Heat exchange method for melting plate candle

Information

  • Patent Grant
  • 7607915
  • Patent Number
    7,607,915
  • Date Filed
    Wednesday, December 15, 2004
    20 years ago
  • Date Issued
    Tuesday, October 27, 2009
    15 years ago
Abstract
The present invention relates to melting plate candles which employ heat conductive elements to distribute heat from a burning flame at a wick to a support plate for a solid fuel and to the body of said solid fuel, so as to more rapidly liquefy the solid fuel, such as paraffin wax, and to more uniformly and intensely heat such fuels to increase the efficiency of consumption thereof and to more rapidly release volatile materials contained within said fuels. The heat conductive support plate is configured so as to have a capillary pedestal upon the surface thereof, which cooperatively engages a wick holder comprising a preferably consumable wick and heat conductive fins which conduct heat from a flame upon said wick to said support plate, said wick holder further engaging said capillary pedestal in such a locking manner as to resist accidental removal from said pedestal. The fuel may be provided in various forms, configured to cooperatively engage said wick holder and support plate, and may comprise various volatile materials. The capillary pedestal, in conjunction with the wick holder, causes rapid and complete flow of the liquefied fuel to said wick, and the capillary pedestal and wick holder are shaped so as to provide for variance of capillary flow between them when the wick holder is rotated relative to the capillary pedestal.
Description
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a means for providing an improved heat exchange method utilizing a wick clip or wick holder assembly in a melting plate candle or other candle assembly, having a replaceable wick and/or fuel puck. This invention is most particularly designed to be used in a melting plate candle having means to provide a capillary feed between the wick holder and the melting plate, as well as in jar candles or conventional container candles, and provides means to adjust the flame size and burn rate of such a melting plate candle.


2. Description of the Related Art


Clips which locate and secure wicks for candles and for devices which dispense vapors into the ambient air are well known in the art, and useful in many applications. In candles, such clips provide a means to position the wick for the most efficient provision of fuel, such as candle wax, to the flame, while in vapor dispensing devices, such wick clips secure a wick by which a vaporizable liquid is delivered from a reservoir to an exposed surface.


More recently, melting plate candles and simmer plate dispensers have been used to provide rapid melting of a solid fuel element and/or rapid dispensing of a vaporizable material to the atmosphere. An example of such a dispensing device is shown in U.S. Pat. No. 6,780,382, issued Aug. 24, 2004, in which a dispenser for active materials is shown. This reference, incorporated herein by reference, illustrates a melting plate dispenser of volatile materials comprising a solid fuel containing active material, a consumable wick, and a heat conductive base having conductive elements, and the configuration of such elements.


In U.S. Pat. No. 6,802,707, issued Oct. 12, 2004, a melting plate candle comprising solid fuel, a consumable wick, a concave melting plate comprising a lobe by which heat is conducted from the flame upon the candle to the plate, and the configuration of such elements, are shown.


In addition to the above, application Ser. No. 10/780,028, filed Feb. 17, 2004, teaches a candle comprising solid fuel, a melting plate, a lobe that engages a wick holder which comprises a wick and which conducts heat to said lobe and to said melting plate. In this application, said wick holder engages said lobe in such a manner as to create a capillary flow of melted fuel to the wick itself.


In each of the above references, the melting plate candle provides a relatively rapid means for heating the solid fuel to its melting point, thereby improving efficiency of the candle. However, it has now been found that even more efficient, and more particularly, more rapid melting of the solid fuel may be achieved by means of specific modifications of the wick holding device.


In application Ser. No. 10/939,039, filed Sep. 10, 2004, of which the present application is a continuation-in-part, and which is incorporated herein in its entirety, a specific combination of measures to extract heat from the flame on the candle wick and to more efficiently deliver said heat to the solid fuel element were taught. Specifically, the parent application recites the insulation of the heat conductive fins so as to prevent heat loss to the atmosphere, with said heat conductive fins being configured so as to extract the maximum amount of heat from the flame on the wick of said candle.


SUMMARY OF THE INVENTION

The present invention, designed for use with a candle holder or dispenser of actives as described above, but suitable for use with most forms of container candles and/or dispensing devices, provides a means for a more rapid melting of the solid fuel element, resulting in a more rapid release of any volatile materials therein, and the creation of a more uniform pool of liquified fuel for consumption. This goal is achieved by a combination of specific measures to extract heat from the flame on the candle wick, and to more efficiently deliver said heat to the solid fuel element, while providing the opportunity to adjust the degree of capillary attraction of the fuel to the wick so as to modify flame height.


Specifically, the preferred wick holder of the present invention comprises a wick holder designed to provide heat fins, a wick positioning holder, and a base preferably designed to not only engage a similarly shaped portion of the bottom of the container in such a manner as to prevent its easy displacement from the bottom of the container, but to also create a capillary flow of melted wax, or liquefied active containing material, between the wick holder itself and the portion of the bottom by which it is engaged. The heat fins of said wick holder are so designed as to be positioned in the main combustion zone of the flame upon the wick which is held by said wick holder. That is, the tips of the heat fins are so located as to be in the blue region of the flame, thereby obtaining the maximum heat from said flame. Various means to accomplish this goal are available. First, one or both of the heat fins may be so shaped as to curve inwardly to a position whereby the tip itself is in the flame. Secondly, a thin highly conductive metal element, such as a metal strip or wire, may connect the tips of the heat fins and pass through the blue region of the flame, so as to extract heat therefrom even as the flame flickers.


Preferably, the engaging and positioning means for the wick clip, preferably located on the bottom of the container near the center thereof, is a raised protrusion or pedestal, similar to a capillary lobe, and having a configuration by which the wick holder may be locked in place. Alternatively, the engagement means may comprise a depression in, or undercut portion of, the bottom of the container. Preferably, the wick holder may be held in place by magnetic means, such as taught in Ser. No. 10/978,744, filed Nov. 1, 2004, in the names of Kubicek et al., incorporated herein in its entirety by reference. Alternatively, the wick holder may comprise a ring of plastic or metal which engages said pedestal or depression, and has a portion which snaps over said pedestal in such a manner as to grip an undercut portion thereof. Alternatively, the wick holder may be designed so as to be inserted, with pressure, into a depression having a defined opening, and which then radially expands to resist removal from said opening, or engages a wider portion of said depression in such a manner as to inhibit removal there from without further radial compression of the wick holder. Exemplary of such designs are spider-type legs, or a skirt, which can engage, or snap around a central pedestal or bump having a depressed area between the top of the pedestal and the bottom of the container. Other means for lockingly engaging the wick holder to the capillary pedestal, or the bottom surface, of the candle container are available, and preferably constitute means which will prevent accidental displacement of the wick holder, but which may be released so as to permit replacement of the wick holder at the discretion of the consumer. The present invention specifically provides for a means to adjust the gap between the wick clip and the pedestal by providing a means to rotate the wick clip about a nonsymmetrical centering or capillary pedestal.


The present invention thus provides a candle or lamp device capable of rapidly and completely melting a solid fuel to form a large liquid pool, thereby improving distribution of any volatile materials present in the fuel, and ensuring efficient and complete utilization of all of the fuel provided, while providing increased safety and convenient refilling. Further, the concept of the present invention offers highly decorative as well as functional candles and lamps, which may utilize a variety of gel and solid fuels, with the significant advantages of permitting rapid and convenient replacement of one fuel element by another at the desire of the consumer, without the need to clean or scrape the container in which said candle is utilized to remove a body of unburned fuel after the bulk of the previous fuel element has been consumed, while providing means to control flow of fuel to the flame and thus controlling rate of consumption to some extent.


These and other embodiments of the invention shall be illustrated in the figures and description which follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the basic concept of a melting plate candle of the prior art, in simplified perspective view, of which the present invention constitutes an improvement.



FIG. 2 illustrates a basic melting plate candle, in simplified cross section, absent the locking wick holder and improvements of the present invention.



FIG. 3 is a simplified cross section of a melting plate candle, showing the capillary pedestal, the locking wick holder with fins in accordance with the present invention, and the relationship between the elements.



FIG. 4 is an exploded view of a melting plate having a capillary pedestal, with a wick holder as described herein with fins and incorporated wick, and a fuel element.



FIG. 5 is a perspective view of the assembled melting plate, wick holder, and fuel element of FIG. 4.



FIG. 6 is a perspective view of the rotating lever means for adjusting the capillary gap area of the wick clip upon the capillary lobe.



FIG. 7 is an exploded view of a melting plate having a capillary pedestal, with a wick holder as described herein, wherein the capillary pedestal and the wick holder are not complimentary in shape.



FIG. 8 is an exploded view of an embodiment having a melting plate with an oval capillary pedestal.



FIG. 9 is an enlarged cross-sectional view along lines 9-9 of FIG. 3 with portions behind the plane of the cross-section of FIG. 8 not shown for clarity, showing the wick holder and the capillary pedestal in a position, wherein there is limited capillary action.



FIG. 10 is an enlarged cross-sectional view along lines 10-10 of FIG. 3, showing the wick holder and the capillary pedestal of FIG. 8 in another position with portions behind the plane of the cross-section not shown for clarity, wherein there is greater capillary activity between the capillary pedestal and the wick holder.





DETAILED DESCRIPTION OF THE INVENTION

Ordinary candles comprise a vertical, self-supporting body or column of wax, with a substantially horizontal top and a central longitudinal wick which extends through and above the wax. The exposed portion of the wick above the solid wax is lighted by a flame, and the heat generated by the flame melts a small volume of the wax at the top of the candle, adjacent the wick, establishing a puddle or reservoir of molten wax to serve as fuel for the flame on the wick, and to release any volatile actives present therein. The capillary attraction of the molten wax and the wick, which is generally a structure of closely related fibers, causes the molten wax to travel through the wick to the flame, by which it is consumed. As the wax is consumed in this manner, the body of wax diminishes and the top surface thereof progressively lowers. The upper portion of the wick, extending above the lowering wax, is generally consumed by the flame. The flame in such a candle remains in the same position relative to the horizontal center of the candle, but decreases in height relative to the surface upon which the candle rests, from the start to the end of the burn, at which time all or at least most of the wax has been consumed.


Also well known are such candles as votive candles and tea lights. For purpose of discussion, tea lights shall be considered to be relatively small candles in which a body of paraffin is located in a container, having a wick centrally disposed, while votive candles shall be considered to be candles of similar size provided without a container. At the lower end of the wick is typically found a wick clip having a flat horizontal bottom surface, which functions to retain the wick in its perpendicular position, even as the paraffin is melted and liquefied by the heat of the flame. In most such votive candles and tea lights, the wick is a cotton material saturated with paraffin, and burns with the paraffin, thus being consumable. In such candles, or lights or warmers employing the same, the visible flame moves lower, or closer to the bottom surface of the container as the fuel and wick are consumed, down to the level of the bottom of the wick. Further, after consumption of all of the wax above this point in the unit, the container (of the tea light), the unburned wax, and the wick clip remain to be disposed of by the consumer. As a safety consideration in such candles, the wick is normally crimped or terminated at a point about 0.25 inches above the bottom of the wax, so as to cause the flame to extinguish above the bottom of the container, and to thus prevent the heat of the flame from reaching the surface upon which the candle is positioned, preventing damage to such surface, and reducing the likelihood of igniting possible contaminants such as burnt matchsticks remaining at the bottom of the candle, or carbonaceous remains of the consumable wick. Such an arrangement also has the detriment of leaving a small volume of unburned wax in the bottom of the container when the flame extinguishes.


As utilized herein, the term melting plate candle shall encompass the combination of a solid fuel element and a heat conductive container or holder for the fuel. The terms fuel container and fuel holder shall be meant to encompass a support plate or melting plate comprising means to contain and melt the fuel element, and a wick holder engaging a wick and said support plate, said wick holder comprising heat conductive elements, such as fins, referred to hereinafter as either wick fins or heat fins. Said wick holder shall also encompass a base having means such as magnetic means of a skirt or legs configured to engage a complimentarily shaped pedestal portion of the support plate, and to transfer heat from a flame upon said wick to said melting plate. Thus, the support plate functions to hold the fuel element, to retain the wick holder, and to conduct heat to the solid fuel element to thereby melt said fuel element to provide a liquid fuel to feed to the flame via the wick. Moreover, the base portion of the wick holder engages, by the use of legs or skirt means, a pedestal on the surface of said support or melting plate in such a manner as to resist detachment from the melting plate, while also providing a means for transporting liquid fuel from the support plate to the wick by capillary action. Thus, the pedestal to which the wick holder is attached may be referred to as a capillary pedestal, whereas in conventional melting plate candles, in which no locking or attachment means is present to secure the wick holder to the base of the melting plate, the wick holder may be said to engage a capillary lobe. The capillary pedestal of the present invention may thus be considered to be a capillary lobe having an undercut or other means by which a wick holder may be engaged so as to resist accidental displacement. The wick holder may thus be considered to be locked in place to the capillary pedestal, although it is removable by the consumer for replenishment of the wick and/or the fuel element, by exertion of sufficient force to overcome the engaging pressure. As will be appreciated, the manufacturer may provide melting plate devices, wicks and wick holder assemblies, and solid fuel elements, either together, or independently (separately), and the consumer may join the separate elements to form a melting plate candle, fuel burner, or dispenser of active materials, with the option to change wicks and fuel elements at will. In a preferred embodiment of the invention, the wick, wick holder, and fuel element may be provided as a unitary replacement element to be utilized with a separately provided melting plate.


An element of the present invention constitutes a capillary pedestal on the melting plate, which pedestal provides a locating device for a complementarily shaped wick holder, creates a site for capillary feed of fuel to the wick, and provides a means for heat transfer from the flame to both the melting plate and the solid fuel. The wick holder, in addition to providing a mounting means for the wick, has a base which closely conforms to the capillary pedestal in such a manner as to create a capillary feed by which melted wax flows to the wick as fuel. Moreover, the capillary pedestal of the present invention is configured so as to engage said wick holder in such a manner that it may not be easily or accidentally removed from said pedestal. This may be accomplished magnetically, for example, or by means of an undercut in the side of the pedestal, which undercut engages a complimentarily shaped leg or skirt of the wick holder, which leg or skirt may be made of a resilient material, such as a heat conductive metal, which is biased inwardly on the pedestal in the area of the undercut therein, so as to resist removal. This capillary pedestal and locking mechanism is set forth and claimed in U.S. patent application Ser. No. 10/938,434, filed Sep. 10, 2004, in the names of Kubicek et al.


In addition to the base and/or skirt of the wick holder being a heat conductive element, the wick holder preferably also provides an additional heat conductive element such as a fin or fins, which are in close proximity to, or in contact with the flame, and thereby conduct the maximum possible heat back to the wick holder base, and thus to the capillary pedestal, and thereby to both the melting plate and the fuel. It is to be understood that this arrangement of elements provides for much greater control of the degree of heating of the pool of melted wax, and the pool temperature, by virtue of the ability to control the amount of heat conducted to the pool by either the skirt of the wick holder or by the fins thereof. This may be accomplished by selection of the number of fins, for example, or control of the conductivity thereof, such as by choice of position relative to the flame, or material of construction. This in turn is most important in candles which dispense a volatile material, such as a fragrance, where a rapid temperature rise to the most effective temperature for volatilization of the active material is desired. Such a rapid temperature rise clearly results in a more rapid melt of the fuel element, and a more rapid dispensing of volatile material. In fact, with the present invention, it is possible to tailor a melting plate candle to a specific volatile active to be contained within a fuel element, by permitting control of the amount of heat conducted to the pool of melted fuel, and thus controlling the temperature thereof.


The material of which the melting plate and the heat fins are fashioned should be of high thermal diffusivity, i.e. have high thermal conductivity, low density, and low specific heat. It has been found that the material of the wick clip should have a thermal capacity above 0.10 cal/° C. but below 0.30 cal/° C. Such low thermal capacities decrease the melt time associated with melting the solid fuel element, and higher values tend to starve a newly initiated flame of heat, causing it to extinguish. The preferred materials may be such metals as aluminum and copper. By use of such metals, one obtains the least resistance to heat transfer from the flame to the puck. Moreover, the region of said fins between the flame and the wax or the base of the wick holder should be insulated, so as to prevent loss of heat to the surrounding atmosphere, by either radiation or convectional means. The insulating material may be any conventional non-combustible material which may be readily applied to the surface of the heat fins, by any conventional method. In addition, it is beneficial to extend one or more portions of the wick holder base outward into the wax puck, so as to preferably transfer heat directly to the fuel element, rather than to the melting plate base. This also has the benefit of minimizing the supply of liquified fuel to the wick near the exhaustion of the fuel supply, thereby reducing the likelihood of flaring or re-ignition of the candle at the end of its life. Still another factor of the effectiveness of the transfer of heat from the heat fin to the solid fuel is the size of the heat fin, specifically with respect to surface area. The cross sectional area of the fins should be large enough to efficiently convey the collected heat. During the melting of the fuel element, it is desired that the heat transfer between the fin and the fuel be maximized, so relatively large horizontal surfaces are desirable. After the fuel has melted and formed a pool of liquid, it is desirable to minimize the heat transfer from the fins to the pool. The relationship between the horizontal wick clip area and the fuel element, or votive, may be represented by the so called “Quasivoto factor”, defined as the fin surface area divided by the vertical cross section of the votive. For most efficient utilization, the “Quasivoto factor” should be greater than 0.25 but less than 0.75 before the fuel element is melted, and between 0.125 and 0.25 after the fuel element has fully melted. Advantage may be taken of the variable height of the molten pool of fuel by shaping the heat fins so as to be wide in the pre-melt pool, but narrower in the post melt pool. Still further, it has been calculated that the total cross sectional area of the fins at a point corresponding to the height of the wick should be less than approximately ¼ the cross sectional area of the fins at a height corresponding to the surface of the solid fuel element, for a wick clip having a thermal diffusivity between 1×10−5 and 15×10−5 m2 per second.


Alternative aspects of the present invention provide for the fuel element to be provided as a separate element which is complementarily shaped relative to the wick holder, so as to fit around the wick holder in its position on the capillary pedestal of the melting plate. While it is possible for a permanent wick and wick holder assembly to be provided as a part of the melting plate, in the preferred embodiments of the invention the wick holder, wick, and fuel element are provided to the consumer as a single unit. Alternatively, the wick and wick holder may be provided as a single unit, with individual separate fuel units, perhaps containing differing fragrances, for example, to be combined with a melting plate. In this manner, wick holders of differing shape and configuration may be combined with fuel elements of appropriate configuration which differ in color or scent, for example.


In accordance with the present invention, it has been found beneficial to provide for variance of the gap between the wick holder and the capillary lobe of the melting plate candle holder so as to allow adjustability thereof. This is most easily accomplished by providing a capillary lobe which is not fully symmetrical, i.e. is not totally complimentary to the shape of the wick holder, so that as the wick holder is rotated upon the capillary lobe, areas of greater or less capillary activity between the two exist. In this manner, it is possible to vary the amount of capillary action occurring during the burning of the candle, and thus to vary the flow of melted fuel to the wick itself. In any case, it is advantageous that the highly heat conductive heat fins are so positioned as to capture the maximum heat output of the candle flame, by being located in the blue region of the flame, that the heat fins be insulated in the area between the flame and the solid fuel element, with which the heat fins are in direct contact, and that maximum release of the heat from the wick fins to the solid fuel element be achieved. This may preferably be achieved by forming leaves or branches which extend from the fins, or from the wick holder base to which the heat fins attach, into the solid fuel element itself. Of course, the heat fins may also be so shaped as to maximize surface contact thereof with the solid fuel.


Accordingly, it is evident that the melting plate is preferably comprised of a heat conductive material, such as a metal, although less conductive materials, such as glass or ceramic may be employed. The preferred material for use as the melting plate is polished aluminum, due to its high efficiency as a conductor of heat, its light weight, and for aesthetic reasons. It is also possible that the melting plate may constitute a non-conductive body having a conductive surface applied thereto, such as a less conductive surface having a thin layer of metal applied thereto. In this regard, it is noted that the surface of the melting plate may also have a coating of a surface tension modifying material applied thereto for purposes of preparing a self cleaning or easy cleaning melting plate. For example, a thin layer of a polytetrafluoroethylene material may be applied over a rough surface to provide a smooth wetting surface upon which molten wax will flow easily, and which will enable easy removal of solidified wax upon extinguishing the flame and allowing the candle to cool.


The melting plate, which may act both as a fuel container and a heat transfer means to heat the fuel, is shaped so as to collect the melted or liquefied fuel at its lowest point, at which point a wick is preferably located by means of a wick holder positioned upon a capillary pedestal, so as to ensure that all fuel is fed to the wick, whereby the maximum consumption of the fuel is achieved. Thus, the melting plate is preferably shaped as a bowl, or in the form of a funnel, with the lowest portion thereof preferably, but not necessarily, centered. The entire interior surface of the fuel container is preferably highly heat conductive, and supports, contains, and heats the fuel, although containers in which only a small portion of the interior surface acts as a melting plate are within the scope of the present invention. Candles employing such melting plates shall be referred to, collectively, as melting plate candles. The melting plate itself may, of course, be essentially flat, with raised edges or a surrounding wall to contain the melted fuel.


Moreover, the melting plate helps to control the shape and depth of the pool of fuel which is burned at the wick, and to maintain the constancy thereof. It is to be understood that the fuel utilized in the present invention may be initially in solid or gel form, but must be in liquid form for moving up the wick by capillary action to the flame, where it is consumed. Thus, the fuel used with the melting plate candle shall be such that it will not be transported by wicking action at ambient or room temperature, but requires heating to a liquefied state, i.e. melting, to be subject to capillary or wicking action. For convenience, the term solid fuel shall be used hereinafter to refer to fuel in either a gel or conventional solid state, such as conventional candle wax, preferably in the form of a hard, shaped body or “puck” of wax. It is also to be understood that the fuel consumed in the flame at the burning wick is drawn by the wick from a liquid pool of fuel, which pool is formed by melting the solid fuel, and heating said liquid pool by conductive heat transfer from the melting plate and heat exchange elements provided by the wick holder, in addition to the radiant heat from the flame on the wick. By the use of the melting plate and heat fin technology of the present invention in addition to the conventional radiant heating of the surface of the fuel, the size, volume, depth, and temperature of the liquid pool of fuel are better regulated. And, as a result of greater control of heat transfer to the fuel, a melted, liquid pool thereof is more rapidly formed and heated to a desired temperature. Because the speed of achieving a uniformly heated liquid pool of fuel is increased, a more efficient consumption of the fuel results, and a more complete usage of available fuel due to the decrease of fuel left unburned on the surface of the melting plate, as well as a more rapid and efficient release of any volatile active materials in said fuel, such as fragrances. In preferred embodiments of the present invention, a pool of liquid, i.e. melted, fuel rests upon the surface of the heat conductive melting plate. This pool of fuel may initially contain unmelted fuel in the solid state, as well as melted fuel, and the elevated temperature of the pool achieved by the present invention aids in assuring a complete melting of the solid wax puck and complete and optimized dispersal of any volatile active materials present in the fuel


Generally, the melting plate device embodies both a melting plate and secondary heat conductive elements, which secondary elements are to be provided as part of the wick holder and pass through or are in close proximity to the flame, to ensure more uniform and rapid distribution of heat from the flame upon the wick. The wick is affixed in its preferred position by means of the wick holder. The wick, which is preferably a consumable wick, may be any filamentary body which is sufficiently sturdy, which will burn with a steady flame, and which is capable of drawing up the molten candle fuel by capillary action. Such a wick may be of any conventional consumable wick material, such as cotton, cellulose, nylon, or paper, but may be non-consumable as well. The wick holder and wick may preferably be located in the center of the candle, or may be off-center as desired. The presence of two or more wicks, and associated wick holders and capillary pedestals, is also within the scope of the present invention. In the present invention, the wick is preferably positioned in a wick holder which engages the melting plate by means of an appropriately located and shaped capillary pedestal on the melting plate, which serves to locate the wick holder (and thus, the wick), to transmit heat from the flame on the wick to both the fuel and the melting plate, and by means of the capillary nature of the appropriately sized gap formed by the fit of the pedestal in relationship to the wick holder, to enhance flow of fuel to the wick. Moreover, the wick holder is preferably configured so as to also engage the fuel element in a lock and key relationship and to position it on the melting plate in the preferred location. The present invention, however, is directed to the adjustability of the capillary nature of the gap formed by the gap between the pedestal and the wick holder, which may be controlled by rotation of a symmetrical wick holder about a non-symmetrical pedestal, or, conversely, by the rotation of a non-symmetrical wick holder about a symmetrical pedestal. As the wick holder rotates about the pedestal, if one is non-symmetrical, some areas of the two will come into closer proximity, while other areas are further apart, causing the degree of capillary flow to vary. By proper selection of the geometric configurations of the wick holder and the pedestal, it is possible to obtain a method by which one can rotate the wick holder in a given direction relative to the capillary pedestal to obtain a desired increase or decrease of flow of liquified fuel to the wick itself, and thus to effect a control upon the rate of consumption of fuel, and the height of the flame upon the wick.


A heat conductive element constitutes the melting plate itself, which may comprise portions formed, raised, or bent to be in closer proximity to the flame, such as a raised section of the plate, e.g. the upper edge of the raised side of the melting plate. For example, the melting plate may constitute a bowl shaped container having its outer periphery in close proximity to the flame, such as a container in which the side wall of the bowl is formed so that the lip of the upper opening curves back toward the center of the bowl, and thus toward the flame. The melting plate may also have secondary heat conductive elements, such as one or more raised portions which act not only to absorb and distribute heat by conduction, but to channel or direct the flow of liquid fuel to the wick. Such raised portions may constitute areas of material having higher heat conductivity than surrounding areas of the container. In such examples, the support plate may comprise a less conductive material, such as glass, and the principal heat exchange may be by radiant heat and conducted heat by means of the secondary heat conductive elements of the wick holder. It may thus be seen that the wick holder assembly, comprising a wick, and a fuel element, in conjunction with a base configured so as to complimentarily engage a capillary pedestal, may be utilized in any candle container comprising a capillary pedestal.


In the present invention, a capillary pedestal both engages and positions the aforementioned wick, wick holder, and fuel element in such a manner as to provide the most advantageous positioning thereof, as well as to create a capillary flow of melted fuel from the melting plate to the wick positioned in the wick holder, which is placed in such close relationship to the capillary pedestal as to create a very narrow gap between the pedestal and the wick holder. By virtue of this narrow gap, which may be from approximately 0.01 to about 0.04 inches, preferably about 0.02 inches, liquefied fuel rises to the wick for consumption. However, if one of either the wick holder or the pedestal is “out of round”, e.g. oval, it is clear that the capillary gap will not be uniform through out its circumference about the pedestal. While it should be noted that it is within the scope of the invention that the capillary action may be improved as a result of grooves cut in the pedestal, or in the wick holder, and that the wick holder may be held away from the pedestal by the presence of appropriately positioned and sized bumps located on either the pedestal, the wick holder, or the melting plate, the present invention is specifically directed to the concept of varying the capillary gap between the wick holder and the pedestal by means of rotation of the holder about the pedestal. Moreover, the capillary forming combination of elements may constitute a concave depression in the melting plate, rather than a raised male pedestal, and the wick holder in such case may be an appropriately shaped male member which fits within the depression so as to create a capillary gap between the members, by which fuel is fed to the wick, and having engagement means to prevent its accidental removal from said depression. Still further, it is contemplated that the capillary pedestal, in a male configuration, or a female depressed configuration, need not constitute a circular member, but may be of any shape, such as for example cylindrical, pyramid shaped, square, oval, triangular, or any other desired shape, in combination with a like-shaped and appropriately dimensioned wick holder and locking means, which in accordance with the present invention is not totally complimentary in shape, but varies sufficiently in shape from the pedestal or depressed area of engagement to provide variance of capillarity between the two in different circumferential locations. It is also to be noted that the capillary pedestal need not transmit liquid fuel to the wick at all parts of the perimeter of the capillary pedestal. For example, a circular capillary pedestal in conjunction with a circular wick holder need only create a capillary gap for a limited portion of its circumference, such as for 90, 180, or 270 degrees. Thus, the wick holder need not be in a close enough proximity to the pedestal throughout the total area of engagement therewith to provide a full capillary effect, but only in sufficient area to provide an adequate flow of fuel to the wick to maintain the flame upon said wick. This is of great importance in the present invention, wherein the wick holder is rotated about the pedestal so as to change the degree of capillary flow achieved.


Additionally, primary heat conductive elements are separate assemblies which are utilized in conjunction with the melting plate and consumable wick and wick holder. The primary heat conductive element may take the form of heat fins or heat conductive surfaces attached to the wick holder, and having either vertical or horizontal orientation or elements of both. In preferred embodiments, such heat conductive elements are heated by direct contact with the flame, and conduct such heat to both the melting plate and to the fuel so as to more efficiently heat the fuel. The heat conductive elements of the wick holder, hereinafter exemplified as heating fins, although not limited to fins per se, and intended to encompass other heat conductive extensions of the wick holder which may serve this function, may be of any highly heat conductive material, and may be either formed as an extension of the wick holder or joined to said wick holder in such a manner as to conduct heat from the flame to that portion of the wick holder which is engaged by the capillary pedestal and/or the melting plate. The wick holder thus comprises fins, a means to hold the wick, the wick, and a base configured so as to engage the melting plate via a capillary pedestal or lobe, and to transfer heat from said fins to said melting plate. Where plural fins are employed, which do not contact the flame itself, it is preferred to join the upper tips of such fins by means of a highly heat conductive element, such as a metal wire or metal connecting piece. Suitable and exemplary, although clearly not the only possible heat fins are illustrated in U.S. Pat. No. 6,780,282, issued Aug. 24, 2004, incorporated herein by reference. Moreover, the fins should be insulated in that region below the flame in which they are exposed to the ambient atmosphere, so as to prevent radiation and loss of heat to the surrounding area.


It is to be understood that the wick holder and associated primary heat conductive elements are meant to be so situated and shaped as to engage or interlock with a replaceable solid fuel element. In a similar fashion, the melting plate and/or the fuel container may be formed in such a manner as to permit placement of fuel elements of specific configuration, such as wax pucks having a complementary configuration, for example, in a preferred position in proximity to the heat conductive elements themselves, or to the wick holder, in such a manner as to maximize heat transfer from the melting plate to said fuel elements. In the most preferred embodiment, additional heat conductive elements are present as an element of the wick holder, in the form of extending legs or leaves from the base of said wick holder into the body of the solid fuel element. In said most preferred embodiment of the invention, there is a capillary pedestal present on the melting plate, positioned in such a manner as to also transfer heat to the fuel element, and configured so as to engage a wick holder holding a consumable wick and having one or more heat conductive fins, and a fuel element such as a wax puck. Further, the engagement of the wick holder with the capillary pedestal is such as to provide a capillary effect between the two for feeding fuel to the wick. In this embodiment, the consumer may purchase a replacement fuel element comprising a wax puck and a wick holder and wick, configured so as to engage a matching capillary pedestal on the melting plate in such a manner as to position the fuel element and the wick holder, and having a heat conductive element in the appropriate location to most efficiently melt the fuel element. Alternatively, the consumer may purchase an assembly comprising a wick holder and wick, with separately available appropriately shaped fuel elements.


The use of the melting plate technology of the present invention may also provide such advantages as elimination of tunneling, significant reduction of retention of wax at the conclusion of the burn, and elimination of walking or off-center wicks, while also giving a larger pool of liquid wax with a relatively small flame in a relatively short time period. In addition, the container may be of almost any shape desired, providing for great aesthetic possibilities. Since the fuel element, either alone or in combination with a wick and wick holder, may be provided as a separate unit, the consumer may be provided a great number of choices as to the color, content, and nature of the fuel, and the configuration of the fuel element may be varied to provide a large choice of shapes, such as seasonably decorative items. For example, shapes such as pumpkins may be provided for Halloween, wreaths for Christmas, and flowers for all seasons. In addition, the fuel element preferably is configured as to cooperatively engage both the melting plate and the wick holder, which wick holder in turn engages the capillary pedestal on the melting plate, in such a manner as to provide the consumer the greatest degree of ease in placement of the fuel element in optimal position in the melting plate candle, with the least possibility of incorrect placement. Further, the melting plate or support plate may have decorative features, such as designs, embossed, etched, printed, or stamped thereon.


Accordingly, the present invention provides a melting plate candle, wherein said candle comprises a container for a fuel element comprising a fuel selected from the group consisting of paraffin, beeswax, montan wax, carnauba wax, microcrystalline wax, polyvinyl acetate, fatty alcohols, fatty acids, fatty esters, and gels incorporating such fuels, in a form selected from the group consisting of pucks, donuts, chips, slivers, balls, pellets, shavings, particulates, cubes, discs, three dimensional shapes, and wafers, or in any other suitable shape. Said fuel element may optionally further comprise such volatile active materials as fragrances, air fresheners, deodorizers, odor eliminators, odor counteractants, insecticides, insect repellants, herbals, medicinal substances, disinfectants, sanitizers, mood enhancers, aroma therapy compositions, and the like. Such solid fuel may be colored for decorative effect, if so desired, and may be shaped to fit any given configuration of melting plate and/or wick holder. For example, the bottom of a solid fuel element should be curved complementarily to the shape of the melting plate upon which it is to rest, and have melting temperatures above ambient, but below the flame temperature of a wick burning such fuel.


These and still other advantages of the present invention will be apparent from the description which follows, which description is merely of preferred embodiments, and not indicative of the full scope of the invention.



FIGS. 1 and 2 illustrate the broad concept of a melting plate candle in its most basic form, such as set forth in Ser. No. 09/747,525, filed Dec. 20, 2000, incorporated herein in its entirety by reference. The teachings of said pending patent application do not illustrate the capillary pedestal and wick holder assembly of the present invention, nor the primary heat conductive members comprising heat fins passing through the hottest region of the flame with regions thereof insulated to prevent heat loss to the atmosphere. As illustrated, a heat conductive melting plate container, 2, is provided, which transfers heat obtained from the heat source, a flame (not shown) located on wick 3, by means of heat conduction, to the solid fuel element, 4, which rests upon the surface of the melting plate. For purposes of illustration, and for clarity, but intending no limitation, the wick is illustrated in FIGS. 1 and 2 as being of a relatively large diameter, rather than as a fibrous wick of small diameter. It is to be understood that the wick is positioned within and attached to the solid fuel element, 4, such as with a wick clip (not shown in FIGS. 1 and 2). The melting plate, 2, as shown in FIGS. 1 and 2, is heated directly by a flame on the wick, 3, by radiation, as a result of the melting plate being shaped so as to have a portion, shoulder 18, in proximity to the flame, the diameter of the melting plate bowl being such as to permit the inner surfaces thereof to absorb appreciable amounts of heat from the flame.


The melting plate of FIGS. 1 and 2 is shaped so as to have a raised outer shoulder, 18, thereby containing the resultant pool of melted fuel. It is to be understood that the melting plate may be in the form of a tray, bowl, concave plate, or other configuration which is capable of holding a pool of hot liquid fuel, and is preferably shaped so as to funnel or channel the liquefied, i.e. melted, fuel to the wick. The melting plate may constitute a container in itself, as shown, or may be surrounded by a separate container. In the embodiment shown in FIGS. 1 and 2, the melting plate rests upon a non-conductive base, 11, or legs of non-conductive or insulating material, so as to permit placement upon a table, counter, or other surface. The non-conductive base, as illustrated, comprises contact points, 12, so as to minimize the amount of contact between the base and the melting plate, and to create an insulating air gap, 13, between the melting plate and the surface upon which the assembly rests.


The melting plate may be of any heat conductive material, such as brass, aluminum, steel, copper, stainless steel, silver, tin, bronze, zinc, iron, clad materials, heat conductive polymers, ceramics, glass, or any other suitable heat conductive material or combination of such materials. As shown in FIG. 2, the fuel is preferably located in direct contact with the surface of the melting plate, 2, which plate may, if desired, be constructed so as to have a non-conductive lower surface, so that the melting plate may rest upon a table surface or such. Such a configuration may result from a clad material, a conductive melting plate material coated on the external surface with a non-conductive material, a non-conductive material having an insert of a heat conductive material, or other suitable arrangements to permit the melting plate to be cool enough on the bottom surface to permit ease of handling, and/or placement upon surfaces not suitable for contact with heated bodies.


The wick, 3, preferably constitutes a conventional consumable wicking material, such as such as cotton, cellulose, nylon, or paper, or the like, which by capillary action will carry liquid fuel to the flame. Alternatively, non-consumable wicks may comprise such materials as porous ceramics; porous metals; fiber glass; metal fiber; compressed sand, glass, metal, or ceramic microspheres; foamed or porous glass, either natural or man-made, such as pumice or perlite; gypsum; and chalk. However, for purposes of the present invention, the use of conventional consumable wicks is preferred. The wick, 3, may be located in the center of the melting plate, 2, or may be off-center as desired, provided that the melting plate is configured so as to channel or funnel melted fuel to said wick. As illustrated, the wick may be positioned in conjunction with a starter bump, 6, of wax in the top surface of said fuel element, 4, for ease of lighting. The presence of two or more wicks is also within the scope of the present invention. The wick is provided in conjunction with the wick holder assembly, the preferred configuration of the wick holder being such as to cooperatively engage a complimentarily shaped capillary pedestal, 22, on the melting plate, as shown in FIGS. 3, 4, and 5, discussed hereinafter.



FIG. 3 illustrates a melting plate container, 2, comprising a concave base, and having a raised pedestal or protrusion, 22, located near the center thereof, said pedestal being shaped so as to engage the legs or skirt, 23, of a wick holder, 7. The wick holder itself is comprised of a central wick holding means, 5, a wick, 3, and heat fins, 9, located so as to absorb heat from a flame, 1, upon said wick mounted in said wick holder, and to permit flow of said heat from said flame to said base of said melting plate container, 2, and to the solid fuel element, 4. The tips of said wick fins are joined by a highly conductive wire, 8, or other highly conductive means. Further, the fins are provided with insulated areas, 10, between a point below the contact of the fin with the flame, or below the point of joinder by the conductive wire, to a point near or below the surface of the solid fuel element. The legs or skirt, 23, of said wick holder fit in close proximity to the sides, 24 of said pedestal, 22, and engage an undercut, 25, in the side surface of said pedestal, by means of shoulder 26, in such a manner as to resist removal there from. The legs or skirt, 23, and the base, 27, of said wick holder and the sides, 24, and top, 28, of said pedestal are in close proximity, so as to permit maximum resistance to separation, and so as to create a gap resulting in a capillary flow of melted wax from the bottom of the melting plate container, 2, to the top of said pedestal, 28. In addition, highly heat conductive leaves or branches, 16, extend outward from the bottom of said wick holder into the body of the fuel element, so as to assist in rapid melting thereof. Such leaves or branches are preferably of the same material as the base of said wick holder. The bottom, 27, of said wick holder is shown to be in close proximity to the top, 28, of said pedestal, assuring a rapid and even flow of liquefied fuel to the wick, held in position so as to contact said fuel by wick holding means 5. Although the invention is illustrated in terms of a melting plate candle, it may be equally as effective in the context of a candle jar, tea light, or votive holder.


In FIG. 4, an exploded perspective view of the invention is shown, with a bowl shaped melting plate container, 2, which comprises a capillary pedestal, 22, located in approximately the center thereof. A wick holder, 7, is shown above the capillary pedestal, the wick holder being shaped in such a manner as to fit closely over said capillary pedestal, and to tightly engage an undercut therein so as to be locked in position. The wick holder, as illustrated, further comprises the wick, 3, heat fins, 9, joined by wire 8, and a heat conductive leaf or wing 16. A solid fuel element, 4, is shown, having a cut out portion, 6, through which the heat fin and wick assembly may pass, so as to place the wick in close proximity to the top surface of said fuel element. The solid fuel element is shown as a wax puck, although other shapes may clearly be used within the scope of the present invention. To prevent difficulty in lighting the wick, a starter bump of fuel may be provided in close proximity to the wick, 3. As illustrated in FIGS. 1, and 2, this bump is most easily molded directly into the shape of the fuel element, and provides a ready source of liquid fuel to the wick when a match or other appropriate source of flame is employed to start the wick burning, which source of flame will melt the starting bump to thus create an initial pool of liquid fuel.



FIG. 5 shows the embodiment of FIG. 4 in operational configuration, showing the relationship of the elements in position for lighting of the wick, 3, wherein the melting plate, 2, is shown with a fuel element, 4, positioned on the capillary pedestal (22, not visible) and centered around a wick holder assembly with the heat transfer fin, 9, and wick, 3, extending through the opening, 30.



FIG. 6 illustrates the specific concept of the present invention, in which the flame, 1, is in close proximity to fins 9, and wick holder 7 is shown to be rotatable about the perimeter of the capillary pedestal, not shown, by means of lever 14.



FIG. 7 depicts an embodiment where the capillary pedestal 22 includes bumps 38 and the wick holder 7 includes grooves G formed between legs 23. Some of the legs 23 extend out into the wax puck and some of the legs conform to the shape of the capillary pedestal 22. The bumps 38 are appropriately positioned and sized such that the capillary space and corresponding capillary activity between the legs 23 and the capillary pedestal 22 increases and decreases as the legs 23 rotate about the capillary pedestal 22.



FIGS. 8-10 illustrate an embodiment having an out of round capillary pedestal 22 in the shape of an oval and a wick holder 7 that is not fully symmetrical to the shape of the capillary pedestal 22. Grooves G defined between the legs 23 provide a gap between legs 23, and the base of the wick holder 7 is non-complementary in shape to the capillary pedestal 22. In a first rotational position, as shown in FIG. 9, the legs 23 are spaced away from a flattened, or smaller diameter portion of the oval shape of the capillary pedestal to have minimal or no contact with the capillary pedestal 22, which may result in a gap that is to large to sustain capillary action and thereby reduce overall capillary action between the capillary pedestal and the legs. In another rotational position, as shown in FIG. 10, the wick holder 7 is rotated 90 degrees with the legs 23 opposite a more rounded, or larger diameter portion of the oval capillary pedestal 22. As shown in FIG. 10, the legs are spaced closer to and/or in contact with a larger area of the capillary pedestal 22, which may result in a smaller gap that facilitates greater capillary action. It should be apparent to one skilled in the art that the wick holder 7 can be rotated on the capillary pedestal to any degree to control the size of the capillary gap and resulting capillary flow capacity.


Thus, when using a solid fuel, such as wax, in conjunction with a heat conductive wick holder, solid fuel refill units may be shaped to fit the shape of the melting plate, with a specific relationship to the wick holder, which itself is engaged with the melting plate by-a locking means. For example, the melting plate may be a decoratively shaped container, and wax may be provided in the form of refills specific for the container shape selected, such as round, square, oval, rectangular, triangular, or otherwise, so shaped that the wick holder assembly incorporated with the wax refill unit will fit and engage a complementarily shaped capillary pedestal, with the wick holder assembly fitting the capillary pedestal in such a manner that the capillary gap between the two may be varied by rotation of the wick holder relative to the capillary pedestal.


The use of a melting plate with additional heat conductive elements, such as the partially insulated heat fins and joining wire illustrated, offers a number of distinct advantages. First, it permits a larger pool of liquid fuel, due to improved heat conduction into the fuel, which results in more rapid formation of the pool. This in turn allows better regulation of the size and shape, as well as the temperature, volume, and depth of the liquefied wax pool to allow more efficient use of fuels present. In fact, melting plates of the present invention permit ease of refill, with little or no cleaning. In most instances, no cleaning is required, but if desired, the plate may be conveniently washed in a manner such as a dish, plate of bowl is washed, in a wash basin or in a dishwasher. The use of a capillary pedestal in the heat plate, in conjunction with heat fins on the wick holder, also reduces or eliminates retention of solidified excess fuel when the candle is allowed to burn itself out, and permits more complete and uniform burning of fuel elements which are other than round, i.e. square, oval, triangular, or in the shape of a flower or decorative object, etc. Further, the melting plate technology in conjunction with a capillary pedestal and complimentary wick holder, results in devices which may be self extinguishing, and improvements in or elimination of typical burning problems encountered with candles, such as tunneling, drowning, collapsing, cratering, and wick drift. Candles utilizing the melting plate technology of the present invention are also more forgiving of formulation or process variances. And, more importantly, the presence of a locking configuration of the wick holder and the capillary pedestal provides a margin of safety and convenience not previously available. Still further, the rotational means to control the capillary gap, and thus the flow of melted fuel, between the pedestal and the wick holder, is not limited to melting plate candles which employ insulation of portions of the wick fins or a joining wire between the fins, but is applicable to any melting plate configuration employing a capillary or centering pedestal and a wick holder assembly.


While the present invention has been described with respect to what are at present considered to be the preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments. To the contrary, the invention is intended to cover various modifications and equivalent arrangements within the spirit and scope of the appended claims. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent formulations and functions.


INDUSTRIAL APPLICABILITY

The melting plate and heat conductive element candles of the present invention, utilizing a capillary pedestal and correspondingly shaped locking wick holder having fins which contact the hottest portion of the flame upon the wick, but are elsewhere insulated to prevent heat loss, can be used in connection with a large variety of solid fuels. The conductive materials of which the melting plate and heat fins may be constructed are commonly available, and the various configurations are readily produced. There is considerable interest for candles having extended burn times, and for refillable candles or solid fuel lamps, particularly for melting plate candles which are resistant to accidental release of the wick holder assembly.

Claims
  • 1. A candle comprising a meltable solid fuel element, a melting plate upon which said fuel element rests, and a wick holder comprising a wick and heat conductive fins positioned so as to collect heat from a flame upon said wick and to conduct such heat to said fuel element and to said melting plate, said wick holder engaging said meltable solid fuel element, wherein said wick holder and said capillary pedestal comprise means for causing variation of capillary flow of liquefied fuel from the melting plate to the wick by rotation of said wick holder relative to said capillary pedestal.
  • 2. The candle of claim 1, wherein said means for causing variation of capillary flow comprises means for adjusting a capillary gap between the wick holder and the capillary pedestal.
  • 3. The candle of claim 2, wherein said means for causing variation comprises means to provide variance of capillarity between the wick holder and the capillary pedestal at different circumferential locations of said capillary pedestal.
  • 4. The candle of claim 3, wherein said means to provide variance comprises the capillary lobe including a first shape and the wick holder comprising a second shape, wherein the second shape at least partially surrounds a perimeter of the first shape, and wherein the first shape is not totally complimentary to the second shape.
  • 5. The candle of claim 1, wherein said wick holder includes means for rotating the wick holder about an outer perimeter of the capillary pedestal.
  • 6. A candle as set forth in claim 1, wherein said melting plate further comprises a raised heat conductive portion by which heat is conducted from a flame upon said wick to said melting plate and to said solid fuel element, whereby a pool of heated liquid fuel is created, said melting plate being configured to cause the flow of said heated liquid fuel toward said wick holder.
  • 7. The melting plate candle of claim 5, wherein said means for rotating comprises a lever extending from said wick holder by which said wick holder may be rotated about said capillary pedestal.
  • 8. The melting plate candle of claim 1, wherein said wick holder further comprises heat conductive members configured so as to transfer heat from said heat conductive fins to said solid fuel element.
  • 9. A candle comprising a meltable solid fuel, a support plate upon which said fuel rests, and a pedestal located on said support plate which cooperatively engages the base portion of a wick holder comprising a wick, wherein said base portion at least partially surrounds a perimeter of said pedestal, said wick holder conducting heat from a flame upon said wick to said solid fuel and said support plate by means of heat fins which contact said flame, said wick holder engaging said pedestal in such a manner that rotation of the wick holder about the perimeter of the pedestal causes variation of capillary flow of fuel between said pedestal and said wick holder.
  • 10. The candle of claim 9, wherein said wick holder comprises a plurality of heat conductive fins in close proximity to said flame.
  • 11. The candle of claim 10, wherein said fins are joined by a heat conductive element which passes through a tip of the flame.
  • 12. The candle of claim 10, wherein said meltable solid fuel comprises a replaceable fuel element cooperatively engaging said support plate, pedestal, wick holder, and heat conductive fins.
  • 13. The candle of claim 10, wherein said support plate further comprises a heat conductive portion by which heat is conducted from a flame upon said wick to said solid fuel element, whereby a pool of heated liquid fuel is created, said support plate being configured to cause the flow of said heated liquid fuel toward said wick holder.
  • 14. The candle of claim 9, wherein said support plate is treated so as to be self cleaning.
RELATED APPLICATION(S)

This application is a Continuation-In-Part of Ser. No. 10/939,039, filed Sep. 10, 2004 now abandoned.

US Referenced Citations (271)
Number Name Date Kind
213184 Frick Mar 1879 A
405786 Ludde Jun 1889 A
407051 Baumer Jul 1889 A
408973 Heller Aug 1889 A
484210 Ludde Oct 1892 A
779644 Ferrier Jan 1905 A
837240 Mulkerins Nov 1906 A
1044256 Satter Nov 1912 A
D43845 Hirschfeld Apr 1913 S
1195657 Chersky Aug 1916 A
D49902 Labaree et al. Nov 1916 S
1229140 Ritter Jun 1917 A
1316624 Lucas Sep 1919 A
1320109 Wooster Oct 1919 A
1336635 Knapp Apr 1920 A
1390389 Rosenfeld Sep 1921 A
1484964 Benneville Feb 1924 A
D67108 Steeple Apr 1925 S
1640734 Smith Aug 1927 A
D75463 Bach Jun 1928 S
D80971 Sakier Apr 1930 S
D83100 Gisolfi Jan 1931 S
D110902 Loesch Aug 1938 S
D119587 Fuerst Mar 1940 S
2234903 Muench Mar 1941 A
2237523 Damon Apr 1941 A
2246346 Wells Jun 1941 A
2254906 Petrulis Sep 1941 A
2324753 Alexiade Jul 1943 A
2354343 Webber et al. Jul 1944 A
2393767 Gould Jan 1946 A
2462440 Tierney Feb 1949 A
2494995 Gardner Jan 1950 A
2713256 Oesterle Jul 1955 A
2758460 Ciano Aug 1956 A
2775006 Kranc Dec 1956 A
2809512 Hartnett Oct 1957 A
RE24423 Oesterle et al. Feb 1958 E
3121316 Wilson Feb 1964 A
D206946 Knodt Feb 1967 S
D208064 Quistgaard et al. Jul 1967 S
D208097 Henn Jul 1967 S
3565281 Collie Feb 1971 A
3689616 Kelley Sep 1972 A
D226240 Twedt Jan 1973 S
3730674 Gross May 1973 A
3741711 Bryant Jun 1973 A
3749904 Graff Jul 1973 A
3762857 Andeweg Oct 1973 A
D229852 Lindblad Jan 1974 S
D236064 Balbo Jul 1975 S
3898039 Lin Aug 1975 A
3910753 Lee Oct 1975 A
3932113 Thrush Jan 1976 A
3994502 Lombardi Nov 1976 A
4013397 Neugart Mar 1977 A
4019856 Lacroix Apr 1977 A
D247635 Maxwell Mar 1978 S
D248499 Ulrich et al. Jul 1978 S
D248500 Ulrich et al. Jul 1978 S
4102634 Crisp Jul 1978 A
D248787 Ulrich et al. Aug 1978 S
D248788 Ulrich et al. Aug 1978 S
D248789 Ulrich et al. Aug 1978 S
D253432 Van Koert Nov 1979 S
D253732 Van Koert Dec 1979 S
4185953 Schirneker Jan 1980 A
4206500 Neil Jun 1980 A
4206560 Sefried, II Jun 1980 A
4224017 Kayne Sep 1980 A
D264385 Meyer May 1982 S
4332548 Linton et al. Jun 1982 A
4381914 Ferguson May 1983 A
4427366 Moore Jan 1984 A
4477249 Ruzek et al. Oct 1984 A
4524408 Minera Jun 1985 A
4551794 Sandell Nov 1985 A
4557687 Schirneker Dec 1985 A
4568269 Lin Feb 1986 A
4568270 Marcus et al. Feb 1986 A
4588618 Wolfe May 1986 A
D292525 Van Deelen Oct 1987 S
4755135 Kwok Jul 1988 A
4781895 Spector Nov 1988 A
4804323 Kim Feb 1989 A
D312507 Thoreson Nov 1990 S
4983119 Lin Jan 1991 A
5015175 Lee May 1991 A
D320266 Kunze Sep 1991 S
5069617 Lin Dec 1991 A
5078591 Depres Jan 1992 A
5078945 Byron Jan 1992 A
5086380 Hedner, Jr. Feb 1992 A
D325077 Kearnes Mar 1992 S
5101328 Hai Mar 1992 A
5174645 Chung Dec 1992 A
5193994 Schirneker Mar 1993 A
5338187 Elharar Aug 1994 A
5363590 Lee Nov 1994 A
D355266 Caplette et al. Feb 1995 S
D356472 Jaworski Mar 1995 S
5425633 Cole Jun 1995 A
D360461 Gillespie Jul 1995 S
D369871 Lui May 1996 S
D371212 Hardy et al. Jun 1996 S
D376002 Upson Nov 1996 S
D377402 Perkins Jan 1997 S
D383944 Lillelund et al. Sep 1997 S
5690484 Leonard et al. Nov 1997 A
D390676 Hollington Feb 1998 S
D391119 Rapaz Feb 1998 S
D393910 Chambers et al. Apr 1998 S
D394513 Davis May 1998 S
5807096 Shin et al. Sep 1998 A
D399298 Whitehead Oct 1998 S
5840246 Hammons et al. Nov 1998 A
5842850 Pappas Dec 1998 A
5843194 Spaulding Dec 1998 A
5871553 Spaulding Feb 1999 A
D410756 Kleinberg Jun 1999 S
5921767 Song Jul 1999 A
5927959 Johnson Jul 1999 A
5939005 Materna Aug 1999 A
5951278 Young et al. Sep 1999 A
5955034 Zaunbrecher et al. Sep 1999 A
5955958 Lu Sep 1999 A
5961967 Powell et al. Oct 1999 A
D416099 Hardy Nov 1999 S
D416341 Allen Nov 1999 S
5980241 Schirneker Nov 1999 A
6019804 Requejo et al. Feb 2000 A
6033209 Shin et al. Mar 2000 A
D422180 Sundberg Apr 2000 S
6050812 Chuang Apr 2000 A
D425220 Klett et al. May 2000 S
D425636 Freeman May 2000 S
6059564 Morris May 2000 A
6062847 Pappas May 2000 A
6068472 Freeman et al. May 2000 A
D426902 Hardy et al. Jun 2000 S
6074199 Song Jun 2000 A
6079975 Conover Jun 2000 A
6099877 Schuppan Aug 2000 A
D430943 Zutler Sep 2000 S
D433168 Cousins Oct 2000 S
6129771 Ficke et al. Oct 2000 A
6144801 Lehoux et al. Nov 2000 A
6152728 Griffel Nov 2000 A
D435100 Pesu et al. Dec 2000 S
D436415 Hardy Jan 2001 S
6214063 DeStefano et al. Apr 2001 B1
D443080 Klett et al. May 2001 S
D443081 Klett et al. May 2001 S
D443082 Klett et al. May 2001 S
D443101 Williamson May 2001 S
6231336 Chen May 2001 B1
6241362 Morrison Jun 2001 B1
6241513 Jeneral Jun 2001 B1
D445030 Croft et al. Jul 2001 S
D445337 Croft et al. Jul 2001 S
6267584 Zou Jul 2001 B1
6270339 Zou Aug 2001 B1
6273710 Zou Aug 2001 B1
6276925 Varga Aug 2001 B1
D447418 Bezek et al. Sep 2001 S
6290489 Seidler Sep 2001 B1
D448867 Manocheo et al. Oct 2001 S
6296477 Lin Oct 2001 B1
6299435 Freeman et al. Oct 2001 B1
D450395 Bellenger Nov 2001 S
D450865 Bellenger et al. Nov 2001 S
6328935 Buccellato Dec 2001 B1
6361311 Smith Mar 2002 B1
D455486 Makino Apr 2002 S
D455846 Araujo Apr 2002 S
D456539 Leeds Apr 2002 S
6371756 Toohey Apr 2002 B1
D459498 Araujo Jun 2002 S
6398544 Wright et al. Jun 2002 B2
D461916 Araujo Aug 2002 S
D462132 Papai Aug 2002 S
6428311 Bernardo Aug 2002 B1
6439471 Ehrlich et al. Aug 2002 B2
D462793 Freeman et al. Sep 2002 S
6450802 Steck Sep 2002 B1
6454561 Colthar et al. Sep 2002 B1
D464745 Mangini et al. Oct 2002 S
6468071 Zoy Oct 2002 B2
D465587 Papai Nov 2002 S
D466236 Papai Nov 2002 S
6488494 Lee Dec 2002 B2
6491516 Tal et al. Dec 2002 B1
D469550 Moeller Jan 2003 S
D469893 Shen Feb 2003 S
6520770 Zou Feb 2003 B2
D471299 Papai Mar 2003 S
6531063 Rose Mar 2003 B1
6537063 Pecoskie Mar 2003 B1
6543268 Wright et al. Apr 2003 B2
6544302 Berger et al. Apr 2003 B2
6551365 Berger et al. Apr 2003 B2
6554448 Carpenter et al. Apr 2003 B2
D474854 Lam May 2003 S
6568934 Butler May 2003 B1
6575613 Brown et al. Jun 2003 B2
6579089 Iu Jun 2003 B1
6592637 McGee et al. Jul 2003 B2
6595771 Chu Jul 2003 B2
6616308 Jensen et al. Sep 2003 B2
D481143 McMinn Oct 2003 S
D481473 Walsh Oct 2003 S
6630110 Urfig Oct 2003 B2
6648631 Wright et al. Nov 2003 B2
D485624 Kitamura Jan 2004 S
6688880 Pangle Feb 2004 B1
6695611 Lee Feb 2004 B2
D487687 Shields, Jr. Mar 2004 S
6709266 Jensen Mar 2004 B2
6730137 Pesu et al. May 2004 B2
6733279 Thigpen et al. May 2004 B2
D491288 Young Jun 2004 S
D493548 Goldman Jul 2004 S
D495437 Barbera Aug 2004 S
D495438 Barbera et al. Aug 2004 S
6769905 Gray et al. Aug 2004 B2
6780382 Furner et al. Aug 2004 B2
D497680 McMinn Oct 2004 S
6808388 Lee Oct 2004 B2
6849240 Nakatsu et al. Feb 2005 B2
6857869 Sun Feb 2005 B1
6863525 Byrd Mar 2005 B2
6923639 Pesu et al. Aug 2005 B2
20010005573 Furner et al. Jun 2001 A1
20010031438 Hannington et al. Oct 2001 A1
20020066789 Yen Jun 2002 A1
20020068009 Laudamiel-Pellet Jun 2002 A1
20020068010 Laudamiel-Pellet Jun 2002 A1
20020093834 Yu Jul 2002 A1
20020102187 Bellenger et al. Aug 2002 A1
20020119413 Cheng Aug 2002 A1
20020127507 Long Sep 2002 A1
20030027091 Brandt Feb 2003 A1
20030064336 Welch Apr 2003 A1
20030134246 Gray et al. Jul 2003 A1
20030162142 Bennetts et al. Aug 2003 A1
20030175148 Kvietok Sep 2003 A1
20040007787 Kvietok Jan 2004 A1
20040009103 Westring Jan 2004 A1
20040009447 Decker Jan 2004 A1
20040016818 Murdell Jan 2004 A1
20040028551 Kvietok Feb 2004 A1
20040029061 Dibnah et al. Feb 2004 A1
20040033171 Kvietok Feb 2004 A1
20040033463 Pesu et al. Feb 2004 A1
20040128879 Lu Jul 2004 A1
20040160764 Lee Aug 2004 A1
20040223871 Woo Nov 2004 A1
20040223943 Woo Nov 2004 A1
20040229180 Furner Nov 2004 A1
20040241053 Thompson Dec 2004 A1
20040265164 Woo Dec 2004 A1
20050019238 Hart et al. Jan 2005 A1
20050037306 Nakatsu Feb 2005 A1
20050079463 Yu Apr 2005 A1
20060057521 Kubicek et al. Mar 2006 A1
20060057522 Kubicek et al. Mar 2006 A1
20060057523 Kubicek et al. Mar 2006 A1
20060057526 Kubicek et al. Mar 2006 A1
20060057528 Kubicek et al. Mar 2006 A1
20060057529 Kubicek et al. Mar 2006 A1
20060084021 Kubicek Apr 2006 A1
Foreign Referenced Citations (32)
Number Date Country
2208145 Dec 1998 CA
2440068 Mar 1976 DE
3302591 Aug 1984 DE
3403604 Aug 1985 DE
4203644 Aug 1993 DE
4241292 May 1994 DE
4314122 Nov 1994 DE
195 48 958 May 1996 DE
195 08 962 Sep 1996 DE
102004011919 Jun 2005 DE
0146247 Jun 1985 EP
1054054 Nov 2000 EP
1 336 799 Aug 2003 EP
2628825 Mar 1988 FR
161342 Apr 1921 GB
1514338 Jun 1978 GB
2 239 942 Jul 1991 GB
362220594 Sep 1987 JP
406212189 Aug 1994 JP
408185710 Jul 1996 JP
2003-213292 Jul 2003 JP
WO 8906141 Jul 1989 WO
WO 9512783 May 1995 WO
WO 9602794 Feb 1996 WO
WO 9917055 Apr 1999 WO
WO 9945322 Sep 1999 WO
WO 0032989 Jun 2000 WO
WO 0146618 Jun 2001 WO
WO 2004008026 Jan 2004 WO
WO 2004083349 Sep 2004 WO
WO 2004083718 Sep 2004 WO
WO 2004090417 Oct 2004 WO
Related Publications (1)
Number Date Country
20060057527 A1 Mar 2006 US
Continuation in Parts (1)
Number Date Country
Parent 10939039 Sep 2004 US
Child 11012707 US