The invention relates to a heat exchanger of a plate-type construction, and a heating or air conditioning unit for a motor vehicle equipped therewith.
An air conditioning unit as disclosed, for example, in DE 198 04 389 has an evaporator of what is referred to as a plate-type construction. The evaporator has first flow channels, each formed from a pair of plates, for a coolant of the air conditioning unit, and corrugated ribs, around which the air to be cooled flows, arranged in each case between neighboring plate pairs. Such known plate-type evaporators, as they are called, are of cuboid construction and are used in the air conditioning unit between a fan and a heating member to cool the air to be passed into the passenger compartment.
Motor vehicles today are intended to be as compact as possible in their external dimensions, the interior space being as large as possible. Accordingly, efforts are made to design increasingly compact air conditioning units, so that they take up as little structural space as possible. Designers therefore attempt to make the individual components of the air conditioning unit smaller and more efficient, as shown, for example, by DE 197 19 252, in which the evaporator described is designed such that its overall depth is no more than 50 mm.
It is an object of the invention to provide an improved heat exchanger and a heating or air conditioning unit equipped therewith which has a reduced structural volume.
According to the invention, the corrugated ribs and at least one of the neighboring plate pairs form second flow channels for a second medium, for example, for air, which flows through the heat exchanger, the second flow channels having a curved course, so that the second medium undergoes a change of flow direction on flowing through the heat exchanger. With such a heat exchanger, which no longer has to be of cuboid construction and through which the air does not flow in a linear manner, the air need not, as previously in known air conditioning units, be deflected upstream and downstream of the heat exchanger. Instead, the air is deflected directly in the heat exchanger as it flows through. The heat exchanger performs both the function of cooling or heating the air flowing through, depending on the intended purpose, and the function of guiding the air. As a result, at least to a certain extent, air deflections on the air side upstream and/or downstream of the heat exchanger can be dispensed with, and the heating or air conditioning unit, or the air guide housing of that unit, can be of more compact design.
Advantageous embodiments of the invention are described herein.
When the air undergoes a change of direction in the heat exchanger, an air inflow face and an air exit face of the heat exchanger are advantageously arranged at an angle α to one another. Preferably, the angle α is approximately 90°.
In one embodiment of the invention, the individual second flow channels are of different lengths, and it is particularly advantageous if the second flow channels become longer with increasing distances from a feed for the first medium, so that in the vicinity of the feed, where a relatively large temperature difference exists between the two media, the second flow channels are relatively short and therefore the heat exchange only needs to take place over a shorter path. At a greater distance from the feed, the temperature difference between the two media becomes smaller and therefore the flow channels are advantageously longer, so that the air, which is guided in the heat exchanger independently of the position of the second flow channel into a particular flow channel, is always brought to the same temperature level.
Advantageously, for flow purposes, the second flow channels preferably have an arcuate course, especially a circular arcuate course. As a result, pressure losses for the air are reduced, despite deflection.
The first flow channels preferably have a serpentine course in order to optimize heat exchange with the second medium.
In a structurally simple manner, the corrugated ribs may be punched from sheet metal.
If two heat exchangers are to be used, for example an evaporator and a heating member in an air conditioning unit, and the two heat exchangers are connected in series on the air side, it is advantageous if both heat exchangers are designed according to the invention and the plates of the two heat exchangers are integrally connected to one another. Then the two heat exchangers can be produced simultaneously in a single production process by jointly arranging in series and brazing the plates and corrugated ribs. In the further assembly of the air conditioning unit, also, advantages are achieved in that the heat exchangers can be simultaneously inserted as one unit into the air conditioning unit. Overall, this can save numerous assembly steps.
In order nevertheless to decouple the two heat exchangers thermally as far as possible, it is advantageous if the plates of the heat exchangers are connected to one another only in the region of their passage apertures, which in each case form collection spaces for the first medium. As a result, a further advantages also achieved that water of condensation forming in the heat exchanger which is used as an evaporator can run off better between the heat exchangers.
Particularly advantageously, the heat exchanger according to the invention can be used in a heating or air conditioning unit as an evaporator or heating member, since structural space can thus be saved in the manner already described. In this case, the air conditioning unit can either be adjustable on the water side, the flow of the first medium through the heating member being adjustable, or the heating or air conditioning unit can be adjusted on the air side, in which case a heating member bypass is provided on the air side. In an air conditioning unit which has an evaporator and/or heating member of the structure according to the invention, the air is deflected less frequently and with a reduced pressure loss and there is reduced disruption to the airflow. By adjustment on the air side, the separation of the partial flows of air downstream of the heating member will be relatively great. This means that there is less mixing of cold and warm air and the temperature differences over the cross section of the airflow downstream of the heating member are relatively great. This can be exploited in a desirable manner to pass warmer air to a foot space and a windshield and the colder air to outlets in the central plane of the vehicle.
A very compact heating or air conditioning unit is obtained if the heat exchanger or heat exchangers each divert the air through approximately 90°.
The invention is explained in detail below with reference to exemplary embodiments, and with reference to the accompanying drawings, in which:
a shows a partial cross section in the edge region of the heat exchanger according to the invention;
A heat exchanger 10 according to the invention, as shown in the figures, has first and second plates 12 and 14, which in each case form a plate pair 16 and are connected, for example, brazed, to one another at least at the edges and thereby form first flow channels 18 between them in each case for a first medium (
The plates 12 and 14 have approximately the shape of a quarter-circle and have two passage apertures 26 and 28 at an end 24 facing a center of the circle, each passage aperture 26 and 28 having a collar, 30 and 32 respectively, so that in the assembled state of the heat exchanger the collars of neighboring plate pairs can be connected, especially brazed, to one another so that the mutually flush passage apertures 26 and 28 in each case form a collection space for the first medium. The first medium is fed to or removed from the heat exchanger via a feed 34 or outlet 36.
The first flow channels 18 are open toward the inlet apertures 26 and outlet apertures 28, so that the first medium can flow in from the feed 34 and thus through the passage apertures 26 into all flow channels 18 in parallel and can flow from the flow channels 18 into the passage apertures 28 and to the outlet 36. Within a plate pair 16, the flow channel 18 has a serpentine course, which is produced by webs 40, 42, 44 extending radially from the passage apertures (
The second medium, which in preferred intended uses of the invention is air, flows through the second flow channels 22. Channels 22 have a curved course, especially a circular arcuate course, in accordance with the shape of the plate pairs 16 and corrugated ribs 20, so that each flow channel 22 describes a quarter-arc, the flow channels 22 having different lengths and the flow channels 22 becoming longer as the radial distance a from the passage apertures 26 and 28 respectively becomes greater (
The heat exchanger 10 according to the invention, in whose second flow channels the second medium undergoes a change of flow direction, has an inflow face 40 for the second medium, arranged at an angle α of preferably approximately 90° to an exit face 42 for the second medium, as is shown in
If two heat exchangers according to the invention are to be arranged in series in the flow direction of the second medium, the individual plates 12 and 14 may be connected to one another, as is shown in the embodiments according to
The heat exchanger 10 according to the invention is preferably used in heating or air conditioning units.
The hatched surface 130 shown above the fan 104 in
The structural volume of the heating or air conditioning unit according to the invention can be further reduced if, as shown in
A further substantial reduction in structural volume is obtained if both the evaporator 102 and the heating member 110′ are designed according to the invention, and thus not only condition the air but can also deflect it and, at the same time, are arranged in series on the airflow side, as shown in the exemplary embodiment according to
A mixing valve 112 is arranged between the air inflow face 140 and the air exit face 114, and adjusts the quantity of air passed to the heating member 110′. Parallel to the heating member 110′ on the airflow side is a heating member bypass 142, which can be closed via a bypass valve 144. Thus, cold air cooled in the evaporator can be guided past the heating member and passed to the air mixing space 108. The warm air emerging at the air exit face 146 of the heating member 110′ likewise enters the air mixing space and can mix with the cold air present there. From the air mixing space 108, the defrosting air channel 118 branches off to the foot space air channel 122 and an air channel 148 to outlets in the central plane of the vehicle. The air channels branching off from the air mixing space 108 can in each case be shut off by means of air valves.
In a further embodiment of the invention, shown in
German parent patent application number DE 100 10 266.2 is hereby incorporated by reference in its entirety.
The foregoing embodiments have been shown for illustrative purposes only and are not intended to limit the scope of the invention, which is defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
100 10 266 | Mar 2000 | DE | national |
The present application is a continuation of U.S. application Ser. No. 09/796,554, filed Mar. 2, 2001, now abandoned the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
629223 | Walther | Jul 1899 | A |
1170902 | Harrison | Feb 1916 | A |
1954556 | Auman | Apr 1934 | A |
2061100 | Palmer | Nov 1936 | A |
2117830 | Van Der Beyl | May 1938 | A |
2128763 | Whitlark et al. | Aug 1938 | A |
2169993 | Booth | Aug 1939 | A |
2354698 | Norris | Aug 1944 | A |
3428141 | Forstner et al. | Feb 1969 | A |
3490522 | Bizzarro | Jan 1970 | A |
3605882 | Smith et al. | Sep 1971 | A |
3800868 | Berkowitz et al. | Apr 1974 | A |
4362208 | Hauser | Dec 1982 | A |
5050486 | Arold et al. | Sep 1991 | A |
5180004 | Nguyen | Jan 1993 | A |
5511612 | Tajima et al. | Apr 1996 | A |
6161616 | Haussmann | Dec 2000 | A |
6360817 | Brochin et al. | Mar 2002 | B1 |
Number | Date | Country |
---|---|---|
25 31 015 | Jan 1977 | DE |
29 24 441 | Dec 1979 | DE |
39 25 726 | Feb 1991 | DE |
43 32 619 | Mar 1994 | DE |
198 04 389 | Aug 1998 | DE |
197 19 252 | Nov 1998 | DE |
56-149585 | Nov 1981 | JP |
60-149890 | Aug 1985 | JP |
61027496 | Feb 1986 | JP |
64056227 | Aug 1987 | JP |
62-202997 | Sep 1987 | JP |
03-133565 | Jun 1991 | JP |
05-001890 | Jan 1993 | JP |
09039553 | Feb 1997 | JP |
09-323526 | Dec 1997 | JP |
09323526 | Dec 1997 | JP |
10016532 | Jan 1998 | JP |
11101591 | Apr 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050263276 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09796554 | Mar 2001 | US |
Child | 11139481 | US |