This application claims priority to Chinese Patent Application No. 201610126534.8 filed on Mar. 7, 2016, the contents of which are incorporated by reference herein.
The subject matter herein relates to a heat exchange system between liquefied natural gas and heat dissipation apparatus.
In one aspect, liquefied natural gas (LNG) needs to absorb heat to be gasified. In another aspect, a heat dissipation apparatus, such as data center generates a lot of heat which needs to be dissipated.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
The term “comprising” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
The heating portion 10 includes a first pump 12, a first heat exchanger 13, a turbine 14, a second heat exchanger 15, a third exchanger 16, a second pump 17, a third pump 18, and a pipe 19. The first pump 12 is coupled between the LNG tank 11 and the first heat exchanger 13. The pipe 19 is coupled between the first heat exchanger 13 and the third heat exchanger 16 to transmit natural gas to the third heat exchanger 16 from the first exchanger 13.
The third pump 18 is coupled between water storage tank 30 and the second heat exchanger 15. The third pump 18 is configured to pump water from the water storage tank 30 into the second heat exchanger 15. Further, the third pump 18 can pump water from a pool 40 into the second heat exchanger 15 when the water in the water storage tank 30 is not needed. The second exchanger 15 is coupled to the third exchanger 16 and transmits water to the third exchanger 16. A plurality of intermediate heating medium are filled in the second heat exchanger 15. The plurality of intermediate heating medium is separated from water pumped by the third pump 18. The plurality of intermediate heating medium is configure to absorb heat of the water in the heat exchanger 15.
The second heat exchanger 15, the second pump 17, the first heat exchanger 14, and the turbine 14 make up of a loop for the plurality of intermediate heating medium flowing therein. The second pump 17 works to drive the intermediate heating medium to flow from the second heat exchanger 15 into the first heat exchanger 13, and then flow through the turbine 14 to rotate the turbine 14 to generate electric power which is provided to a electric power system (not labeled), and at last flow back to the second heat exchanger 15. In the first heat exchanger 13, the intermediate heating medium and the LNG are separated, and heat of the intermediate heating medium is transmitted to the LNG.
The third exchanger 16 includes a gas outlet 161 and a water outlet. In the third exchanger 16, LNG flowing from the first heat exchanger 13 and water flowing from the second heat exchanger 15, and heat of the water is transmitted to the LNG to gasify the LNG. The gasified LNG is outputted from the gas outlet 161. Water flows out of the third exchanger 16 via the water outlet 163. Water can flow back to the water storage tank 30 via a first valve 165, or be discharged via a second valve 167.
In another embodiment, the first exchanger 13, the second exchanger 15, and the turbine 14 can be omitted. The third exchanger 16 is provided to heat the LNG by water.
A valve 60 is coupled between the water storage tank 30 and the third pump 18. When the valve 60 is opened, the pump 18 works to pump the water of the water storage tank 30 to the second heat exchanger 15 and the third heat exchanger 16. In another embodiment, the pump 18 can simultaneously pump the water of the water storage tank 30 and the pool 40 in a preset ratio.
In the above embodiment, heat of the heat dissipation apparatus is transmitted to the water of the water storage tank 30 via the chilled water loop 21, the cooling medium loop 23, and the cooling water loop 25 of the cooling portion 20. Heat of the water of the water storage tank 30 is transmitted to the LNG via the first heat exchanger 13, the second heat exchanger 15, and the third heat exchanger 16 of the heating portion 10. Therefore, the heat of the heat dissipation apparatus is exchanged to the LNG via the heat exchange system.
In another embodiment, when the LNG is not enough, and cannot absorb all heat of the heat dissipation apparatus, the chilled water loop 21, the cooling medium loop 23, and the cooling water loop 25 can be enhanced to dissipate more heat of the heat dissipation apparatus.
In another embodiment, when the LNG can absorb more heat than that dissipated from the heat dissipation apparatus, more water in the water storage tank 30 or other container can be cooled to cool other heat dissipation apparatus. In another aspect, when the heat dissipation apparatus dissipates more heat than that the LNG can be absorbed, more water in the water storage tank 30 or other container can be heated to heat other apparatus.
In other embodiment, the LNG can be replaced by other cold source which needs to be heated, such as liquid nitrogen, liquid ammonia, and so on.
The embodiments shown and described above are only examples. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0126534 | Mar 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6644041 | Eyermann | Nov 2003 | B1 |
9885446 | Kim | Feb 2018 | B2 |
20100146971 | Mak | Jun 2010 | A1 |
20110132003 | Pozivil | Jun 2011 | A1 |
20110167824 | Mak | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
104197576 | Dec 2014 | CN |
204301358 | Apr 2015 | CN |
Number | Date | Country | |
---|---|---|---|
20170254480 A1 | Sep 2017 | US |