This application claims priority from Japanese Patent Application Nos. 2005-263896, filed on Sep. 12, 2005, and 2006-163562, filed on Jun. 13, 2006, the entire contents of which are incorporated herein by reference.
The present disclosure generally relates to an image forming system having an image forming unit and a finishing unit, and more particularly to a finishing unit, which processes a sheet transported from an image forming unit.
An image forming apparatus such as printer, copier, facsimile, and MFP (multi-functional peripherals) may be attached with a finishing unit, to which a sheet having an image thereon is ejected from the image forming apparatus.
The finishing unit may include a perforator to perforate a hole on the sheet ejected from the image forming apparatus.
The perforator includes a reciprocal type unit having a die frame, a guide frame, and a blade, for example.
The die frame includes a die hole, and is placed under a transport path of a sheet. The guide frame includes a guide hole, and is placed over the transport path of sheet.
The die hole and guide hole are aligned in a same axial direction so that the blade can be moved in a reciprocal direction through the guide hole and the die hole.
The blade is moved in the reciprocal direction through the guide hole and the die hole to perforate a hole on the sheet, transported between the die frame and guide frame.
In order to conduct such a perforation process on the sheet, the blade may be supported by the guide frame with a given allowance, such as 10 micrometers, for example.
Furthermore, the blade and die frame are designed in a manner so that the blade and die hole have a given amount of clearance between the blade and die hole, such as 10 to 20 micrometers, for example.
Such a perforator may be affected by heat generated in the image forming unit, wherein the heat may be generated when the image forming unit conducts an image transfer process, for example.
Such heat may affect a plurality of parts in the perforator, and may cause a temperature variation between the plurality of parts in the perforator.
For a reciprocal type perforator, a sheet is temporarily stopped and then pressed to the die frame to perforate a hole on the sheet with a reciprocal movement of the blade through the die hole of the die frame, wherein the sheet may receive some heat energy during the image forming process in the image forming unit.
Accordingly, the die frame may have a relatively higher temperature compared to the guide frame. In addition, the die frame and the guide frame may be firmly fixed with each other by a rivet or the like to maintain a preciseness of perforation.
Therefore, if a temperature variation occurs between the die frame and guide frame, one of the die frame and the guide frame may be deflexed.
Such deflection may be observed as an elongation of the die frame due to a temperature increase of the die frame. Such elongation may occur to the die frame because the die frame and the guide frame are fixed firmly, as discussed above.
Such deflection may occur in either one of two directions depending on a shape of the guide frame and the die frame. One direction is a parallel direction with respect to the transport direction of sheet, and another direction is a vertical direction with respect to the transport direction of sheet.
If the die frame deflects in a parallel direction with respect to the transport direction of sheet, the guide hole and die hole may be deviated from the aligned condition.
If such deviation is significant such deflection may hinder the pass-through of the blade in the die hole, and may degrade the perforation quality.
Furthermore, if the blade can not pass through the die hole smoothly, the blade may become overloaded, by which the image forming system may stop the movement of blade, and then an operation of the image forming system may be stopped.
The present disclosure relates to a perforator configured to perforate a sheet including a first frame and a blade. The first frame includes a first main face having a first hole, and is provided under a transport path of the sheet. The blade is moved into the first hole to perforate the sheet transported in the transport path. A bending strength of the first main face in a vertical direction with respect to the transport path of sheet is smaller than a bending strength of the first main face in a parallel direction with respect to the transport path of sheet.
The present disclosure also relates to another perforator configured to perforate a sheet including a first frame, a second frame, and a blade. The first frame includes a first main face having a first hole, and is provided under a transport path of the sheet. The second frame includes a second main face having a second hole aligned with the first hole in the first main face of the first frame, the second frame being provided over the transport path of the sheet. The blade is moved into the second hole and first hole to perforate the sheet transported in the transport path. A bending strength of the second main face in a vertical direction with respect to the transport path of sheet is smaller than a bending strength of the second main face in a parallel direction with respect to the transport path of sheet.
A more complete appreciation of the disclosure and many of the attendant advantages and features thereof can be readily obtained and understood from the following detailed description with reference to the accompanying drawings, wherein:
In describing example embodiments shown in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of the present invention is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, an image forming system according to an example embodiment is described with particular reference to FIGS. 1 to 6.
The image forming apparatus 100 includes a copier, for example. The finishing unit 200, attached next to the image forming apparatus 100, includes a perforator, for example.
The image forming apparatus 100 includes an image forming unit and a fixing unit, wherein the image forming unit forms a toner image on a sheet, and the fixing unit fixes the toner image on the sheet, and then the sheet is transported to the finishing unit 200 from the fixing unit.
The finishing unit 200 includes a perforator 121 to perforate a hole on the sheet transported from the image forming apparatus 100, for example.
The finishing unit 200 may conduct a plurality of processing operations to the sheet including a perforation process, and ejects the sheet outside of the finishing unit 200 after conducting processing operations to the sheet.
As shown in
As shown in
The entrance sensor 36 detects a front edge and a rear edge of a sheet transported from the image forming apparatus 100.
Each of the separation claws 8a and 8b is controlled by a solenoid (not shown) and a spring (not shown).
By adjusting a position of the separation claws 8a and 8b, the sheet transported from the image forming apparatus 100 can be transported to a first sheet tray 12, a second sheet tray 14, or to a stapler 11, as required.
As shown in
The sort/stack route 12R includes a transport roller 2, a sheet ejection sensor 38, an ejection roller 3, an adjust roller 7, a sheet detection lever 13, and sheet detection sensors 32 and 33, for example.
The sheet ejection sensor 38 detects a sheet. The ejection roller 3 includes a drive roller 3a and a driven roller 3b. The adjust roller 7 adjusts a lateral edge of sheets to one side on the first sheet tray 12.
The sheet detection lever 13 moves in a vertical direction depending on a number of sheets stacked on the first sheet tray 12.
The sheet detection sensors 32 and 33 detect a height of sheets stacked on the first sheet tray 12.
As for the ejection roller 3, the driven roller 3b is normally biased and contacted to the drive roller 3a with a self-weight of the driven roller 3b or spring force, for example.
Sheets or stapled sheets can be ejected to the first sheet tray 12 through a nip between the drive roller 3a and driven roller 3b.
As shown in
The second sheet tray 14 stacks sheets printed by facsimile or printer function of the image forming apparatus 100, wherein such facsimile or printer function may be conducted by interrupting another function, such as copying.
As shown in
The staple unit 15 includes a sheet ejection sensor (not shown), and a sheet feed roller 6 having a brush, for example.
The transport rollers 4a, 4b, and 4c can be driven by a transport motor (not shown).
The staple unit 15 includes a staple tray (not shown) and the stapler 11, wherein the staple tray is used to support parts used for staple unit 15, and the stapler 11 is provided under the staple tray.
The staple tray is attached with a jogger fence 9, a return roller 5, and an ejection belt 10.
The jogger fence 9 collates sheets. The ejection belt 10 is provided next to the jogger fence 9 to eject stapled sheets.
The ejection belt 10 includes an ejection claw 10a fixed on the ejection belt 10, wherein the ejection claw 10a can support a rear edge of stapled sheets stapled by the stapler 11.
The jogger fence 9 can be moved in a width direction of the sheet by a jogger motor (not shown) and jogger belt (not shown).
The return roller 5 can be driven with a solenoid (not shown), and can contact a surface of sheet.
As shown in
The stapler 11 can be driven by a stapler motor (not shown) and a stapler belt (not shown), and can be moved in a front and rear direction of the finishing unit 200.
The rear edge of the stapled sheets, stapled by the stapler 11, is supported by the ejection claw 10a fixed on the ejection belt 10.
Then, with movement of the ejection belt 10 driven by an ejection motor (not shown), the stapled sheets are guided by the guide plate 20 and are ejected to the first sheet tray 12.
The first sheet tray 12 can be hung by a lift belt (not shown), for example, wherein the lift belt can be driven by a lift motor (not shown) and a gear system having a worm gear and a timing belt.
The lift belt can be moved in a vertical direction (i.e., upward or downward direction) by adjusting a rotation direction of the lift motor.
The first sheet tray 12 can be moved in a horizontal direction with a shift motor (not shown), as required.
The sheet detection lever 13 and sheet detection sensors 32 and 33 are used to detect a home position and height of the first sheet tray 12.
When the first sheet tray 12, moveable in vertical and horizontal direction, is filled with sheets, such as stapled sheets, a limit sensor (not shown) detects such condition.
If the adjust roller 7 is pushed by the first sheet tray 12 when the first sheet tray 12 moves in a upward direction, a limit switch (not shown) is switched to an OFF state to stop a rotation of the lift motor, by which mechanical damage caused by overrunning of the first sheet tray 12 can be prevented.
Hereinafter, the perforator 121 and its surrounding are explained with reference to
As shown in
The blade 301 can perforate a hole on a sheet P when the blade 301 moves in a vertical direction with respect to a transport direction of sheet P.
As shown in
The motor 302 can drive the drive pulley 304 via the belt 303. The motor 302 can transmit a driving force to the drive pulley 304 because the belt 303 connects the motor 302 and drive pulley 304.
The drive pulley 304 can drive the blade 301 in a vertical direction with respect to a transport direction of sheet P via the shaft 305, cam 307, and holder 308.
The home position sensor 306 detects an initial position of blade 301 in the perforator 121.
The holder 308 can regulate a position of the blade 301. The blade 301 can be moved in an upward and downward direction when the cam 307 makes a given rotational movement around the shaft 305 with a movement of the drive pulley 304.
The hopper 309 recovers cuttings of the sheet P, which are produced when the blade 301 perforates a hole on the sheet P.
As shown in
The die frame 312 includes a first main face 312a and a first inclined corner 312b, for example. The first inclined corner 312b is extended along the first main face 312a (see
The die frame 312 also includes a die hole 313 on the first main face 312a, through which the blade 301 moves in the vertical direction with respect to the transport direction of the sheet P.
The first main face 312a can be used to guide the sheet P from the downward direction, and the first inclined corner 312b is inclined with respect to the transport direction of sheet P as shown in
As shown in
The guide frame 310 includes a second main face 310a and a second inclined corner 310b, for example. The second inclined corner 310b is extended along the second main face 310a (see
The guide frame 310 also includes a guide hole 311 on the second main face 310a, through which the blade 301 moves in the vertical direction with respect to the transport direction of the sheet P.
The second main face 310a can be used to guide the sheet P from the upward direction, and the second inclined corner 310b is inclined with respect to the transport direction of the sheet P as shown in
By forming the first inclined corner 312b and the second inclined corner 310b as shown in
The die frame 312 may include a cut-off area C except the first main face 312a and first inclined corner 312b, which face the transport direction of sheet P as shown in
The cut-off area C may be cut in a rectangular shape from a face, which has no specific function in the die frame 312, as shown in
However, such cut-off area C can be cut in any shape depending on an entire shape of the die frame 312, and considering other parts around the die frame 312.
The heat insulating member 314 can be made of material having lower heat conductivity compared to a material for the die frame 312.
As shown in
The sheet P may absorb some heat energy when a fixing process is conducted in the image forming apparatus 100. Such heated sheet P is transported to the perforator 121 through the first inclined corner 312b, and then the sheet P passes through a transport path in the perforator 121.
The heat insulating member 314 may contact the sheet P when the sheet P passes through the first inclined corner 312b, by which the heat insulating member 314 may suppress heat conduction from the heated sheet P to the first inclined corner 312b.
Accordingly, the heat insulating member 314 may suppress heat conduction from the heated sheet P to the die frame 312.
As shown in
The die frame 312 and guide frame 310 have a given space between the first main face 312a and second main face 310a. For example, such space may be approximately 2 mm.
Therefore, if the edge portion 314a may protrude from the first main face 312a within a range of 0.5 mm to 1 mm, for example, such edge portion 314a may not hinder a transportation of the sheet P.
The heat insulating member 314 is preferably made of elastic material such as polyester film to reduce hindering of transportation of sheet P by the heat insulating member 314.
As shown in
The rivet 316 is used to firmly fix the guide frame 310 and die frame 312 each other to maintain a positional relationship of the guide frame 310 and die frame 312.
With such configuration for the guide frame 310 and die frame 312, the perforator 121 may conduct sheet perforation precisely.
As shown in
The transport guide member 317 includes an upper guide member 318 and a lower guide member 319, wherein the upper guide member 318 guides the sheet P from the upward direction and the lower guide member 319 guides the sheet P from the downward direction.
The upper guide member 318 includes an upper guide face 318a, which guides the sheet P from the upward direction.
The lower guide member 319 includes a lower guide face 319a, which guides the sheet P from the downward direction.
As shown in a configuration in
With such arrangement, the sheet P may be more likely to contact with the die frame 312 compared to the guide frame 310 in a configuration shown in
Accordingly, the die frame 312 may be more affected by the heated sheet P compared to the guide frame 310.
Therefore, design work for coping with temperature change in the perforator 121 may be mainly considered for the die frame 312, but not for the guide frame 310, by which the design work can be conducted with fewer amount of time or steps. Accordingly, the total amount of design work can be reduced.
In a configuration shown in
With such arrangement, the sheet P may be transported from the transport guide member 317 to the first inclined corner 312b of the die frame 312.
The heat insulating member 314 overlays the first inclined corner 312b as above-mentioned, therefore, the sheet P may contact with the heat insulating member 314.
Accordingly, the sheet P may not contact the first inclined corner 312b directly, by which the heat insulating member 314 may suppress heat conduction from the sheet P to the first inclined corner 312b.
Therefore, a temperature increase of the die frame 312 is suppressed.
Furthermore, the edge portion 314a may effectively prevent a contact of the sheet P to the die frame 312 as below explained.
In general, the sheet P in a transport path may not be strictly parallel to the transport path, but the sheet P in the transport path may be somehow curled in a downward direction, for example.
If the edge portion 314a is not provided, the curled portion of sheet P may contact the first main face 312a when the sheet P enters the perforator 121, by which the sheet P may transmit heat to the die frame 312.
However, by providing the edge portion 314a, the curled portion of the sheet P may not contact the first main face 312a at an entrance of the die frame 312, by which a temperature increase of the die frame 312 may be suppressed.
The sheet P transported from the image forming apparatus 100 with such manner is stopped temporarily in the perforator 121 to receive a perforation operation.
The sheet P is perforated by moving the blade 301 in an upward/downward direction with the motor 302, and passing the blade 301 through the guide hole 311 and die hole 313.
The motor 302 drives the drive pulley 304 and shaft 305 via the belt 303.
The home position sensor 306 detects a rotation of the drive pulley 304 and shaft 305.
A control unit transmits a signal to the motor 302 to stop the rotation of the drive pulley 304 and shaft 305 after rotating the shaft 305 for one rotation.
When the shaft 305 rotates, the cam 307 rotates with a rotation of the shaft 305 and moves the holder 308 in an upward/downward direction, wherein the shaft 305 is eccentrically engaged to the cam 307 as shown in
In
In
In
In
As such, when the holder 308 moves in an upward/downward direction, the blade 301 moves in an upward/downward direction, and then the blade 301 passes through the guide hole 311 of the guide frame 310 and the die hole 313 of the die frame 312.
After perforating holes on the sheet P, the finishing unit 200 may conduct another processing operation to the sheet P, as required.
During such perforation operation, the hopper 309 recovers cuttings of perforated sheet cut from the sheet P.
The die frame 312 can include a cut-off area C on a first side face perpendicular to the first main face 312a, which will be explained later with respect to
If the cut-off area C is set to the die frame 312 as shown in
In such a case, a bending strength of the first main face 312a in a vertical direction with respect to the transport path of sheet P may become smaller than a bending strength of the first main face 312a in a parallel direction with respect to the transport path of sheet P.
Hereinafter, such bending strength is explained with reference to
In
Accordingly, the guide hole 311 and die hole 313 are aligned on a same axis direction, by which the blade 301 can pass through the guide hole 311 and die hole 313 smoothly.
However, if the sheet P is transported in the perforator 121 and only the die frame 312 may have a higher temperature, the die frame 312 may deflect significantly compared to the guide frame 310.
A deflection caused by such a heated sheet P may be observed as warping of a plane having a smaller bending strength in the die frame 312.
In case of the die frame 312 having no cut-off area (refer to
Therefore, as shown in
With such warping, the die hole 313 may deviate from an original position, and the guide hole 311 and die hole 313 may not align on the same axis direction, which is indicated by a positional deviation S1 in
In a condition shown in
In view of such drawback, a configuration having a cut-off area C shown in
The die frame 312 can include the cut-off area C on a first side face 312c perpendicular to the first main face 312a as shown in
If the cut-off area C is set to the die frame 312 as shown in
By providing the cut-off area C in the die frame 312 as shown in
Therefore, as shown in
If the first main face 312a, indicated by an area G, may warp in a vertical direction with respect to the transport path of sheet P, the die hole 313 may not substantially deviate from the original position, and the guide hole 311 and die hole 313 may still align on the same axis direction substantially as shown in
In a condition shown in
As such, a condition shown in
Furthermore, the heat insulating member 314 may be overlaid on the die frame 312 as above-mentioned, by which the sheet P may contact the heat insulating member 314 before the sheet P enters a sheet transport path in the perforator 121.
Accordingly, a contact time of the sheet P and die frame 312 may be reduced when the sheet P enters and passes through the perforator 121, by which a temperature increase of die frame 312 may be suppressed.
Therefore, the heat insulating member 314 may suppress a temperature change of the die frame 312, by which the deflection of the first main face 312a in a vertical direction with respect to the transport path of sheet P may be suppressed.
Accordingly, the alignment deviation of the guide hole 311 and die hole 313 may be suppressed.
Although the cut-off area C and the heat insulating member 314 are provided for the die frame 312 in the above explained example embodiment, the cut-off area C and heat insulating member 314 may be provided for the guide frame 310, as explained below with reference to
The perforator 121 shown in
The guide frame 310 may include a cut-off area C except the second main face 310a and second inclined corner 310b, which face the transport direction of sheet P, as shown in
The cut-off area C may be cut in a rectangular shape from a facethat has no specific function in the guide frame 310, as shown in
However, such cut-off area C can be cut in any shape depending on an entire shape of the guide frame 310, and considering other parts around the guide frame 310.
On one hand, the die frame 312 has no cut-off area C in another example embodiment shown in
The heat insulating member 314 can be made of material having lower heat conductivity compared to a material for the guide frame 310.
As shown in
The sheet P may absorb some heat energy when a fixing process is conducted in the image forming apparatus 100. Such heated sheet P is transported to the perforator 121 through the second inclined corner 310b, and then the sheet P passes through a transport path in the perforator 121.
The heat insulating member 314 may contact the sheet P when the sheet P passes through the second inclined corner 310b, by which the heat insulating member 314 may suppress heat conduction from the heated sheet P to the second inclined corner 310b.
Accordingly, the heat insulating member 314 may suppress heat conduction from the heated sheet P to the guide frame 310.
As shown in
The die frame 312 and guide frame 310 have the given space between the first main face 312a and second main face 310a. For example, such space may be approximately 2 mm.
Therefore, if the edge portion 314a protrudes from the second main face 310a within a range of 0.5 mm to 1 mm, for example, such edge portion 314a may not hinder transportation of the sheet P.
The heat insulating member 314 is preferably made of elastic material, such as polyester film, to reduce hindering of transportation of sheet P by the heat insulating member 314.
As shown in
The transport guide member 317 includes the upper guide member 318 and the lower guide member 319, wherein the upper guide member 318 guides the sheet P from the upward direction and the lower guide member 319 guides the sheet P from the downward direction.
The upper guide member 318 includes the upper guide face 318a, which guides the sheet P from the upward direction.
The lower guide member 319 includes the lower guide face 319a, which guides the sheet P from the downward direction.
In a configuration shown in
With such arrangement, the sheet P may be more likely to contact with the guide frame 310 compared to the die frame 312.
Accordingly, the guide frame 310 may be more affected by the heated sheet P compared to the die frame 312.
Therefore, design work for coping with the temperature change in the perforator 121 may be mainly considered for the guide frame 310, but not for the die frame 312, by which the design work can be conducted with fewer time or steps. Accordingly, the total amount of design work can be reduced.
The perforator 121 shown in
In a configuration shown in
With such arrangement, the sheet P may be transported from the transport guide member 317 to the second inclined corner 310b of the guide frame 310.
The heat insulating member 314 overlays the second inclined corner 310b as above-mentioned, therefore, the sheet P may contact with the heat insulating member 314.
Accordingly, the sheet P may not contact the second inclined corner 310b directly, by which the heat insulating member 314 may suppress heat conduction from the sheet P to the second inclined corner 310b.
Therefore, a temperature increase of the guide frame 310 may be suppressed.
Furthermore, the edge portion 314a may effectively prevent a contact of the sheet P to the guide frame 310, as explained below.
In general, the sheet P in a transport path may not be strictly parallel to the transport path, but the sheet P in the transport path may be somehow curled in an upward direction, for example.
If the edge portion 314a is not provided, the curled portion of sheet P may contact the second main face 310a when the sheet P enters the perforator 121, by which the sheet P may transmit heat to the guide frame 310.
However, by providing the edge portion 314a, the curled portion of the sheet P may not contact the second main face 310a at an entrance of the guide frame 310, by which a temperature increase of the guide frame 310 may be suppressed.
The sheet P transported from the image forming apparatus 100 with such manner is stopped temporarily in the perforator 121 to receive a perforation operation.
The guide frame 310 can include a cut-off area C on a second side face perpendicular to the second main face 310a, which will be explained later with respect to
If the cut-off area C is set to the guide frame 310, as shown in
In such a case, a bending strength of the second main face 310a in a vertical direction with respect to the transport path of sheet P may become smaller than a bending strength of the second main face 310a in a parallel direction with respect to the transport path of sheet P.
Hereinafter, such bending strength is explained with reference to
In
Accordingly, the guide hole 311 and die hole 313 are aligned on a same axis direction, by which the blade 301 can pass through the guide hole 311 and die hole 313 smoothly.
However, if the sheet P is transported in the perforator 121 and only the guide frame 310 may have a higher temperature the guide frame 310 may deflect significantly compared to the die frame 312.
A deflection caused by such heated sheet P may be observed as warping of a plane having a smaller bending strength in the guide frame 310.
In case of the guide frame 310 having no cut-off area (refer to
Therefore, as shown in
With such warping, the guide hole 311 may deviate from an original position, and the guide hole 311 and the die hole 313 may not align on the same axis direction, which is indicated by a positional deviation S2 in
In a condition shown in
In view of such drawback, a configuration having a cut-off area C shown in
The guide frame 310 can include a cut-off area C on a second side face 310c perpendicular to the second main face 310a, as shown in
If the cut-off area C is set to the guide frame 310, as shown in
By providing the cut-off area C in the guide frame 310, as shown in
Therefore, as shown in
If the second main face 310a, indicated by an area F, may warp in a vertical direction with respect to the transport path of sheet P, the guide hole 311 may not substantially deviate from the original position, and the guide hole 311 and the die hole 313 may still align on the same axis direction substantially as shown in
In a condition shown in
As such, a condition shown in
Furthermore, the heat insulating member 314 may be overlaid on the guide frame 310 as above-mentioned, by which the sheet P may contact the heat insulating member 314 before the sheet P enters a sheet transport path in the perforator 121.
Accordingly, a contact time of the sheet P and guide frame 310 may be reduced when the sheet P enters and passes through the perforator 121, by which a temperature increase of guide frame 310 may be suppressed.
Therefore the heat insulating member 314 may suppress a temperature change of the guide frame 310, by which the deflection of the second main face 310a in a vertical direction with respect to the transport path of sheet P may be suppressed.
Accordingly, the alignment deviation of the guide hole 311 and the die hole 313 may be suppressed.
In the above discussed example embodiment, a bending strength of the die frame 312 or guide frame 310 in a parallel direction with respect to the transport path of sheet can be adjusted to a given strength to suppress a deflection of the die frame 312 or guide frame 310 in a parallel direction with respect to the transport path of sheet.
Furthermore, in the above-discussed example embodiment, a contact of sheet P to the die frame 312 or guide frame 310 can be suppressed, by which a temperature increase of the die frame 312 or guide frame 310 can be suppressed.
Accordingly, a temperature variation between the die frame 312 and the guide frame 310 can be suppressed, by which an alignment deviation between the die hole 313 and the guide hole 311 can be suppressed.
The above-described example embodiment can be preferably applied to an image forming apparatus such as printer, copier, facsimile, and MFP (multi-functional peripherals), for example.
Numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the disclosure of the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2005-263896 | Sep 2005 | JP | national |
2006-163562 | Jun 2006 | JP | national |