This invention pertains to the field of heat exchange and specifically to a more efficient design of heat exchangers for plume and emissions control from a wet gas scrubber or similar device.
Plate fin and tube heat exchangers or externally finned tube exchangers have long been employed to recover process heat. These exchangers are most often employed to heat or cool a low density gas stream located on the finned side against a denser fluid with higher heat transfer coefficient within the tubes. The extended surface on the finned exterior pass allows greater heat transfer surface than a bare tube and provides greater heat transfer at a low-pressure drop.
The art has not heretofore recognized the unexpected advantage of using multiple cooling streams on the tube side of one or more heat exchanger and interlacing the heat transfer zones to allow more effective heat transfer and reduce the water dewpoint of the stream to reduce or eliminate visible vapor plume while also reducing SO3 emissions was not recognized in the art.
The invention may be described in several ways as alternate embodiments of the same novel discovery.
Embodiments of the present invention provide a finned tube exchanger that can be used in a heat transfer system.
In one embodiment, a method of heat transfer using a heat transfer device includes:
a. providing a first working fluid which has a water dewpoint above ambient air temperature on the finned exterior side of the heat transfer device,
b. providing 2 or more working fluids flowing in separate circuits within the tube circuits of the heat transfer device,
c. feeding the first working fluid to the exterior finned side of a heat transfer zone or zones to transfer heat to or from the first working fluid thereby heating or cooling the first working fluid to a higher or lower temperature,
d. feeding the second working fluid into a tube or group of tubes to be heated or cooled by the first working fluid, and
e. feeding the third or more working fluid(s) into a tube or group of tubes to be heated or cooled by the first working fluid.
In a preferred embodiment of the invention, a method of heat transfer includes providing a heat exchange device having one or more finned exterior side working fluid streams against multiple tube side circuits, wherein the multiple tube circuits being interlaced to more effectively approach the cooling curve of the finned exterior side working fluid, and cooling the high dewpoint working fluid on the exterior finned surface of the exchanger to reduce the water content of the exhaust stream.
In another embodiment, a method of heat transfer using a circuitry of a plate fin and tube or finned tube exchanger that allows for more effective heat transfer includes recovering heat from the effluent stream with a first cooling stream, using a second working fluid as a cooling stream to further remove heat from the effluent stream, then circuiting and pumping the first cooling stream which has been heated by the effluent stream in the finned tube exchanger to heat the effluent stream above its dew point.
A construction and design of a heat transfer system allowing complex circuitry of a plate finned and tube or finned tube exchanger utilizing multiple tube side circuits that accomplish more effective heat transfer while reducing the heat rejection load on cooling towers or other heat removal devices while simultaneously reducing the energy input required to heat the exhaust stream above it's dew point for plume suppression.
In summary, the invention provides a system for more efficient heat transfer in a plate fin and tube or finned tube exchanger to reduce the plume of a stream that is being rejected to atmosphere that has a water dew point above that of the ambient air.
The invention is illustrated by the specific example set out below.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The invention provides a method of integrating circuitry with various working fluids in a common or multiple plate fin and tube or finned tube exchanger(s) to accomplish more efficient heat transfer and reduce the plume of a stream that is being rejected to atmosphere that has a water dew point above that of the ambient air. This example is provided to illustrate the invention and not to limit the concepts embodied therein. The invention is defined and limited by the claims set out below. The examples below were modeled using a commercial process simulator.
Turning to
In one embodiment, a method of recovering energy and visible plume abatement includes providing a finned tube heat exchanger having a finned exterior side; providing a first working fluid that has a dew point greater than the ambient air; feeding the first working fluid to the exterior finned side of a heat transfer zone to cool the first working fluid and thereby heating the second working fluid to a higher temperature; feeding the second working fluid into a tube, group of tubes, or passageways, e.g., item (61) shown in
In another embodiment, a circuitry of a plate fin and tube or finned tube exchanger that allows for more effective heat transfer is provided.
In yet another embodiment, a construction and design of a heat transfer system allowing complex circuitry of a plate finned and tube or finned tube heat exchanger utilizing multiple tube side circuits within a common heat transfer device or group of heat exchangers.
In yet another embodiment, a heat transfer method includes cooling a stream which has a dewpoint greater than the ambient air with a plate fin and tube or finned tube exchanger to condense a portion of that stream, then reheating that stream to a higher temperature to eliminate or reduce a visible emission plume.
In one or more of the embodiments described herein, the tube working fluids are the same or of different composition.
In another embodiment, a heat transfer system includes a plurality of working fluid streams on the finned exterior side of a plate fin and tube or finned tube exchanger where the working fluids are of the same or of different compositions.
In yet another embodiment, a heat transfer system includes multiple heat recovery stages to provide additional heat recovery.
A method of operating an energy recovery system for exhaust heat recovery by providing an integrated tube side heating circuitry to heat multiple working fluid circuits while cooling the exhaust stream to condense a portion of the exhaust stream, then heating the exhaust stream to eliminate or reduce visible plume. This is proposed to be accomplished by contacting the exhaust energy stream to be recovered thereafter with the heated working fluid(s), wherein the heated working fluid(s) provides the driving means for energy recovery and selecting a working fluid composition that permits meeting all design constraints.
In another embodiment, the second working fluid contains more than 5% by weight of any of the following: water, ethylene glycol, propylene glycol, sodium formate, potassium formate, sodium chloride, or potassium chloride.
In yet another embodiment, heat transfer exchangers and separators are combined into a single apparatus.
Number | Name | Date | Kind |
---|---|---|---|
1899629 | Morse | Feb 1933 | A |
2475025 | Huff | Jul 1949 | A |
2521462 | Kinzelmann | Sep 1950 | A |
2633338 | Hiersch | Mar 1953 | A |
2735660 | Craig | Feb 1956 | A |
2764391 | Pullen | Sep 1956 | A |
3277958 | Taylor et al. | Oct 1966 | A |
3294161 | Wood | Dec 1966 | A |
3818869 | Blaskowski | Jun 1974 | A |
3995689 | Cates | Dec 1976 | A |
4029146 | Hart et al. | Jun 1977 | A |
4103735 | Warner | Aug 1978 | A |
4106474 | Hunter et al. | Aug 1978 | A |
4119140 | Cates | Oct 1978 | A |
4158438 | Hapgood | Jun 1979 | A |
4344482 | Dietzsch | Aug 1982 | A |
4503902 | Zolik | Mar 1985 | A |
4546818 | Nussbaum | Oct 1985 | A |
4705101 | Warner | Nov 1987 | A |
4739826 | Michelfelder et al. | Apr 1988 | A |
4781241 | Misage et al. | Nov 1988 | A |
4930571 | Paull | Jun 1990 | A |
5323603 | Malohn | Jun 1994 | A |
5325915 | Founts et al. | Jul 1994 | A |
5394860 | Borle | Mar 1995 | A |
5419392 | Maruyama | May 1995 | A |
5820830 | McIlroy et al. | Oct 1998 | A |
5855111 | Oguchi et al. | Jan 1999 | A |
5944090 | Teal | Aug 1999 | A |
5944094 | Kinney et al. | Aug 1999 | A |
6247682 | Vouche | Jun 2001 | B1 |
6663694 | Hubbard et al. | Dec 2003 | B2 |
6667011 | Munje et al. | Dec 2003 | B1 |
6880628 | Yoshida et al. | Apr 2005 | B2 |
7056367 | Trivett | Jun 2006 | B2 |
7117934 | Lomax, Jr. et al. | Oct 2006 | B2 |
7237602 | Arai et al. | Jul 2007 | B2 |
20020038702 | Font-Freide et al. | Apr 2002 | A1 |
20020124996 | Jukkola et al. | Sep 2002 | A1 |
20030173062 | Lomax, Jr. et al. | Sep 2003 | A1 |
20050092472 | Lewis | May 2005 | A1 |
Number | Date | Country |
---|---|---|
3218710 | Jul 1983 | DE |
0 326 388 | Aug 1989 | EP |
9144565 | Jun 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20050263262 A1 | Dec 2005 | US |