Heat exchange system for plume abatement

Information

  • Patent Grant
  • 8066056
  • Patent Number
    8,066,056
  • Date Filed
    Wednesday, May 26, 2004
    20 years ago
  • Date Issued
    Tuesday, November 29, 2011
    13 years ago
Abstract
A heat exchange method and system for heat transfer includes a plate fin and tube or finned tube heat exchanger that reduces the plume of a stream that is being rejected to atmosphere by reducing the water dew point of the stream.
Description
TECHNICAL FIELD

This invention pertains to the field of heat exchange and specifically to a more efficient design of heat exchangers for plume and emissions control from a wet gas scrubber or similar device.


BACKGROUND OF THE INVENTION

Plate fin and tube heat exchangers or externally finned tube exchangers have long been employed to recover process heat. These exchangers are most often employed to heat or cool a low density gas stream located on the finned side against a denser fluid with higher heat transfer coefficient within the tubes. The extended surface on the finned exterior pass allows greater heat transfer surface than a bare tube and provides greater heat transfer at a low-pressure drop.


The art has not heretofore recognized the unexpected advantage of using multiple cooling streams on the tube side of one or more heat exchanger and interlacing the heat transfer zones to allow more effective heat transfer and reduce the water dewpoint of the stream to reduce or eliminate visible vapor plume while also reducing SO3 emissions was not recognized in the art.


SUMMARY OF THE INVENTION

The invention may be described in several ways as alternate embodiments of the same novel discovery.


Embodiments of the present invention provide a finned tube exchanger that can be used in a heat transfer system.


In one embodiment, a method of heat transfer using a heat transfer device includes:


a. providing a first working fluid which has a water dewpoint above ambient air temperature on the finned exterior side of the heat transfer device,


b. providing 2 or more working fluids flowing in separate circuits within the tube circuits of the heat transfer device,


c. feeding the first working fluid to the exterior finned side of a heat transfer zone or zones to transfer heat to or from the first working fluid thereby heating or cooling the first working fluid to a higher or lower temperature,


d. feeding the second working fluid into a tube or group of tubes to be heated or cooled by the first working fluid, and


e. feeding the third or more working fluid(s) into a tube or group of tubes to be heated or cooled by the first working fluid.


In a preferred embodiment of the invention, a method of heat transfer includes providing a heat exchange device having one or more finned exterior side working fluid streams against multiple tube side circuits, wherein the multiple tube circuits being interlaced to more effectively approach the cooling curve of the finned exterior side working fluid, and cooling the high dewpoint working fluid on the exterior finned surface of the exchanger to reduce the water content of the exhaust stream.


In another embodiment, a method of heat transfer using a circuitry of a plate fin and tube or finned tube exchanger that allows for more effective heat transfer includes recovering heat from the effluent stream with a first cooling stream, using a second working fluid as a cooling stream to further remove heat from the effluent stream, then circuiting and pumping the first cooling stream which has been heated by the effluent stream in the finned tube exchanger to heat the effluent stream above its dew point.


A construction and design of a heat transfer system allowing complex circuitry of a plate finned and tube or finned tube exchanger utilizing multiple tube side circuits that accomplish more effective heat transfer while reducing the heat rejection load on cooling towers or other heat removal devices while simultaneously reducing the energy input required to heat the exhaust stream above it's dew point for plume suppression.


In summary, the invention provides a system for more efficient heat transfer in a plate fin and tube or finned tube exchanger to reduce the plume of a stream that is being rejected to atmosphere that has a water dew point above that of the ambient air.


The invention is illustrated by the specific example set out below.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a sketch of a typical finned tube coil having two working fluids.



FIG. 2 is a sketch of an integrated coil having an exhaust stream on the finned side and cooling and heating circuitry on the tube side.





DETAILED DESCRIPTION OF THE INVENTION

The invention provides a method of integrating circuitry with various working fluids in a common or multiple plate fin and tube or finned tube exchanger(s) to accomplish more efficient heat transfer and reduce the plume of a stream that is being rejected to atmosphere that has a water dew point above that of the ambient air. This example is provided to illustrate the invention and not to limit the concepts embodied therein. The invention is defined and limited by the claims set out below. The examples below were modeled using a commercial process simulator.


Example 1

Turning to FIG. 2, a first working fluid (10), generated from a device 50, such as a wet gas scrubber, enters the heat exchanger 1 at 150 F, 14.8 psia, 11,430 moles/hr and leaves the heat exchanger 1 at 140 F, 14.7 psia. It exchanges heat with a 2nd working fluid (20) which is water entering at 130 F, 80 psia, 9,800 moles/hr and leaving at 145 F, 70 psia. The first working fluid (10) also exchanges heat with a 3rd working fluid (30) which is water entering at 85 F, 39.7 psia, 81,750 moles/hr and leaving at 115 F, 24.7 psia. The first working fluid (10) also exchanges heat with the previously heated 2nd working fluid, labeled as a fourth working fluid (40) in FIG. 2, which is water and was heated in the first exchanger 60 pass entering at 145 F, 70 psia, 176,500 moles/hr and leaving at 130 F, 60 psia. 40,680 lb/hr of the water contained in the first working fluid (10) is condensed in the first exchanger 60 and the second exchanger 70 and removed, thereby lowering the dewpoint; then the first working fluid (10) is heated in the third exchanger 80 and is discharged to atmosphere, resulting in less visible plume.


In one embodiment, a method of recovering energy and visible plume abatement includes providing a finned tube heat exchanger having a finned exterior side; providing a first working fluid that has a dew point greater than the ambient air; feeding the first working fluid to the exterior finned side of a heat transfer zone to cool the first working fluid and thereby heating the second working fluid to a higher temperature; feeding the second working fluid into a tube, group of tubes, or passageways, e.g., item (61) shown in FIG. 2, to be heated or cooled by the first working fluid; feeding a third working fluid into a tube, group of tubes, or pasageways, e.g., item (71) shown in FIG. 2, to be heated by the first working fluid and thereby cooling the first working fluid; routing the second working fluid from the first exchanger to a third exchanger or group of exchangers to heat the first working fluid, wherein the cooling of the first working fluid condenses water which is removed by separation, then the first working fluid is heated to well above its dewpoint which reduces or eliminates visible plume before being discharged to atmosphere.


In another embodiment, a circuitry of a plate fin and tube or finned tube exchanger that allows for more effective heat transfer is provided.


In yet another embodiment, a construction and design of a heat transfer system allowing complex circuitry of a plate finned and tube or finned tube heat exchanger utilizing multiple tube side circuits within a common heat transfer device or group of heat exchangers.


In yet another embodiment, a heat transfer method includes cooling a stream which has a dewpoint greater than the ambient air with a plate fin and tube or finned tube exchanger to condense a portion of that stream, then reheating that stream to a higher temperature to eliminate or reduce a visible emission plume.


In one or more of the embodiments described herein, the tube working fluids are the same or of different composition.


In another embodiment, a heat transfer system includes a plurality of working fluid streams on the finned exterior side of a plate fin and tube or finned tube exchanger where the working fluids are of the same or of different compositions.


In yet another embodiment, a heat transfer system includes multiple heat recovery stages to provide additional heat recovery.


A method of operating an energy recovery system for exhaust heat recovery by providing an integrated tube side heating circuitry to heat multiple working fluid circuits while cooling the exhaust stream to condense a portion of the exhaust stream, then heating the exhaust stream to eliminate or reduce visible plume. This is proposed to be accomplished by contacting the exhaust energy stream to be recovered thereafter with the heated working fluid(s), wherein the heated working fluid(s) provides the driving means for energy recovery and selecting a working fluid composition that permits meeting all design constraints.


In another embodiment, the second working fluid contains more than 5% by weight of any of the following: water, ethylene glycol, propylene glycol, sodium formate, potassium formate, sodium chloride, or potassium chloride.


In yet another embodiment, heat transfer exchangers and separators are combined into a single apparatus.

Claims
  • 1. A method of recovering energy using a finned heat exchanger, comprising: providing a first working fluid and feeding the first working fluid to an exterior side of the finned heat exchanger;providing a second working fluid through a first passageway in the heat exchanger;transferring energy from the first working fluid to the second working fluid;providing a third working fluid through a second passageway in the heat exchanger;transferring energy from the first working fluid to the third working fluid, wherein at least a portion of the first working fluid condenses to a liquid;routing the second working fluid from the first passageway to a third passageway;transferring energy from the second working fluid in the third passageway to the first working fluid after the first working fluid has exchanged energy with the third working fluid, wherein the first working fluid is heated to a temperature above its dew point.
  • 2. The method of claim 1, further comprising discharging the first working fluid after it is heated to the temperature above the dew point.
  • 3. The method of claim 2, wherein heating the first working fluid above the dew point reduces visible plume being discharged to atmosphere.
  • 4. The method of claim 1, further comprising separating the liquid from the first working fluid.
  • 5. The method of claim 1, wherein transferring energy from the first working fluid to the second working fluid in the first passageway comprises reducing a temperature of the first working fluid.
  • 6. The method of claim 5, wherein transferring energy from the first working fluid to the third working fluid occurs after the first working fluid exchanges energy with the second working fluid.
  • 7. The method of claim 6, wherein the temperature of the first working fluid is lowered after transferring energy to the third working fluid.
  • 8. The method of claim 7, further comprising separating the liquid from the first working fluid.
  • 9. The method of claim 8, further comprising discharging the first working fluid after it is heated to the temperature above the dew point.
  • 10. The method of claim 1, wherein transferring energy from the first working fluid to the third working fluid comprises reducing a temperature of the first working fluid.
  • 11. The method of claim 1, wherein the second and third working fluids are of the same composition.
  • 12. The method of claim 1, wherein the second and third working fluids are of different composition.
  • 13. The method of claim 1, wherein the second working fluid contains more than 5% by weight of a material selected from the group consisting of water, ethylene glycol, propylene glycol, sodium formate, potassium formate, sodium chloride, and potassium chloride.
US Referenced Citations (41)
Number Name Date Kind
1899629 Morse Feb 1933 A
2475025 Huff Jul 1949 A
2521462 Kinzelmann Sep 1950 A
2633338 Hiersch Mar 1953 A
2735660 Craig Feb 1956 A
2764391 Pullen Sep 1956 A
3277958 Taylor et al. Oct 1966 A
3294161 Wood Dec 1966 A
3818869 Blaskowski Jun 1974 A
3995689 Cates Dec 1976 A
4029146 Hart et al. Jun 1977 A
4103735 Warner Aug 1978 A
4106474 Hunter et al. Aug 1978 A
4119140 Cates Oct 1978 A
4158438 Hapgood Jun 1979 A
4344482 Dietzsch Aug 1982 A
4503902 Zolik Mar 1985 A
4546818 Nussbaum Oct 1985 A
4705101 Warner Nov 1987 A
4739826 Michelfelder et al. Apr 1988 A
4781241 Misage et al. Nov 1988 A
4930571 Paull Jun 1990 A
5323603 Malohn Jun 1994 A
5325915 Founts et al. Jul 1994 A
5394860 Borle Mar 1995 A
5419392 Maruyama May 1995 A
5820830 McIlroy et al. Oct 1998 A
5855111 Oguchi et al. Jan 1999 A
5944090 Teal Aug 1999 A
5944094 Kinney et al. Aug 1999 A
6247682 Vouche Jun 2001 B1
6663694 Hubbard et al. Dec 2003 B2
6667011 Munje et al. Dec 2003 B1
6880628 Yoshida et al. Apr 2005 B2
7056367 Trivett Jun 2006 B2
7117934 Lomax, Jr. et al. Oct 2006 B2
7237602 Arai et al. Jul 2007 B2
20020038702 Font-Freide et al. Apr 2002 A1
20020124996 Jukkola et al. Sep 2002 A1
20030173062 Lomax, Jr. et al. Sep 2003 A1
20050092472 Lewis May 2005 A1
Foreign Referenced Citations (3)
Number Date Country
3218710 Jul 1983 DE
0 326 388 Aug 1989 EP
9144565 Jun 1997 JP
Related Publications (1)
Number Date Country
20050263262 A1 Dec 2005 US