The present invention is related to an improved heat dissipation structure of LED light, and more particularly to an LED light with higher heat dissipation ability.
Currently, there is a trend of energy saving and carbon reduction all over the world. All kinds of high-brightness LED lights have been widely used in various fields to save power and energy. However, the LED chip modules of such high-brightness LED lights will generate high heat when working. The heat must be efficiently dissipated. Otherwise, the LED lights will malfunction. Therefore, it has become a critical issue how to dissipate the heat generated by the LED chip modules so as to keep the LED lighting systems functioning normally. In general, radiating fins are attached to the surfaces of the heat-generating components of the LED chip modules to conduct and dissipate the heat out of the LED lighting systems. Accordingly, the LED chip modules are protected from overheating so as to avoid luminous decay of the LED lighting systems and prolong lifetime thereof.
A conventional LED lighting system dissipates heat mainly by way of natural convection. The conventional LED lighting system has some defects in heat dissipation as follows:
It is therefore a primary object of the present invention to provide an LED light with high heat dissipation efficiency. The LED light includes an LED substrate module, a ventilation power supply seat module, a ventilation lampshade and an annular thermal module. The annular thermal module is composed of multiple streamlined curved-surface radiating fins stacked in an annular pattern.
The radiating fins are formed with streamlined curved surfaces to increase heat dissipation surface area of each radiating fin. In addition, fluid can more smoothly flow through the radiating fins to enhance heat dissipation efficiency. The ventilation power supply seat module and the ventilation lampshade are formed with ventilation holes for expediting fluid convection and enhancing heat dissipation efficiency of the LED light.
To achieve the above and other objects, the heat dissipation structure of LED light of the present invention includes a lampshade with ventilation holes, a power supply seat module with ventilation holes, a streamlined curved-surface thermal module and an LED substrate module.
In the conventional LED light, the LED substrate module lad is simply enclosed in a lampshade. The lampshade has no ventilation hole so that the LED substrate module is airtight sealed. In this case, the heat can be hardly dissipated outward. As a result, the high-temperature components on the LED substrate module often overheat to accelerate luminous decay of the LED light.
In contrast, the lampshade with ventilation holes of the present invention is composed of an inner casing and an outer casing. The LED substrate module is positioned in the inner casing. Glue is dispensed on the entire bottom edge of the inner casing to adhere the inner casing onto the LED substrate module or the top face of the thermal module. Under such circumstance, the LED substrate module is dustproof and watertight enclosed in the inner casing. The outer casing of the lampshade is formed with ventilation holes for expediting fluid convection between the inner casing and the outer casing so as to enhance heat dissipation efficiency.
In the power supply seat module of the conventional LED light, the printed circuit board (PCB) is simply enclosed in a housing 1ac. The housing has no ventilation hole so that the PCB is airtight sealed. In this case, the heat can be hardly dissipated outward. As a result, the high-temperature components on the PCB often burn out due to overheating.
In contrast, the power supply seat module with ventilation holes of the present invention is composed of a rectangular inner casing and an outer casing. The PCB is positioned in the rectangular inner casing and a thermally conductive adhesive is filled into the inner casing to achieve dustproof and watertight as well as heat conduction effect. Also, the temperature of the high-temperature components on the PCB can be decreased. The outer casing is formed with ventilation holes for expediting fluid convection and enhancing heat dissipation efficiency.
The streamlined curved-surface thermal module includes multiple streamlined curved-surface radiating fins connected with each other. Each of the radiating fins has a main body and a sectorial skirt connected with a lateral side of the main body. Two ends of the sectorial skirt are two concentric arcs with different sizes and different radiuses. A middle section of the main body is punched with a notch. When the radiating fins are assembled and stacked into a closed annular pattern, the sectorial skirts of the radiating fins tightly abut against each other to avoid overlapping of the radiating fins and keep a precise size. Also, when the radiating fins are stacked into the closed annular pattern, the notches of the radiating fins together form a closed annular groove. A ring-shaped retainer member with the same size as the annular groove is positioned in the annular groove to locate the radiating fins and prevent the radiating fins from deflecting toward the center of the heat sink. The radiating fins are latched with each other and stacked in the annular pattern to form the streamlined curved-surface thermal module.
Each of the radiating fins is formed with streamlined curved surfaces. Larger amount of fluid can more smoothly flow through the streamlined curved surfaces to enhance heat dissipation efficiency. The radiating fin can be designed with any of various optimized streamlined curved surfaces in accordance with the flow field. For example, the radiating fin can be formed with irregular multi-curved surfaces, double-curved surfaces, S-twisted curved surfaces, mono-curved surfaces, arced surfaces, etc.
The radiating fin is formed with skirts. By means of latching the skirts with each other, multiple radiating fins can be stacked and stringed into an annular pattern. Accordingly, the radiating fins can be easily assembled into an integral body.
The sectorial skirt of the bottom of the radiating fin is further upward bent into a U-shaped section. When the radiating fins are stacked into the annular pattern, the predetermined sectorial skirts of the bottoms of the radiating fins can tightly abut against each other to avoid overlapping of the radiating fins and keep a precise size.
The conventional sectorial skirt has R angle. In case of poor assembly, two radiating fins may partially overlap each other. Therefore, the sectorial skirt is further upward bent into the U-shaped section to eliminate the possibility of overlapping of the radiating fins.
The ring-shaped retainer member has two major functions as follows:
The LED substrate is made of metal plate with high thermal conductivity.
The present invention can be best understood through the following description and accompanying drawings wherein:
Please refer to
In the conventional LED light 1a, the LED substrate module 1ad is simply enclosed in a lampshade 1ab. The lampshade has no ventilation hole so that the LED substrate module 1ad is airtight sealed. In this case, the heat can be hardly dissipated outward. As a result, the high-temperature components on the LED substrate module 1ad often overheat to accelerate luminous decay of the LED light.
In contrast, the lampshade 13 with ventilation holes 13b (as shown in
In the power supply seat module of the conventional LED light, the printed circuit board (PCB) 1ae is simply enclosed in a housing 1ac. The housing has no ventilation hole so that the PCB 1ae is airtight sealed. In this case, the heat can be hardly dissipated outward. As a result, the high-temperature components on the PCB often burn out due to overheating.
In contrast, the ventilation power supply seat module 15 (as shown in
The streamlined curved-surface thermal module 11 (as shown in
Referring to
The sectorial skirt 111b of the bottom of the radiating fin 111 is further upward bent into a U-shaped section 111d (as shown in
The conventional sectorial skirt 111b has R angle. In case of poor assembly, two radiating fins 111 may partially overlap each other. Therefore, the sectorial skirt 111b is further upward bent into the U-shaped section 111d to eliminate the possibility of overlapping of the radiating fins 111.
The present invention further includes a ring-shaped retainer member 12 (as shown in
In the LED substrate module 14, the LED substrate 14b is made of metal plate with high thermal conductivity and connected to the LED unit 14a.
The above embodiments are only used to illustrate the present invention, not intended to limit the scope thereof. Many modifications of the above embodiments can be made without departing from the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
097213855 | Aug 2008 | TW | national |