The present invention relates generally to a heat dissipation device, and more particularly to a heat dissipation device including a base seat having a first chamber. Multiple two-phase fluid radiating fins are disposed on upper side of the base seat. Each of the two-phase fluid radiating fins is formed with an internal second chamber. A first working fluid is disposed in the first chamber and a second working fluid is disposed in the second chamber to achieve better heat dissipation effect.
Along with the advance of sciences and technologies, the operation function and efficiency of various current electronic devices such as mobile devices, personal computers, servers, communication chasses, base stations and other systems or devices have become more and more powerful. The internal heat generation components (such as, but not limited to, chips and various power components) of these devices will all generate high heat in operation. Therefore, it is necessary to dissipate the heat of the heat generation components so as to avoid overheating of these heat generation components, which will lead to failure of these heat generation components. In general, a heat dissipation device is mounted on the heat generation components to prolong the lifetime thereof.
In the conventional heat dissipation device, solid radiating fins are disposed on the vapor chamber. The solid radiating fins serve to enlarge the heat dissipation area so as to enhance the heat dissipation effect. Alternatively, a fan can be further disposed to create greater air volume for dissipating the heat. However, the current mobile devices, personal computers, servers, communication chasses, base stations and other systems or devices have a narrow internal space so that it is hard to dispose a fan therein. Moreover, the heat conductivity of the material of the solid radiating fins itself will affect the heat dissipation effect. Therefore, the conventional heat dissipation device with the solid radiating fins disposed on the vapor chamber can hardly meet the industrial technical requirement in the future.
It is therefore tried by the applicant to provide a heat dissipation device, which can achieve better heat dissipation effect.
It is therefore a primary object of the present invention to provide a heat dissipation device, which can be used in a narrow space and an environment with low air volume. The heat dissipation device can achieve better heat dissipation effect without being affected by the heat conductivity of the material itself.
To achieve the above and other objects, the heat dissipation device of the present invention includes a base seat having a first chamber. The first chamber has multiple partitioning sections to partition the first chamber into multiple rooms without communicating with each other. A first working fluid is disposed in the rooms. Multiple two-phase fluid radiating fins are disposed on upper side of the base seat. Each of the two-phase fluid radiating fins is formed with an internal second chamber in communication with the rooms or not in communication with the rooms.
Still to achieve the above and other objects, the heat dissipation device of the present invention includes a base seat having a first chamber. The first chamber is one single independent chamber. A first working fluid is disposed in the first chamber. Multiple two-phase fluid radiating fins are disposed on upper side of the base seat. Each of the two-phase fluid radiating fins is formed with an internal second chamber not in communication with the independent chamber. A second working fluid is disposed in each of the second chambers.
In comparison with the conventional heat dissipation device with the solid radiating fins, the heat dissipation device of the present invention can be used in a narrow space and an environment with low air volume without being affected by the heat conductivity of the material itself so that the heat dissipation device of the present invention can achieve better heat dissipation effect.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
Please refer to
The heat dissipation device 1 includes a base seat 11, multiple two-phase fluid radiating fins 12 and a first working fluid 13. The base seat 11 has an upper plate 111, a lower plate 112, a recess 113 and a first chamber 114.
The upper plate 11 and the lower plate 112 are correspondingly mated with each other. The two-phase fluid radiating fins 12 are disposed on the upper plate 111 of the base seat 11. The lower side of the lower plate 112 is attached to the heat generation components to absorb heat. In this embodiment, the recess 113 is formed on the lower plate 112. In a modified embodiment, the recess 113 can be alternatively formed on the upper plate 111. The upper and lower plates 111, 112 and the recess 113 together define the first chamber 114. The first chamber 114 has multiple partitioning sections 115 to partition the first chamber 114 into multiple rooms 116. In this embodiment, the partitioning sections 115 are formed on the lower plate 112. In a modified embodiment, the partitioning sections 115 can be alternatively formed on the upper plate 111. The rooms 116 are not in communication with each other. The first working fluid 13 is disposed in the rooms 116. The first working fluid 13 is a vapor-phase fluid or a vapor-liquid two-phase fluid.
Each of the two-phase fluid radiating fins 12 is formed with an internal second chamber 121 in communication with the room 116. The two-phase fluid radiating fins 12 are formed by means of mechanical processing selected from a group consisting of aluminum extrusion, punching, die casting, drawing, injection and roll bonding. The base seat 11 and the two-phase fluid radiating fins 12 are made of a material selected from a group consisting of gold, silver, copper, copper alloy, aluminum, aluminum alloy, commercial pure titanium, titanium alloy and stainless steel. In this embodiment, the two-phase fluid radiating fins 12 are connected with the upper plate 111 in a manner selected from, but not limited to, a group consisting of welding, insertion, engagement, adhesion and latching. In a modified embodiment, the base seat 11 and the two-phase fluid radiating fins 12 are integrally formed by means of 3D printing.
According to the design of the present invention, the lower side of the base seat 11 absorbs the heat. Thereafter, the first working fluid 13 absorbs the heat of the base seat 11 in the rooms 116. The first working fluid 13 quickly transfers the heat in horizontal direction to spread the heat. At the same time, the first working fluid 13 enters the second chambers 121 to quickly transfer the heat in vertical direction. The two-phase fluid radiating fins 12 absorb the heat of the first working fluid 13 to radiate and dissipate the heat to the ambient environment. Therefore, in a narrow space and a low air volume environment, the heat dissipation device 1 of the present invention will not be affected by the heat conductivity of the material itself and is able to achieve better heat dissipation effect.
Please now refer to
The lower side of the base seat 11 absorbs the heat. Thereafter, the first working fluid 13 absorbs the heat of the base seat 11 in the rooms 116. At the same time, the lower sides of the two-phase fluid radiating fins 12 absorb the heat of the base seat 11. The second working fluid 122 quickly transfers the heat in vertical direction. The two-phase fluid radiating fins 12 absorb the heat of the second working fluid 122 to radiate and dissipate the heat to the ambient environment. The rooms 116 are not in communication with the second chambers 121. Therefore, after the first working fluid 13 quickly transfers the heat in horizontal direction to spread the heat, the first working fluid 13 is condensed to flow from the upper plate 111 back to the lower plate 112 by a shorter distance. Therefore, the first working fluid 13 at lower temperature can be quickly provided for the heat generation components to absorb the heat.
Please now refer to
The first working fluid 13 in the independent chamber 117 can quickly transfer the heat in horizontal direction to the surrounding so as to spread the heat.
Please now refer to
In the case that the rooms 116 are in communication with the second chambers 121, the first and second capillary structures 118, 123 are capillarily connected with each other (as shown in
The term “capillarily connected” mentioned above means the porous structure of the first capillary structure 118 communicates with the porous structure of the second capillary structure 123, whereby the capillary attraction can be transferred or extended from the capillary structure 118 to the second capillary structure 123.
In a modified embodiment, the second capillary structure 123 is omitted and the first and second working fluids 13, 122 flow back under gravity.
In still a modified embodiment, a coating (not shown) is disposed on the inner walls of the first and second chambers 114, 121 or disposed on the first and second capillary structures 118, 123 or disposed on both the inner walls of the first and second chambers 114, 121 and the first and second capillary structures 118, 123 so as to enhance the hydrophilicity of the inner walls of the first and second chambers 114, 121 and the first and second capillary structures 118, 123. Accordingly, the first and second working fluids 13, 122 can more quickly and collectively flow back.
The present invention has been described with the above embodiments thereof and it is understood that many changes and modifications in such as the form or layout pattern or practicing step of the above embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4145708 | Ferro | Mar 1979 | A |
5198889 | Hisano | Mar 1993 | A |
5216580 | Davidson | Jun 1993 | A |
5848637 | Lee | Dec 1998 | A |
6237223 | McCullough | May 2001 | B1 |
6374905 | Tantoush | Apr 2002 | B1 |
6490160 | Dibene, II | Dec 2002 | B2 |
6745825 | Nakamura | Jun 2004 | B1 |
6899165 | Wu | May 2005 | B1 |
7369410 | Chen | May 2008 | B2 |
7420810 | Reis | Sep 2008 | B2 |
7965511 | Refai-Ahmed | Jun 2011 | B2 |
8235096 | Mahefkey | Aug 2012 | B1 |
8479805 | Chang | Jul 2013 | B2 |
9436235 | Damaraju | Sep 2016 | B2 |
9506699 | Wu | Nov 2016 | B2 |
10043732 | Al Omari | Aug 2018 | B1 |
10297524 | Watanabe | May 2019 | B2 |
10663231 | Tan | May 2020 | B2 |
20020033247 | Neuschutz | Mar 2002 | A1 |
20020118511 | Dujari | Aug 2002 | A1 |
20040182086 | Chiang | Sep 2004 | A1 |
20040190253 | Prasher | Sep 2004 | A1 |
20050028965 | Chen | Feb 2005 | A1 |
20050155746 | Chen | Jul 2005 | A1 |
20050178532 | Meng-Cheng | Aug 2005 | A1 |
20060005951 | Yeh | Jan 2006 | A1 |
20060137859 | Lin | Jun 2006 | A1 |
20060162904 | Bhatti | Jul 2006 | A1 |
20060237167 | Lee | Oct 2006 | A1 |
20070012429 | Siu | Jan 2007 | A1 |
20070022603 | Chuang | Feb 2007 | A1 |
20070025085 | Chang | Feb 2007 | A1 |
20070068656 | Lee | Mar 2007 | A1 |
20070227703 | Bhatti | Oct 2007 | A1 |
20070246193 | Bhatti et al. | Oct 2007 | A1 |
20070272399 | Nitta | Nov 2007 | A1 |
20080144319 | Chang | Jun 2008 | A1 |
20080175008 | Hu | Jul 2008 | A1 |
20090166014 | Chang | Jul 2009 | A1 |
20100002392 | Liu | Jan 2010 | A1 |
20100326644 | Hung | Dec 2010 | A1 |
20110146955 | Chen | Jun 2011 | A1 |
20130039012 | Shih | Feb 2013 | A1 |
20140131011 | Kim | May 2014 | A1 |
20150000866 | Lin | Jan 2015 | A1 |
20150060020 | Yang | Mar 2015 | A1 |
20150219401 | Zhang | Aug 2015 | A1 |
20150285562 | Huang | Oct 2015 | A1 |
20160309619 | Tsai | Oct 2016 | A1 |
20170003083 | Manninen | Jan 2017 | A1 |
20170059254 | Zhang | Mar 2017 | A1 |
20170115071 | Lin | Apr 2017 | A1 |
20170268828 | Lin | Sep 2017 | A1 |
20170312871 | Lin | Nov 2017 | A1 |
20170314873 | Lin | Nov 2017 | A1 |
20170347489 | Lan | Nov 2017 | A1 |
20180361460 | Chiang | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2784853 | May 2006 | CN |
1869574 | Nov 2006 | CN |
108271332 | Jul 2018 | CN |
M309091 | Apr 2007 | TW |
I596312 | Aug 2017 | TW |
M584591 | Oct 2019 | TW |
Entry |
---|
Search Report dated Jan. 9, 2020 issued by Taiwan Intellectual Property Office for counterpart application No. 108125663. |
Number | Date | Country | |
---|---|---|---|
20210041181 A1 | Feb 2021 | US |