The invention concerns heat exchanger systems and installations for extracting waste heat from waste water.
Heat exchanger system is of this kind are known, for example, from the German patent document 197 19 311. It has become apparent, that a direct contact of a preferably metallic heat exchanger surface with the waste water is important, in order that an efficiency can be achieved, with which the system is economical. This, however, requires, that this heat exchanger surface on the one hand is designed in such a manner, that it does not get contaminated too rapidly and on the other hand, that it corresponds to the official government requirements, i.e., that it is accessible and that it is capable of being cleaned with conventional cleaning nozzles.
Sewage systems and waste water channels are naturally susceptible to contamination to a high degree. A layer of contamination on the heat exchanger surface of course has a negative effect on the heat transfer.
Particularly disruptive with a view to the heat transfer is the so-called sewer biofilm. This is a bio-film, which covers objects, which are exposed to unclean water for a longer period of time.
It is known, that alloys of certain metals impair the formation of bio-films. It has become manifest in particular, that the tendency for bio-films settling on copper alloys is strongly reduced.
As a material for heat exchangers in sewerage systems or sewers, copper alloys with a sufficient concentration of copper, however, cannot enter into consideration. This is firstly because copper in the waste water as from a certain concentration impairs the operating ability of sewage treatment plants and for this reason it is not permitted as construction material. Secondly, copper is also relatively rapidly eroded away (abrasion). This has a negative effect on the service lifetime of the heat exchangers.
It is the objective of the invention to provide a heat exchanger system for extracting waste heat from waste water flowing in a sewerage system or in a sewer, in the case of which a reduced tendency for the formation of a sewer biofilm is present. It is furthermore the objective of the invention to provide a corresponding installation.
This objective is achieved by the invention as it is defined in the claims.
In accordance with the present invention, a heat exchanger system comprises at least one surface area made of copper or an alloy containing copper. This surface area preferably makes up solely a small percentage—for example, less than 5% or less than 2%—of the heat exchanger surface area. It is arranged in such a manner, that water flowing over the heat exchanger surface flows over the mentioned surface areas preferably ahead of the heat exchanger surface or at the beginning of the heat exchanger surface.
The invention is based on the insight that the effect of a copper concentration impairing the bio-film on the surface of the sewage system also continues within a certain zone behind the mentioned surfaces. This has been confirmed by measurements.
In accordance with a preferred embodiment, the surface areas are present in the form of at least one interchangeable band extending across the channel in transverse direction. If the length of the complete heat exchanger surface area exceeds a certain value, which depends on the average composition of the waste water, then it is possible, that more than one band is present. For example, it is possible that every 1-5 m a copper band with a width of, e.g., 0.5-5 cm is arranged.
It has also become manifest, that the effect of the copper—possibly on the basis of the commencement of a formation of less effective complexes—diminishes at a certain distance from the surface areas. The small copper content at best remaining in the waste water is harmless for sewage treatment plants. It is smaller than the copper content that is the result of copper gutters, etc. It is also significantly smaller than the maximum copper content according to official regulations. The copper surface also is significantly smaller than the maximum copper area of roofs. In Switzerland, for example, a seepage installation has to be provided, when a copper surface area of 50 m2 is exceeded.
In place of bands, it is also possible that the surface areas comprise other kinds of shapes. For example, they may also be two-dimensional and/or have a width adapted to the volume of waste water flowing over them to be expected locally. Preferably, they are arranged in such a manner, that at least a major proportion of the water trajectories existing in case of a low waste water volume lead across the surface areas. In the case of a flow assumed to be laminar, this in approximation signifies, that the surface areas in a projection along the direction of flow on a contour line amount to at least half a lower section of the contour line.
In the following, embodiments of the invention are described in detail on the basis of drawings. These drawings illustrate:
The sewerage pipe 32 illustrated only very schematically in
There are various ways of designing heat exchanger systems. For example, it is possible that sewerage pipe segments are replaced in sections by heat exchanger sewerage pipe segments. It is also possible that heat exchangers are installed in a bed of a dry weather channel, placed on the sewerage pipe segments, etc. It is possible that supply pipes for supplying the heat exchangers with the heat exchanger medium are provided inside or outside the sewerage pipes. Frequently the heat exchanger system comprises a row of heat exchanger elements, which are either adjacent to one another or at a distance from one another. Further information concerning certain designs is to be found in the German patent document 197 19 311, to the contents of which express reference is made here with respect to the implementation of installations for extracting heat from waste water. The invention concerns any design of heat exchangers for waste water flowing in a sewerage pipe or—channel.
The measures in accordance with the invention are capable of being utilised in all versions of such heat exchanger systems or in heat exchanger systems still to be developed.
The heat exchanger system 1 according to
Illustrated in
The distance d between the heat exchanger elements may be selected in dependence of the average composition of the waste water. It has been found that the distance required for the necessary function depends on different factors, in particular on the concentration of metals, such as Ni, Cr, Zn and Cd in the waste water. Typically the optimum distance d between two copper bands amounts to between 1 m and 10 m, and in particular to between 1 m and 5 m. If the complete heat exchanger system is not longer than the required distance, then a single copper band is sufficient.
Preferably the copper bands are installed in such a manner, that they may easily be removed or replaced. This is because one has to assume that their service lifetime is significantly less than the service lifetime of the heat exchanger system and that they therefore, for example, have to be replaced every 3 to 5 years.
In case of a surface contact between a noble metal (for example, copper) and a not noble metal (for example, Cr in stainless steel), it is possible that the not noble metal corrodes more rapidly, when both metals are in contact with water (electrochemical displacement series). For this reason it may be ensured that the copper bands or copper elements with a different shape and the heat exchangers manufactured, for example, out of stainless steel sheet metal do not come into contact. This may be accomplished by providing a silicone coat between the heat exchanger elements and the copper bands. As an alternative, it is possible that the bands, for example, are less wide than the distance between adjacent heat exchanger elements and that they are installed in such a manner, that they do not come into contact with them, but solely with the mortar. Other measures are also conceivable.
Although for practical reasons it is particularly favourable, if the surface areas made of copper or of a copper alloy are present in the form of bands, this is not at all necessary. In
In case of a turbulent flow, this condition is not applicable, because in that case the waste water is thoroughly mixed as a result of the turbulent motion. The embodiment in accordance with
Number | Date | Country | Kind |
---|---|---|---|
04405271 | Apr 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2005/000240 | 4/29/2005 | WO | 00 | 11/17/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/106371 | 11/10/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2476372 | Heiks | Jul 1949 | A |
2687626 | Bartlowe | Aug 1954 | A |
3053511 | Godfrey | Sep 1962 | A |
3615744 | Yokoo et al. | Oct 1971 | A |
3703367 | Cocks | Nov 1972 | A |
3713814 | Larsson | Jan 1973 | A |
3809155 | Anthony et al. | May 1974 | A |
3960208 | Anthony et al. | Jun 1976 | A |
4171972 | Bates et al. | Oct 1979 | A |
4283464 | Hascoe | Aug 1981 | A |
4352391 | Jonsson | Oct 1982 | A |
4412869 | Vernam et al. | Nov 1983 | A |
4452757 | Kawauchi et al. | Jun 1984 | A |
4531980 | Miura et al. | Jul 1985 | A |
4574878 | Sugiyama et al. | Mar 1986 | A |
4631135 | Duddridge et al. | Dec 1986 | A |
4674566 | Heine et al. | Jun 1987 | A |
4830101 | Ohara et al. | May 1989 | A |
4907738 | Harris | Mar 1990 | A |
4991647 | Kawabe et al. | Feb 1991 | A |
5014774 | Siak et al. | May 1991 | A |
5042575 | Lindsay | Aug 1991 | A |
5337574 | Dick | Aug 1994 | A |
5366004 | Garner et al. | Nov 1994 | A |
5730208 | Barban | Mar 1998 | A |
5857515 | Skupien | Jan 1999 | A |
6170564 | Steele | Jan 2001 | B1 |
6337129 | Watanabe et al. | Jan 2002 | B1 |
6595011 | Forgy | Jul 2003 | B1 |
6705391 | Lewin | Mar 2004 | B1 |
6827091 | Harrison | Dec 2004 | B2 |
6835307 | Talbert et al. | Dec 2004 | B2 |
7040108 | Flammang | May 2006 | B1 |
7640969 | Schmitz | Jan 2010 | B2 |
20070131394 | Schmitz | Jun 2007 | A1 |
20070163762 | Studer | Jul 2007 | A1 |
20100037611 | Schmitz | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
27 42 025 | Nov 1978 | DE |
85 17 585 | Sep 1985 | DE |
36 07 207 | Sep 1987 | DE |
197 19 311 | Dec 1997 | DE |
1 215 460 | Jun 2002 | EP |
2002 348942 | Dec 2002 | JP |
Entry |
---|
Patent Abstracts of Japan, 2002 348942 Dec. 4, 2002. |
International Preliminary Examination Report and ISR in PCT/CH2005/000240, Aug. 8, 2005. |
Number | Date | Country | |
---|---|---|---|
20070163762 A1 | Jul 2007 | US |