These and other features and advantages of this invention will become apparent in the following detailed description of the preferred embodiments of this invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail in connection with the preferred embodiments, it should be noted that similar elements and structures are designated by like reference numerals throughout the entire disclosure.
Referring to
The combustion furnace module 1 has a combustion chamber 11 adapted to burn fuel (such as corn stalks, cobs, etc.) so that combustion gases and heat are generated therein. The combustion furnace module 1 includes a furnace wall 12 defining the combustion chamber 11, a bottom wall 13, a fireproofing layer 14, a plurality of vent holes 15, a plurality of air tubes 16, and an opening 17 (see
The passageway module 2 includes a top annular plate 21, a bottom annular plate 22, a conduit assembly 23, an annular surrounding plate 24, an air inlet unit 25, an air outlet unit 26, and a fuel inlet 27. The top and bottom annular plates 21, 22 have outer peripheral portions connected respectively and fixedly to upper and lower ends of the surrounding plate 24, and are connected removably to the combustion furnace module 1 by bolts. The surrounding plate 24 is disposed around the combustion furnace module 1 so as to define an annular exchange space 20 therebetween. The air tubes 16 extend through the exchange space 20. The top and bottom annular plates 21, 22 seal respectively upper and lower ends of the heat exchange space 20. The conduit assembly 23 includes a first conduit set consisting of eight first conduits 231, a second conduit set including four second conduits 232, a third conduit set consisting of four third conduits 233, a fourth conduit set consisting of four fourth conduits 234, a fifth conduit set consisting of four fifth conduits 235, and a sixth conduit set consisting of eight sixth conduits 236. The first, second, third, fourth, fifth, and sixth conduits 231, 232, 233, 234, 235, 236 are disposed within the heat exchange space 20 and around the combustion furnace module 1, and have upper ends extending sealingly through the top annular plate 21, and lower ends extending sealingly through the bottom annular plate 22. Four of the first conduits 231 nearer to the second conduits 232, the second conduits 232, the fourth conduits 234, and four of the sixth conduits 236 nearer to the fourth conduits 234 constitute a first conduit unit. The other four of the first conduits 231, the third conduits 233, the fifth conduits 235, and the other four of the sixth conduits 236 constitute a second conduit unit. The air inlet and outlet units 25, 26 are formed through the surrounding plate 24, and are communicated with the heat exchange space 20. The fuel inlet 27 is also formed through the surrounding plate 24, and is aligned with the opening 17 in the combustion furnace module 1. As such, fuel can be fed into the combustion chamber 11 through the fuel inlet 27 and the opening 17.
With additional reference to
The heat-resisting upper seal rings 33 are disposed between the upper guiding module 32 and the top annular plate 21 so as to establish a gas-tight seal therebetween. The heat-resisting lower seal rings 33 are disposed between the lower guiding module 31 and the bottom annular plate 22 so as to establish a gas-tight seal therebetween.
The lower guiding module 31 includes two surrounding walls 311, two aligned partitions 314, and an annular bottom wall 315. One of the surrounding walls 311 is disposed around the other of the surrounding walls 311. The bottom wall 315 is interconnected fixedly between lower ends of the surrounding walls 311, and cooperates with the surrounding walls 311 so as to define a lower guiding space thereamong. The partitions 314 are interconnected fixedly between the surrounding walls 311 for dividing the lower guiding space into a pair of first and second lower gas transfer chambers 312, 313. The first lower gas transfer chamber 312 is communicated with lower ends of the first, second, and third conduits 231, 232, 233. The second lower gas transfer chamber 313 is communicated with lower ends of the fourth, fifth, and sixth conduits 234, 235, 236.
With particular reference to
The partitions 326 are connected fixedly to the surrounding wall 321 and the top wall 327 for dividing the upper guiding space into a gas entrance chamber 322, a gas exit chamber 323, and a pair of first and second upper gas transfer chambers 324, 325. The gas entrance chamber 322 is communicated with the combustion chamber 11 in the combustion furnace module 1 and upper ends of the first conduits 231. The first upper gas transfer chamber 324 is communicated with upper ends of the second and fourth conduits 232, 234. The second upper gas transfer chamber 325 is communicated with upper ends of the third and fifth conduits 233, 235. The gas exit chamber 323 is communicated with upper ends of the sixth conduits 236 and the gas outlet unit 328.
As such, in each of the first, second, third, fourth, fifth, and sixth conduits 231, 232, 233, 234, 235, 236, the combustion gases are limited to flow in a single direction. That is, the combustion gases flow downwardly within the first, fourth, and fifth conduits 231, 234, 235, and upwardly within the second, third, and sixth conduits 232, 233, 236, as shown in
The fireproofing layer 34 is disposed on surfaces of the top wall 327, the top annular plate 21, and the partitions 326, which define cooperatively the gas entrance chamber 322.
The thermal insulating layer 35 is sandwiched between the top annular plate 21 and the fireproofing layer 34.
With reference to
In this embodiment, a process for manufacturing the heat exchange furnace includes the following steps of:
(1) connecting the lower guiding module 31 removably to a lower end of the passageway module 2;
(2) connecting an assembly of the passageway module 2 and the lower guiding module 31 removably to the combustion furnace module 1;
(3) connecting the upper guiding module 32 removably to an upper end of the passageway module 2; and
(4) connecting the thermal insulating device 4 fixedly to the assembly of the passageway module 2 and the gas-guiding unit 3.
When fuel is burnt within the combustion chamber 11 in the combustion furnace module 1, ambient or fresh air flows into the combustion chamber 11 via the air tubes 16 and the vent holes 15. A portion of the combustion gases flows along the first serpentine gas flow path defined by the gas entrance chamber 322, four of the first conduits 231, the first lower gas transfer chamber 312, the second conduits 232, the first upper gas transfer chamber 324, the fourth conduits 234, the second lower gas transfer chamber 313, four of the sixth conduits 236, and the gas exit chamber 323. The remaining portion of the combustion gases flows along the second serpentine gas flow path defined by the gas entrance chamber 322, the other four of the first conduits 231, the first lower gas transfer chamber 312, the third conduits 233, the second upper gas transfer chamber 324, the fifth conduits 235, the second lower gas transfer chamber 313, the other four of the sixth conduits 236, and the gas exit chamber 323.
When the combustion gases flow within the first, second, third, fourth, fifth, and sixth conduits 231, 232, 233, 234, 235, 236, cold air flows into the heat exchange space 20 through the air inlet unit 25 for heat exchange contact therewith. Hence, the temperature of the combustion gases is reduced prior to exhaust from the heat exchange furnace. On the other hand, the air in the heat exchange space 20 is heated to thereby form hot air. The hot air is removed from the heat exchange furnace through the air outlet unit 26 into piping (not shown), and may serve as a heat source for various utilizations.
Referring to
Since the combustion furnace module 1, the passageway module 2, and the upper and lower guiding modules 32, 31 can be conveniently assembled together to form a module unit, the heat exchange furnace of this invention can be manufactured with ease. Thus, the object of this invention is achieved.
With this invention thus explained, it is apparent that numerous modifications and variations can be made without departing the scope and spirit of this invention. It is therefore intended that this invention be limited only as indicated by the appended claims.