The present disclosure is generally directed to heat energy distribution in a continuous dry kiln, and in several embodiments, more particularly to reducing corrosion by transferring heat energy into a conditioning chamber of the continuous dry kiln during use.
Continuous dry kilns are commonly used by lumber mills to dry and heat-treat dimensional lumber for use in construction and other industries. Freshly sawn lumber, often referred to as green lumber, is assembled in packages loaded into the continuous dry kiln for processing. A continuous dry kiln can be a dual path kiln, which includes two lumber conveying lines traveling either in the same direction (“unidirectional” or “uniflow”) or in opposing directions (“countercurrent”) through three zones of the structure. The zones include end sections at each open end of the structure for conditioning, equalization, preheating, and energy recovery and a main drying section central to the structure between the end sections. In kilns having countercurrent lines, green lumber packages enter the end sections where they are preheated by heat from the main drying section and the dried lumber exiting the drying chamber along the opposing line, allowing energy recovery. The exiting dried lumber is conditioned and equalized by absorbing a portion of the humidity released during lumber drying in the main drying section, distributing the moisture content through the volume of the dried lumber to improve moisture content uniformity and reduce the risk of drying defects such as checking, splitting, warping, cupping, etc.
Humidity released as the lumber is dried can cause extensive corrosion of the walls, floors, and components in the end sections. This often requires repair of the end sections in as few as 3-5 years of service, which increases operating costs and downtime. Venting the end sections can lower the humidity level within the end chamber, but venting alone reduces the energy recovery benefits of preheating the incoming green lumber and the conditioning and moisture equalizing benefits to the exiting dried lumber. Heat energy is typically provided to the main drying section of conventional continuous dry kilns by burning green fuel (sawdust), which creates porous carbon entrained in the hot flue gases exiting the burner, known as carryover. Carryover enters the sections of the continuous dry kiln and settles on surfaces. The porous configuration of typical carbon carryover absorbs and retains moisture, leading to further corrosion of the kiln.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The technology disclosed herein relates to continuous dry kiln structures (CDK). The term “continuous dry kiln” generally refers to a green lumber processing structure having two or three zones and dual countercurrent or uniflow lumber conveying lines to transport lumber through the zones. The dual lines convey the lumber packages for drying, conditioning, and equalization of the green lumber. The term “zone” refers to a section, chamber, region, portion, etc., within the continuous dry kiln structure, including a conditioning, equalization, preheating, and energy recovery section (an “end chamber”) positioned at each end of the structure and the main drying section (a “drying chamber”) central to the structure. Each zone or section may define a chamber. The term “line” refers to a path, conveyor, truck, cart, dolly, etc., configured to transport lumber through the continuous dry kiln for processing. Although dual line configurations are shown and described herein, any number of conveying lines through the continuous dry kiln are suitable for use with the present technology.
The present technology includes a continuous dry kiln having a drying chamber positioned centrally between first and second end chambers at either end of the continuous dry kiln. Although not shown in the Figures, the present technology is also suitable for use with continuous dry kilns having only a single end chamber. The end chambers are configured to raise the temperature of the incoming green lumber (known as “preheating” or “energy recovery”) by heat transfer from the drying chamber. In countercurrent continuous dry kilns, heat transfer from exiting processing lumber on the opposing line also contributes to preheating. Additionally, the end chambers treat the exiting processing lumber by promoting moisture transfer, both “conditioning” (e.g., relieving the residual compressive drying stresses in the lumber shell by plasticization with high temperature and high relative humidity) and “equalizing” (e.g., reducing the variation of the lumber moisture content) the exiting processing lumber. The final lumber moisture content is controlled by parameters of processing within the continuous dry kiln (e.g., line speed, green lumber package size, lumber spacing, drying chamber temperature and airflow rate, etc.).
The end chambers and components within the end chambers can experience an increased rate of corrosion during use of the continuous dry kiln. In conventional continuous dry kilns, gases in the end chambers are circulated by fans to effect the preheating of the incoming green lumber and the conditioning/equalizing of the exiting lumber. The end chambers experience a drop in dry bulb temperature as a result of the distance away from the heaters of the central drying chamber, the heat transfer into the cooler incoming green lumber in countercurrent kilns, and the proximity to the open line inlets and outlets at the ends of the kiln. The wet bulb temperature can remain substantially constant as the dry bulb temperature drops, which increases the relative humidity until the gases within the end chambers reach the dewpoint and form condensate. The green lumber contains acetic acid and other organic acids, which evaporate as gases within the kiln during heating as a portion of the hemicellulose of the lumber degrades. Such acids are contained in the condensate within the end chambers, resulting in acidic moisture contacting components of the kiln and contributing to accelerated corrosion. The porous carbon carryover from the burner contributes to acidic moisture retention of surfaces and components of the end chambers and other areas of the kiln.
The present technology is generally directed to distribution of heat energy to the end chambers of a continuous dry kiln during lumber processing, the heat energy being in addition to the heat energy entering the end chambers from the drying chamber and the heat energy carried by the heated lumber packages. The additional heat energy distribution raises the dry bulb temperature with respect to the wet bulb temperature, thereby raising the wet bulb depression and lowering the relative humidity. This reduces condensate formation in a greater portion of the end chambers than in conventional continuous dry kilns. Distribution of heat energy can be direct (e.g., by introduction of heated gases into the kiln to contact the lumber), indirect (e.g., by circulation of heated liquid or gases into heat exchangers within the kiln, by radiative heating elements, etc.), or any combination thereof. The Figures and following description show and describe embodiments of continuous dry kilns of the present technology having direct heat energy distribution (e.g., by heated gases flowing through heat distribution ducts/vents into the chambers of the kiln); however, the present technology is suitable for use with indirect heat energy distribution or a hybrid of direct and indirect. In this regard, one or more heat distributors can distribute heat energy into any of the chambers of the continuous dry kilns, e.g., by replacing one or more of the heat distribution ducts with suitable heat exchangers and/or heating elements, which can be positioned similarly to the replaced heat distribution ducts and/or be placed elsewhere within the chambers of the continuous dry kiln. In other embodiments, indirect heat energy distribution can be used in addition to the direct heat energy distribution systems within the kiln, for example, by using direct heat energy distribution in the drying chamber and indirect heat energy distribution in the end chamber(s), etc. The term “heat distributor” generally refers to any combination of direct heat energy distributors (e.g., heat distribution ducts) and indirect heat energy distributors (e.g., heat exchangers, radiative heating elements, etc.).
In embodiments of continuous dry kilns using direct heating, the additional heat energy is introduced into the end chambers through ducting and distribution vents, and the heat energy is provided by one or more heaters and/or a portion of gases that has been directed away from the dryer duct. The ducting and distribution vents can be routed to and positioned in any suitable location within the end chambers. Crossflow fans can circulate the heated gas within the end chamber. In some embodiments, the present technology includes one or more vents located in the upper region of the end chamber configured to expel moist gas from the end chamber. Gas flow through the ducting described herein can be assisted by a duct fan or other suitable flow promoter.
One or more controllers can be used with the systems described herein to control various parameters of the continuous dry kiln, e.g., the burner/heater operation, mixing, flowrates, humidity, etc., and can incorporate various suitable sensors configured to provide data to the controller as will be described in greater detail below with reference to
Referring next to the kiln 100′ of
The drying chamber 104 receives heated gas created by a burner 130 combining fuel 132 and combustion air 134. The fuel 132 can be “green fuel,” generally comprising byproducts of milling processes (e.g., sawdust), or the fuel 132 can be any suitable combustible fuel, such as wood residuals, plant residuals, natural gas, propane, oil, coal, etc. Steam, hot oil, hot air, hot water, electric, solar, or other suitable heating medium may be used to provide heat (e.g., indirect heat) as an alternative embodiment to using the burner 130. The burner 130 expels a hot gas 136 into a mixing chamber 140, which can be configured to introduce a variable quantity of dilution air 138 to create a bulk drying gas of the desired temperature, moisture content, etc. After mixing the hot gas 136 and the dilution air 138, the mixture flows through an inlet duct 142 fluidly coupled to a drying chamber distribution duct 146 positioned within the drying chamber 104. In embodiments having indirect heat energy distribution, the drying chamber distribution duct 146 is omitted and replaced by a drying chamber heat distributor, e.g., one or more heat exchangers (not shown), or a combination of drying chamber distribution ducting and heat exchangers can be used. The drying chamber distribution duct 146 includes outlets exhausting drying gas 147 into the drying chamber 104 to heat and dry the lumber packages transported by the first and second lines 110 and 120. In some embodiments, gases in the drying chamber 104 can be selectively allowed to flow away from the drying chamber 104 through a backflow duct 144, returning to the mixing chamber 140.
The first and second end chambers 102a and 102b provide efficiency during processing of the lumber packages within the kilns 100 and 100′. Among other efficiencies, the first and second end chambers 102a and 102b preheat the respective green lumber packages entering the conditioning chamber with heat from the drying chamber 104, and in countercurrent kilns, forced convective heat transfer of heat energy drawn from the heated lumber package exiting the drying chamber 104. Humidity from drying the lumber packages is absorbed by and equalized within the lumber exiting the drying chamber 104, which conditions and equalizes the dried lumber before it exits the kiln. Conventional continuous dry kilns experience significant temperature drop within the end chambers because the drying gases are typically confined within the drying chamber, the ends of the kiln are open to the surrounding atmosphere, and the incoming green lumber packages are at a lower temperature than the ambient temperature within the end chambers. Each of the factors contributes to acidic condensation forming within the end chambers and accelerating corrosion.
The kilns 100 and 100′ of the present technology include components configured to increase the DBT of the gases within the first and second end chambers 102a and 102b by directing a portion of the drying gas within the drying chamber distribution duct 146 through a first drying duct outlet 148a into a first end chamber distribution duct 158a, and through a second drying duct outlet 148b into a second end chamber distribution duct 158b. The first and second end chamber distribution ducts 158a and 158b each include distribution outlets (e.g., diffusers) through which heated gases 159a and 159b, respectively, flow into the end chambers 102a and 102b to increase wet bulb depression and reduce condensation of the gases therein.
The end chamber distribution ducts 158a and 158b can be sized and configured to distribute an amount of the heated drying gas from the drying chamber distribution duct 146 such that a desired relative humidity level is variable and controllable within the first and second end chambers 102a and 102b, and can have one or more control valves (see
Conditioning and equalizing the lumber packages exiting the drying chamber 104 affects the final lumber moisture content, which is a critical characteristic contributing to the quality of dimension lumber. In one example, certain grades of dimension lumber have a target final lumber moisture content not exceeding 19%. For some other grades of lumber, the target final lumber moisture content can be more or less than 19%.
The kilns 200 and 200′ include a first heater 250a fluidly coupled through an inlet duct 254a to a first end chamber distribution duct 258a within the first end chamber 102a, and a second heater 250b fluidly coupled through an inlet duct 254b to a second end chamber distribution duct 258b within the second end chamber 102b. In embodiments having indirect heat energy distribution in the first and second end chambers 102a and 102b, the first and second heaters 250a and 250b and the first and second end chamber distribution ducts 258a and 258b can be replaced by end chamber heat distributors, e.g., heat exchangers (not shown), or a combination of end chamber distribution ducting and heat exchangers can be used. The configuration of the kilns 200 and 200′ shown in
Gases in the upper region 116 are drawn into a crossflow fan 160 in the direction of the inlet arrow 162 and proceed in the direction of the outlet air 164, which circulates the heated gas within the second end chamber 102b. Such circulation of air allows greater homogenization and stability of the temperature and humidity of the gases within the end chambers, which increases the efficiency of preheating the incoming green lumber packages and conditioning/equalizing the outgoing dried lumber packages. In embodiments of the kiln 200 where excess humidity removal from the end chambers is desired, first and second vents 170a and 170b can be positioned through the roof 188 and configured to expel moist gas from the end chambers 102a and 102b. The moist gas may be selectively vented out of the end chambers 102a and 102b by opening vent lids 172a and 172b. Out-venting can reduce the heat transfer energy requirement to the end chambers by the drying chamber distribution duct 146, the heaters 250a and 250b, and/or other suitable sources.
In one example, the central control processor 402 may compare the difference between the dry bulb temperature provided by the dry bulb temperature sensor 410 and the wet bulb temperature provided by the wet bulb temperature sensor 408 to calculate a wet bulb depression. If the wet bulb depression is below a threshold value (e.g., 5°), the central control processor 402 sends a signal to: (1) the heat control valve 404 to open and provide additional heat to the end chambers 102a and 102b; (2) the first and second heaters 250a and 250b to provide additional heat to the end chambers 102a and 102b; (3) the crossflow fan control 406 to change the speed of the crossflow fan 160; and/or (3) the ventilated actuators 414 to change the position of the vent lids 172a and 172b.
As used in the foregoing description, the terms “vertical,” “lateral,” “upper,” “lower,” etc. can refer to relative directions or positions of features in the present technology in view of the orientation shown in the Figures. For example, “upper” or “uppermost” can refer to a feature positioned closer to the top of a page than another feature. These terms, however, should be construed broadly to include embodiments having other orientations, such as inverted or inclined orientations where top/bottom, over/under, above/below, up/down, left/right, and distal/proximate can be interchanged depending on the orientation. Moreover, for ease of reference, identical reference numbers are used to identify similar or analogous components or features throughout this disclosure, but the use of the same reference number does not imply that the features should be construed to be identical. Indeed, in many examples described herein, identically numbered features have a plurality of embodiments that are distinct in structure and/or function from each other. Furthermore, the same shading may be used to indicate materials in cross section that can be compositionally similar, but the use of the same shading does not imply that the materials should be construed to be identical unless specifically noted herein.
The foregoing disclosure may also reference quantities and numbers. Unless specifically stated, such quantities and numbers are not to be considered restrictive, but exemplary of the possible quantities or numbers associated with the present technology. Also, in this regard, the present disclosure may use the term “plurality” to reference a quantity or number. In this regard, the term “plurality” is meant to be any number that is more than one, for example, two, three, four, five, etc. For the purposes of the present disclosure, the phrase “at least one of A, B, and C,” for example, means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B, and C), including all further possible permutations when greater than three elements are listed.
From the foregoing, it will be appreciated that specific embodiments of the present technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the present disclosure. Accordingly, the present technology is not limited except as by the appended claims. Furthermore, certain aspects of the present technology described in the context of particular embodiments may also be combined or eliminated in other embodiments. For example, another dry kiln system in accordance with the present technology can include both the first and second drying duct outlets 148a and 148b of
Number | Name | Date | Kind |
---|---|---|---|
5595000 | Goodwin, III | Jan 1997 | A |
10082335 | Kolari | Sep 2018 | B2 |
20060168842 | Sprague | Aug 2006 | A1 |
20110056087 | Tinsley | Mar 2011 | A1 |
20140259733 | Blomquist | Sep 2014 | A1 |
20190234686 | Brodie | Aug 2019 | A1 |