2582553 | McMurtie | Jan 1952 | A |
3279875 | St. Cyr | Oct 1966 | A |
3807572 | Luvara | Apr 1974 | A |
4453785 | Smith | Jun 1984 | A |
4714107 | Adsett | Dec 1987 | A |
4716722 | Rambach | Jan 1988 | A |
5228385 | Friedrich | Jul 1993 | A |
5370178 | Agonafer | Dec 1994 | A |
5417012 | Brightman et al. | May 1995 | A |
5505533 | Kammersqard | Apr 1996 | A |
5514906 | Love | May 1996 | A |
5829514 | Smith et al. | Nov 1998 | A |
5867369 | Antonuccio | Feb 1999 | A |
5918469 | Cardella | Jul 1999 | A |
5964092 | Tozuka et al. | Oct 1999 | A |
5971166 | Ong | Oct 1999 | A |
5982616 | Moore | Nov 1999 | A |
5986882 | Ekrot et al. | Nov 1999 | A |
6084769 | Moore et al. | Jul 2000 | A |
6111749 | Lamb et al. | Aug 2000 | A |
6234842 | Keay et al. | May 2001 | B1 |
6305180 | Miller et al. | Oct 2001 | B1 |
6333849 | Donahoe | Dec 2001 | B1 |
6377453 | Belady | Apr 2002 | B1 |
6594148 | Nguyen | Jul 2003 | B1 |
6600649 | Tsai et al. | Jul 2003 | B1 |
6796372 | Baer | Sep 2004 | B2 |
6879486 | Banton | Apr 2005 | B1 |
6987673 | French | Jan 2006 | B1 |
7051802 | Baer | May 2006 | B2 |
7057893 | Nicolai et al. | Jun 2006 | B2 |
7106590 | Chu et al. | Sep 2006 | B2 |
7133283 | Faneuf et al. | Nov 2006 | B2 |
7298619 | Malone et al. | Nov 2007 | B1 |
7318322 | Ota et al. | Jan 2008 | B2 |
7393236 | Thompson et al. | Jul 2008 | B2 |
7397661 | Campbell et al. | Jul 2008 | B2 |
7403384 | Pflueger | Jul 2008 | B2 |
7403392 | Attlesey | Jul 2008 | B2 |
7450378 | Nelson et al. | Nov 2008 | B2 |
7539020 | Chow et al. | May 2009 | B2 |
7564685 | Clidatas et al. | Jul 2009 | B2 |
7647787 | Belady et al. | Jan 2010 | B2 |
7715194 | Brewer et al. | May 2010 | B2 |
7718891 | Adducci | May 2010 | B2 |
7724524 | Campbell | May 2010 | B1 |
7764494 | Balzano | Jul 2010 | B2 |
7800900 | Noteboom et al. | Sep 2010 | B1 |
7907402 | Caveney | Mar 2011 | B2 |
7907409 | Wyatt et al. | Mar 2011 | B2 |
7916480 | Woody et al. | Mar 2011 | B2 |
7916483 | Campbell et al. | Mar 2011 | B2 |
7957132 | Fried | Jun 2011 | B2 |
7961475 | Campbell | Jun 2011 | B2 |
7971632 | Eriksen | Jul 2011 | B2 |
8004832 | Brunschwiller et al. | Aug 2011 | B2 |
8014150 | Campbell et al. | Sep 2011 | B2 |
8027162 | Campbell et al. | Sep 2011 | B2 |
8050036 | Suzuki et al. | Nov 2011 | B2 |
8079481 | Canfield et al. | Dec 2011 | B2 |
8089766 | Attlesey | Jan 2012 | B2 |
8164901 | Neudorfer | Apr 2012 | B2 |
8194406 | Campbell | Jun 2012 | B2 |
8327656 | Tutunoglu | Dec 2012 | B2 |
8351206 | Campbell | Jan 2013 | B2 |
8369090 | Chester | Feb 2013 | B2 |
8498113 | Tran | Jul 2013 | B2 |
8755192 | Schrempp | Jun 2014 | B1 |
8844732 | Wu et al. | Sep 2014 | B2 |
9803937 | Franz et al. | Oct 2017 | B2 |
9927187 | Moore et al. | Mar 2018 | B2 |
20020021557 | Ishimine et al. | Feb 2002 | A1 |
20020163782 | Cole | Nov 2002 | A1 |
20030128516 | Faneuf et al. | Jul 2003 | A1 |
20030231467 | Replogle | Dec 2003 | A1 |
20040069455 | Lindemuth | Apr 2004 | A1 |
20040070949 | Oikawa et al. | Apr 2004 | A1 |
20040201335 | Davis | Oct 2004 | A1 |
20040221604 | Ota | Nov 2004 | A1 |
20050128705 | Chu et al. | Jun 2005 | A1 |
20050168945 | Coglitore | Aug 2005 | A1 |
20050199372 | Frazer et al. | Sep 2005 | A1 |
20050265004 | Coglitore | Dec 2005 | A1 |
20050270751 | Coglitore | Dec 2005 | A1 |
20050280986 | Coglitore | Dec 2005 | A1 |
20050286235 | Randall et al. | Dec 2005 | A1 |
20060012955 | Vinson et al. | Jan 2006 | A1 |
20060012959 | Lee | Jan 2006 | A1 |
20060065874 | Campbell | Mar 2006 | A1 |
20060126296 | Campbell et al. | Jun 2006 | A1 |
20060152238 | Beaman | Jul 2006 | A1 |
20060176664 | Casebolt | Aug 2006 | A1 |
20060176665 | Matsushima | Aug 2006 | A1 |
20060232945 | Chu et al. | Oct 2006 | A1 |
20060278372 | Lai et al. | Dec 2006 | A1 |
20070006992 | Liu et al. | Jan 2007 | A1 |
20070034354 | Tung et al. | Feb 2007 | A1 |
20070091579 | Larson et al. | Apr 2007 | A1 |
20070119569 | Campbell et al. | May 2007 | A1 |
20070163749 | Miyahara | Jul 2007 | A1 |
20070188996 | Liang | Aug 2007 | A1 |
20070235180 | Ouyang et al. | Oct 2007 | A1 |
20070258211 | Sonobe | Nov 2007 | A1 |
20070259616 | Scattolin | Nov 2007 | A1 |
20070274043 | Shabany | Nov 2007 | A1 |
20070289718 | McCordic et al. | Dec 2007 | A1 |
20070291452 | Gilliland et al. | Dec 2007 | A1 |
20070297136 | Konshak | Dec 2007 | A1 |
20080024977 | Coglitore | Jan 2008 | A1 |
20080055846 | Clidaras | Mar 2008 | A1 |
20080232064 | Sato et al. | Sep 2008 | A1 |
20080239649 | Bradicich et al. | Oct 2008 | A1 |
20080245083 | Tutunoglu | Oct 2008 | A1 |
20080271878 | Harvey et al. | Nov 2008 | A1 |
20090021907 | Mann | Jan 2009 | A1 |
20090052136 | Chung | Feb 2009 | A1 |
20090065178 | Kasezawa et al. | Mar 2009 | A1 |
20090086426 | Brandon | Apr 2009 | A1 |
20090129011 | Balzano | May 2009 | A1 |
20090225514 | Correa et al. | Sep 2009 | A1 |
20090260777 | Attlesey | Oct 2009 | A1 |
20090262495 | Neudorfer | Oct 2009 | A1 |
20090266515 | Oikawa | Oct 2009 | A1 |
20100003911 | Graczyk | Jan 2010 | A1 |
20100032142 | Copeland et al. | Feb 2010 | A1 |
20100033931 | Miyazawa | Feb 2010 | A1 |
20100051235 | Mori et al. | Mar 2010 | A1 |
20100103614 | Campbell | Apr 2010 | A1 |
20100103618 | Campbell | Apr 2010 | A1 |
20100110621 | Dunn et al. | May 2010 | A1 |
20100141379 | Tucker | Jun 2010 | A1 |
20100149754 | Chapel et al. | Jun 2010 | A1 |
20100165565 | Hellriegal | Jul 2010 | A1 |
20100175866 | Tani et al. | Jul 2010 | A1 |
20100226094 | Attlesey | Sep 2010 | A1 |
20100236772 | Novotny et al. | Sep 2010 | A1 |
20100248609 | Tresh | Sep 2010 | A1 |
20100263830 | Noteboom | Oct 2010 | A1 |
20100290190 | Chester et al. | Nov 2010 | A1 |
20100319883 | Facusse | Dec 2010 | A1 |
20100326628 | Campbell et al. | Dec 2010 | A1 |
20110045759 | Rasmussen et al. | Feb 2011 | A1 |
20110056674 | Campbell et al. | Mar 2011 | A1 |
20110056675 | Barringer et al. | Mar 2011 | A1 |
20110060470 | Campbell et al. | Mar 2011 | A1 |
20110073726 | Bergesch | Mar 2011 | A1 |
20110079376 | Loong et al. | Apr 2011 | A1 |
20110192568 | Hsieh | Aug 2011 | A1 |
20110240281 | Avery | Oct 2011 | A1 |
20110242760 | Bott et al. | Oct 2011 | A1 |
20110303394 | Branton | Dec 2011 | A1 |
20110315353 | Campbell | Dec 2011 | A1 |
20110315367 | Romero et al. | Dec 2011 | A1 |
20120019115 | Dunwoody | Jan 2012 | A1 |
20120050984 | Peng et al. | Mar 2012 | A1 |
20120069514 | Ross | Mar 2012 | A1 |
20120116590 | Florez-Larrahondo et al. | May 2012 | A1 |
20120127655 | Tung et al. | May 2012 | A1 |
20120138285 | Tsubaki et al. | Jun 2012 | A1 |
20120273185 | Arimilli et al. | Nov 2012 | A1 |
20120325126 | Tran | Dec 2012 | A1 |
20130077232 | Nordin | Mar 2013 | A1 |
20130081792 | Tufty | Apr 2013 | A1 |
20130141863 | Ross et al. | Jun 2013 | A1 |
20130163185 | Gilges et al. | Jun 2013 | A1 |
20130308267 | Wu | Nov 2013 | A1 |
20140033753 | Lu | Feb 2014 | A1 |
20140038510 | Bailey | Feb 2014 | A1 |
20140049146 | Kamaludeen | Feb 2014 | A1 |
20140049914 | Campbell | Feb 2014 | A1 |
20140085821 | Regimbal et al. | Mar 2014 | A1 |
20150003009 | Moore | Jan 2015 | A1 |
20160066478 | Van Den Bergen | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2519983 | Nov 2002 | CN |
1653612 | Aug 2005 | CN |
1956101 | May 2007 | CN |
101132688 | Feb 2008 | CN |
100455175 | Jan 2009 | CN |
101398706 | Apr 2009 | CN |
101509732 | Aug 2009 | CN |
101568248 | Oct 2009 | CN |
1581366 | May 2010 | CN |
101111734 | May 2010 | CN |
101893921 | Nov 2010 | CN |
201654658 | Nov 2010 | CN |
201020130382. 7 | Nov 2010 | CN |
102014598 | Apr 2011 | CN |
102089727 | Jun 2011 | CN |
102159051 | Aug 2011 | CN |
102159058 | Aug 2011 | CN |
102189311 | Sep 2011 | CN |
1860695 | Nov 2007 | EP |
1481467 | Jun 2010 | EP |
2490303 | Aug 2012 | EP |
S6391376 | Apr 1988 | JP |
H02300890 | Dec 1990 | JP |
11220281 | Aug 1999 | JP |
2000059062 | Feb 2000 | JP |
2000076537 | Mar 2000 | JP |
200016662 | Jun 2000 | JP |
2001168256 | Jun 2001 | JP |
2004295718 | Oct 2004 | JP |
2005228216 | Aug 2005 | JP |
2007123547 | May 2007 | JP |
2008509542 | Mar 2008 | JP |
2010004736 | Jan 2010 | JP |
2011108891 | Jun 2011 | JP |
2012248576 | Dec 2012 | JP |
2013506996 | Feb 2013 | JP |
1020090102804 | Sep 2009 | KR |
100944890 | Mar 2010 | KR |
20110004857 | Jan 2011 | KR |
1020110004857 | Jan 2011 | KR |
101103394 | Jan 2012 | KR |
1020100019308 | Feb 2018 | KR |
M254049 | Dec 2004 | TW |
M312877 | May 2007 | TW |
M421677 | Jan 2012 | TW |
201221034 | May 2012 | TW |
201228570 | Jul 2012 | TW |
201249322 | Dec 2012 | TW |
WO-0242703 | May 2002 | WO |
WO-03107523 | Dec 2003 | WO |
WO-2010062553 | Jun 2010 | WO |
WO-2011073668 | Jun 2011 | WO |
WO-2011092333 | Aug 2011 | WO |
WO-2011133166 | Oct 2011 | WO |
WO-2012024564 | Feb 2012 | WO |
WO-PCTUS2012024564 | Feb 2012 | WO |
WO-2012028718 | Mar 2012 | WO |
WO-PCTUS2012028718 | Mar 2012 | WO |
WO-PCTUS2012028744 | Mar 2012 | WO |
WO-2012057739 | May 2012 | WO |
WO-PCTUS2012057739 | Sep 2012 | WO |
WO-PCTUS2012062874 | Oct 2012 | WO |
WO-PCTUS2013024037 | Jan 2013 | WO |
WO-2012157247 | Jul 2014 | WO |
Entry |
---|
Anis Dehbi, “Efficient Electrothermal Simulation of Power Electronics for Hybrid Electric Vehicle,” pp. 1-7, Apr. 20-23, 2008 http://www.technet-alliance.com/uploads/tx_caeworld/paper_eurosime32_killat_rudnyi.pdf. |
EPO; European Extended Search Report dated Oct. 12, 2015, EP12871455.7, 12 pps. |
EPO, Extended European Search Report, dated Feb. 12, 2016, EP App No. 12871555.4 , 11 pps. |
EPO, Extended European Search Report, dated May 3, 2016, EP App. No. 12885470.0. |
http://www.technet-alliance.com/uploads/tx_caeworld/paper_eurosime32_killat_rudnyi.pdf > On pp. 1-7, Efficient Electrothermal Simulation of Power Electronics for Hybrid Electric Vehicle, Dehbi, A. et al., Apr. 20-23, 2008. |
PCT/ISA/KR, International Search Report dated Nov. 12, 2012, PCT/US2012/028744, 9 pps. |
PCT/ISA/KR, International Search Report dated Oct. 12, 2012, PCT/US2012/024564, 10 pps. |
PCT/ISA/KR, International Search Report, dated Nov. 14, 2012, PCT/US2012/028718, 9 pps. |
PCT/ISA/KR, International Search Report, dated Nov. 20, 2013, PCT/US2012/062874, 11 pps. |
PCT/ISA/KR, International Search Report, dated Oct. 25, 2013, PCT/US2013/024037, 17 pps. |
Extended European Search Report dated Aug. 9, 2016, Application Number: 12867753.1, pp. 8. |
Moore, David A., et al.; “Non-Final Office Action cited in U.S. Appl. No. 14/376,137” dated Oct. 13, 2017; 31 pages. |
Alcatel-Lucent, “Alcatel-lucent Modular Cooling Solution,” Technology White Paper, 2010, pp. 1-14. |
Anis Dehbi et al., “Efficient Electrothermal Simulation of Power Electronics for Hybrid Electric Vehicle,” Apr. 2008, pp. 1-7, IEEE. |
Extended European Search Report, EP Application No. 12887787, dated May 5, 2016, pp. 1-8, EPO. |
Extended European Search Report, EP Application No. 13873193, dated Aug. 24, 2016, pp. 1-8, EPO. |
Office Action, EP Application No. 13873193, dated May 19, 2017, pp. 1-9, EPO. |
Wisegeek, “What Is a Relay Rack?,” 2012, pp. 1-4 (online), Conjecture Corporation, Retrieved from the Internet on Aug. 6, 2012 at URL:<wisegeek.com/what-is-a-relay-rack.htm>. |
Number | Date | Country | |
---|---|---|---|
20140376178 A1 | Dec 2014 | US |