This application claims the priority benefit of Taiwan application serial no. 106128905, filed on Aug. 25, 2017. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The invention relates to a blade and a fan, and particularly relates to a heat dissipation blade and a heat dissipation fan.
Heat dissipation fans are disposed in most of the common electronic apparatuses, such as servers, main bodies of personal desktop computers, all-in-one (AIO) computers, laptop computers, or displays. Through an airflow generated by the heat dissipation fan, heat generated during operation of the electronic apparatus is discharged out of the apparatus.
Taking centrifugal fans as an example, a centrifugal fan is normally manufactured by integrally forming a hub and blades through plastic injection. Due to limitations on materials and manufacturing processes, it is difficult to reduce the thickness of the plastic blades. As a consequence, it is challenging to increase the number of plastic blades arranged on the circumference of the hub. If the number of plastic blades is increased, a total weight of the centrifugal fan may be significantly increased. Due to an excessive load, if a fan speed of the centrifugal fan is increased, high-frequency noises may be generated.
The invention provides a heat dissipation fan and heat dissipation blades capable of increasing heat dissipation efficiency.
A heat dissipation blade according to an embodiment of the invention is adapted to be fixed to a hub. The heat dissipation blade includes a curved surface body and a flow guiding portion. The curved surface body has a pressure bearing surface and a negative pressing surface opposite to the pressure bearing surface. The flow guiding portion is connected to the curved surface body. In addition, the flow guiding portion has a concave surface and a convex surface opposite to the concave surface, the concave surface is recessed in the pressure bearing surface, and the convex surface protrudes outward from the negative pressing surface.
A heat dissipation fan according to an embodiment of the invention includes a hub and a plurality of heat dissipation blades. The heat dissipation blades are arranged around the periphery of the hub. Each of the heat dissipation blades includes a curved surface body and a flow guiding portion. The curved surface body has a pressure bearing surface and a negative pressing surface opposite to the pressure bearing surface. The flow guiding portion is connected to the curved surface body. In addition, the flow guiding portion has a concave surface and a convex surface opposite to the concave surface, the concave surface is recessed in the pressure bearing surface, and the convex surface protrudes outward from the negative pressing surface.
Based on the above, the heat dissipation blades in the heat dissipation fan according to the embodiments of the invention have a greater flow guiding area. When the heat dissipation fan operates, a flow rate of the heat dissipation airflow may be increased to attain desirable heat dissipation efficiency.
In order to make the aforementioned and other features and advantages of the invention comprehensible, several exemplary embodiments accompanied with figures are described in detail below.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Taking one of the heat dissipation blades 120 as an example, the heat dissipation blade 120 includes a curved surface body 121 and a flow guiding portion 122. As an example, the curved surface body 121 is described as being connected to one flow guiding portion 122 in the embodiment. For example, the heat dissipation fan 100 is configured to rotate along a rotating direction R, such as a counterclockwise direction. In addition, the curved surface body 121 has a pressure bearing surface 121a and a negative pressing surface 121b opposite to the pressure bearing surface 121a. In addition, the pressure bearing surface 121a is configured to receive an airflow entering the heat dissipation fan 100 when the heat dissipation fan 100 operates. Besides, the curved surface body 121 further has a combining end 121c and a flow guiding end 121d opposite to the combining end 121c. In addition, the combining end 121c is fixed to the hub 110, and the flow guiding portion 122 is disposed to be adjacent to an end edge of the flow guiding end 121d. In other words, a distance between the flow guiding portion 122 and the hub 110 is greater than a distance between the flow guiding portion 122 and the end edge of the flow guiding end 121d.
The curved surface body 121 and the flow guiding portion 122 may be an integrally formed sheet metal component. In addition, the flow guiding portion 122 is formed at the curved surface body 121 by punching. To be more specific, the flow guiding portion 122 has a concave surface 122a and a convex surface 122b opposite to the concave surface 122a. In addition, the concave surface 122a is recessed in the pressure bearing surface 121a, and the convex surface 122b protrudes outward from the negative pressing surface 121b. The pressuring bearing surface 121a of the curved surface body 121 and the concave surface 122a of the flow guiding portion 122 smoothly connected to each other define a flow guiding surface receiving the airflow entering the heat dissipation fan 100 when the heat dissipation fan 100 operates. Compared with a conventional plate-like heat dissipation blade or heat dissipation blade with a single curved surface, the flow guiding surface of the heat dissipation blade 120 of the embodiment has a greater area. Thus, when the heat dissipation fan 100 operates, the heat dissipation blades 120 arranged around the periphery of the hub 110 are able to increase a flow rate of a heat dissipation airflow to attain desirable heat dissipation efficiency.
In the embodiment, the pressure bearing surface 121a of the curved surface body 121 and the concave surface 122a of the flow guiding portion 122 are respectively concave curved surfaces, and radii of curvature of the pressure bearing surface 121a and the concave surface 122a are different. Comparatively, the negative pressing surface 121b of the curved surface body 121 and the convex surface 122b of the flow guiding portion 122 are respectively convex curved surfaces, and radii of curvature of the negative pressing surface 121b and the convex surface 122b are different. In other embodiments, the concave surface of the flow guiding portion may also be an inclined surface, a stepped surface, other irregular surfaces, or a combination of at least two of the curved surface, the inclined surface, and the stepped surface.
While a flow rate of a heat dissipation airflow of the conventional heat dissipation fan (e.g., a fan configured with plate-like heat dissipation blades or heat dissipation blades each with a single curved surfaces) may be increased by increasing a fan speed or the number of heat dissipation blades, the motor may bear an excessive load or high-frequency noises may be generated. Comparatively, without increasing the fan speed or the number of heat dissipation blades, the heat dissipation fan 100 of the embodiment is still able to increase the flow rate of the heat dissipation airflow. Therefore, the load of the motor may be reduced, and the high-frequency noises may be avoided.
Furthermore, under a condition that the fan speeds and the numbers of heat dissipation blades are equal, the flow rate of the heat dissipation airflow generated per unit time by the heat dissipation fan 100 of the embodiment is greater than the flow rate of the heat dissipation air flow generated per unit time by the conventional heat dissipation fan (e.g., a fan configured with plate-like heat dissipation blades or heat dissipation blades each with a single curved surface). In other words, under a condition that the numbers of heat dissipation blades are the same, even if the fan speed of the heat dissipation fan 100 of the embodiment is slowed down, the heat dissipation fan 100 of the embodiment is still able to generate the heat dissipation airflow with the same flow rate as that of the conventional heat dissipation fan (e.g., a fan configured with plate-like heat dissipation blades or heat dissipation blades each with a single curved surface). To put it differently, under a condition that the fan speeds are the same, even if the number of blades of the heat dissipation fan 100 of the embodiment is reduced, the heat dissipation fan 100 of the embodiment is still able to generate the heat dissipation airflow with the same flow rate as that of the conventional heat dissipation fan (e.g., a fan configured with plate-like heat dissipation blades or heat dissipation blades each with a single curved surface).
In the following, heat dissipation blades 220 to 420 of other embodiments are described as examples. The heat dissipation blades 220 to 420 in the embodiments are applicable as the heat dissipation blades of the invention. In addition, the heat dissipation blades 220 to 240 follow design principles same as or similar to those of the heat dissipation blades 120 of the first embodiments, and structures of the dissipation blades 220 to 240 are substantially similar to the structure of the heat dissipation blades 120 of the first embodiment. Thus, descriptions about the technical contents and effects the same as those of the first embodiment are omitted in the embodiments.
In the following, a heat dissipation fan 100A of another embodiment is described as an example. Heat dissipation blades in the heat dissipation fan 100A of the embodiment are substantially similar to the heat dissipation blades 120 of the first embodiment. Thus, descriptions about the technical contents and effects the same as those of the first embodiment are omitted in the following.
In other words, an area of a flow guiding surface of the first blade 120a for receiving an airflow is smaller than an area of a flow guiding surface of the second blade 120b for receiving an air flow, and the area of the flow guiding surface of the second blade 120b for receiving the air flow is smaller than an area of a flow guiding surface of the third blade 120c for receiving an airflow. In other embodiments, the heat dissipation blades arranged around the periphery of the hub may be regularly arranged along the rotational direction of the heat dissipation fan in an ascending or descending order based the areas of the flow guiding surfaces for receiving the airflows. Comparatively, the depths of the flow guiding portions 122 of the heat dissipation blades 120 and the areas of the flow guiding surfaces of the heat dissipation blades 120 for receiving the airflows in the heat dissipation fan 100 of the first embodiment are the same.
Besides, an entrance angle I1 and an exit angle O1 of the first blade 120a, an entrance angle I2 and an exit angle O2 of the second blade 120b, and an entrance angle I3 and an exit angle O3 of the third blade 120c are respectively different. More specifically, the hub 110 has an outer circumference (represented by a dot dash line passing through where the heat dissipation blades and the hub 110 are connected in the figure). Along where the heat dissipation blades and the hub 110 are connected, the entrance angles are defined as angles included between tangent lines passing through the curved surface bodies of the heat dissipation blades and tangent lines passing though the outer circumference of the hub 110. In addition, the end edges of the heat dissipation blades define an outer circumference (represented by a dot dash line passing through the end edges of the heat dissipation blades in the figure). At the end edges of the heat dissipation blades, exit angles are defined as angles included between tangent lines passing through the curved surface bodies of the heat dissipation blades and tangent lines passing through the outer circumference defined by the end edges of the heat dissipation blades.
In the embodiment, since the areas of the flow guiding surfaces for receiving the air flows of the first blade 120a, the second blade 120b, and the third blade 120c are respectively different, pressures exerted at the flow guiding surfaces of the first blade 120a, the second blade 120b, and the third blade 120c when the heat dissipation fan 100A operates are also respectively different. Therefore, energy is dispersed and high-frequency noises are avoided. Besides, since the entrance angles of the first blade 120a, the second blade 120b, and the third blade 120c are configured to be respectively different, and the exit angles of the first blade 120a, the second blade 120b, and the third blade 120c are configured to be respectively different, the energy may also be dispersed, and high-frequency noises may be avoided.
Even though the entrance angles of the first blade 120a, the second blade 120b, and the third blade 120c are configured to be respectively different, and the exit angles of the first blade 120a, the second blade 120b, and the third blade 120c are configured to be respectively different in the embodiment, the invention is not limited thereto. In other embodiments, the entrance angles of the heat dissipation blades may be configured to be the same, and the exit angles of the heat dissipation blades may also be configured to be the same. Alternatively, the entrance angles of the heat dissipation blades may be configured to be the same, but the exit angles of the heat dissipation blades may be configured to be different. Or, the entrance angles of the heat dissipation blades may be configured to be different, but the exit angles of the heat dissipation blades may be configured to be the same.
In view of the foregoing, the heat dissipation blades in the heat dissipation fan according to the embodiments of the invention have a greater flow guiding area. When the heat dissipation fan operates, the flow rate of the heat dissipation airflow may be increased to attain desirable heat dissipation efficiency. While the conventional heat dissipation fan is able to increase the flow rate of the heat dissipation airflow by increasing the fan speed or the number of the heat dissipation blades, the motor may bear an excessive load or high-frequency noises may be generated. Comparatively, without increasing the fan speed or the number of heat dissipation blades, the heat dissipation fan according to the embodiments of the invention is still able to increase the flow rate of the heat dissipation airflow. Therefore, the load of the motor may be reduced, and the high-frequency noises may be avoided.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
106128905 A | Aug 2017 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2238749 | Peltier | Apr 1941 | A |
8092185 | Hwang | Jan 2012 | B2 |
9388823 | Ohtsuka et al. | Jul 2016 | B2 |
9777742 | Yang | Oct 2017 | B2 |
20090196754 | Hwang | Aug 2009 | A1 |
20140086754 | Seiji et al. | Mar 2014 | A1 |
20140127029 | Yang | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1210705 | Mar 1999 | CN |
101555887 | Oct 2009 | CN |
203067351 | Jul 2013 | CN |
203098387 | Jul 2013 | CN |
203430862 | Feb 2014 | CN |
205298058 | Jun 2016 | CN |
2005264803 | Sep 2005 | JP |
100272539 | Jan 2001 | KR |
I398210 | Jun 2013 | TW |
I427220 | Feb 2014 | TW |
201518611 | May 2015 | TW |
M545286 | Jul 2017 | TW |
Entry |
---|
Dong Yao et al., “Guidelines for Safety Testing Technologies for Small Electric Appliances: Safety Testing of Electric Fans,” with (partial) English translation thereof, Guangdong Economic Publishing House, Sep. 2009, pp. 1-6. |
Number | Date | Country | |
---|---|---|---|
20190063451 A1 | Feb 2019 | US |