The present invention relates to heat exchangers and methods of manufacturing thereof, and refrigeration cycle apparatuses, and more particularly to a heat exchanger having a fin bonded to a heat transfer tube, a method of manufacturing the heat exchanger, and a refrigeration cycle apparatus including such a heat exchanger.
In one type of air conditioner such as a car air conditioner, a heat exchanger having a combination of a flat tube and a corrugated fin is used. The flat tube is a form of heat transfer tube through which refrigerant flows, which has a flat cross-sectional shape so as to achieve efficient heat transfer. The corrugated fin is a fin formed by bending a plate-like fin into a bellows shape.
A plurality of flat tubes are spaced from one another in the minor axis direction of the flat tubes. Each of the plurality of flat tubes is disposed such that the major axis of the flat tube is along a direction of air flow. A plurality of corrugated fins are disposed such that one corrugated fin is disposed between one flat tube and another flat tube adjacent to and spaced from each other.
Peak portions of a bellows-shaped fin facing one flat tube are joined to the one flat tube. Peak portions of the bellows-shaped fin facing another flat tube are joined to the another flat tube. The flat tubes and the bellows-shaped fin are conventionally joined by brazing. The brazing is performed under a relatively high temperature condition of approximately 600° C., for example.
A heat exchanger is required, when dew adheres to its fin, to spread and discharge the dew to the outside of the heat exchanger without causing scattering of the dew. In particular, it is strongly required of a fin of an indoor heat exchanger not to cause scattering of dew into a room. It is also required that a surface of the fin not be contaminated. Accordingly, the surface of a fin including a corrugated fin is covered with a coating material having at least hydrophilic property and antifouling property.
However, the coating material covering the surface of the fin melts by heat (approximately 600° C.) during brazing. There have thus been proposed various methods of joining a fin to a flat tube while preventing a coating material from melting (PTL 1, PTL 2, PTL 3 and PTL 4).
The present invention has been made as part of efforts to develop such a heat exchanger. An object of the present invention is to provide a heat exchanger having a flat tube and a fin bonded together, without causing melting of a coating material covering the fin. Another object is to provide a method of manufacturing such a heat exchanger. Yet another object is to provide a refrigeration cycle apparatus including such a heat exchanger.
A heat exchanger according to the present invention includes a flat tube and a fin. The flat tube has a flat cross-sectional shape, and is covered with an anticorrosive layer. The fin is bonded to the flat tube with a bonding agent on a first surface of the anticorrosive layer interposed therebetween, and covered with a coating material. The first surface of the anticorrosive layer has been roughened. The bonding agent is fixed to the roughened first surface.
A method of manufacturing a heat exchanger according to the present invention includes the following steps. A flat tube having a flat cross-sectional shape and covered with an anticorrosive layer is prepared. A fin covered with a coating material is prepared. A roughening process is performed on a first surface of the anticorrosive layer of the flat tube. A bonding agent is fixed to the first surface of the anticorrosive layer that has been subjected to the roughening process. The fin is brought into contact with the bonding agent. The fin is pressed toward the flat tube, while the flat tube is pressed toward the fin. Heat treatment is conducted while the flat tube and the fin are being pressed.
A refrigeration cycle apparatus according to the present invention is a refrigeration cycle apparatus including the heat exchanger described above.
According to the heat exchanger of the present invention, the fin is bonded to the flat tube with the bonding agent on the first surface of the anticorrosive layer interposed therebetween, so that the heat exchanger in which the coating material covering the fin does not melt is obtained.
According to the method of manufacturing a heat exchanger of the present invention, the fin can be bonded to the flat tube without causing melting of the coating material covering the fin.
According to the refrigeration cycle apparatus of the present invention, scattering of water droplets, soil or the like into a room can be suppressed by including the heat exchanger described above.
First, an air conditioner (refrigerant circuit) is described as an exemplary refrigeration cycle apparatus including a heat exchanger according to each embodiment. As shown in
Outdoor unit 85 includes a heat exchanger 1 disposed therein. Outdoor unit 85 also includes an outdoor fan 93 provided therein for forcibly feeding outdoor air into heat exchanger 1. Heat exchange takes place between the outdoor air forcibly fed into and passing through heat exchanger 1, and refrigerant flowing through heat exchanger 1 (flat tube).
Indoor unit 89 includes a heat exchanger 1 disposed therein. Indoor unit 89 also include an indoor fan 95 provided therein for forcibly feeding indoor air into heat exchanger 1. Heat exchange takes place between the indoor air forcibly fed into and passing through heat exchanger 1, and refrigerant flowing through heat exchanger 1 (flat tube).
Operation of air conditioner 81 includes cooling operation, heating operation and defrosting operation. The cooling operation is an operation for cooling the indoor air. The heating operation is an operation for heating the indoor air. The defrosting operation is an operation for melting frost and the like which have adhered to heat exchanger 1 of outdoor unit 85.
In air conditioner 81, a refrigerant flow path is switched by four-way valve 91 depending on the cooling operation, the heating operation and the defrosting operation. In the cooling operation and the defrosting operation, the refrigerant discharged from compressor 83 is fed into outdoor unit 85 (heat exchanger 1), and the refrigerant that has flown through indoor unit 89 (heat exchanger 1) is returned to compressor 83 (see dotted line arrows). In the heating operation, on the other hand, the refrigerant discharged from compressor 83 is fed into indoor unit 89 (heat exchanger 1), and the refrigerant that has flown through outdoor unit 85 (heat exchanger 1) is returned to compressor 83 (see solid line arrows).
Each operation is described in further detail. First, in the cooling operation, heat exchanger 1 of outdoor unit 85 serves as a condenser, and heat exchanger 1 of indoor unit 89 serves as an evaporator. By driving compressor 83, high-temperature and high-pressure gaseous refrigerant is discharged from compressor 83. The discharged high-temperature and high-pressure gas refrigerant (single phase) flows through four-way valve 91 into heat exchanger 1 of outdoor unit 85. In that heat exchanger 1, heat exchange takes place between the refrigerant that has flown therein and the air fed into outdoor unit 85, causing the high-temperature and high-pressure gas refrigerant to condense into high-pressure liquid refrigerant (single phase).
The high-pressure liquid refrigerant fed from outdoor unit 85 (heat exchanger 1) is turned, by expansion valve 87, into refrigerant in a two-phase state of low-pressure gas refrigerant and liquid refrigerant. The refrigerant in a two-phase state flows into heat exchanger 1 of indoor unit 89. In that heat exchanger 1, heat exchange takes place between the refrigerant in a two-phase state that has flown therein and the air fed into indoor unit 89, causing the refrigerant in a two-phase state into low-pressure gas refrigerant (single phase) due to evaporation of its liquid refrigerant. The room interior is cooled by this heat exchange. The low-pressure gas refrigerant fed from indoor unit 89 (heat exchanger 1) flows through four-way valve 91 into compressor 83. The low-pressure gas refrigerant that has flown therein is compressed into high-temperature and high-pressure gas refrigerant, and discharged from compressor 83 again. This cycle is repeated thereafter.
Next, in the heating operation, heat exchanger 1 of outdoor unit 85 serves as an evaporator, and heat exchanger 1 of indoor unit 89 serves as a condenser. By driving compressor 83, high-temperature and high-pressure gaseous refrigerant is discharged from compressor 83. The discharged high-temperature and high-pressure gas refrigerant (single phase) flows through four-way valve 91 into heat exchanger 1 of indoor unit 89. In that heat exchanger 1, heat exchange takes place between the gas refrigerant that has flown therein and the air fed into indoor unit 89, causing the high-temperature and high-pressure gas refrigerant to condense into high-pressure liquid refrigerant (single phase). The room interior is heated by this heat exchange.
The high-pressure liquid refrigerant fed from indoor unit 89 (heat exchanger 1) is turned, by expansion valve 87, into refrigerant in a two-phase state of low-pressure gas refrigerant and liquid refrigerant. The refrigerant in a two-phase state flows into heat exchanger 1 of outdoor unit 85. In that heat exchanger 1, heat exchange takes place between the refrigerant in a two-phase state that has flown therein and the air fed into outdoor unit 85, causing the refrigerant in a two-phase state into low-pressure gas refrigerant (single phase) due to evaporation of its liquid refrigerant. The low-pressure gas refrigerant fed from outdoor unit 85 (heat exchanger 1) flows through four-way valve 91 into compressor 83. The low-pressure gas refrigerant that has flown therein is compressed into high-temperature and high-pressure gas refrigerant, and discharged from compressor 83 again. This cycle is repeated thereafter.
In this heating operation, since heat exchanger 1 of outdoor unit 85 serves as an evaporator, moisture contained in the outdoor air may turn into frost and adhere to heat exchanger 1. Once the frost has adhered to heat exchanger 1 of outdoor unit 85, a flow of the outdoor air trying to pass through that heat exchanger 1 is hindered. Thus, satisfactory heat exchange between the outdoor air and the refrigerant flowing through heat exchanger 1 is not performed, resulting in degraded heating efficiency of air conditioner 81. To avoid this, in air conditioner 81, once frost has adhered to heat exchanger 1 of outdoor unit 85 to a level equal to or above a certain level, the heating operation is suspended, and the defrosting operation is performed for melting the frost that has adhered to heat exchanger 1.
In the defrosting operation, the actions of outdoor fan 93 and indoor fan 95 are stopped. A flow of the refrigerant in the defrosting operation is the same as the flow of the refrigerant in the cooling operation. When the defrosting operation is started, high-temperature and high-pressure gaseous refrigerant discharged from compressor 83 is fed through four-way valve 91 into heat exchanger 1 of outdoor unit 85. In that heat exchanger 1, heat of the gaseous refrigerant is dissipated, causing the frost that has adhered to heat exchanger 1 to melt. Subsequently, the refrigerant flows from outdoor unit 85 to expansion valve 87 and indoor unit 89, and is returned to compressor 83. This cycle is repeated thereafter until the frost that has adhered to heat exchanger 1 is removed.
Next, the structure of heat exchanger 1 disposed in each of indoor unit 89 and outdoor unit 85 is described.
As shown in
Inlet side header 51 is disposed at one end side in a longitudinal direction of the plurality of flat tubes 3, and outlet side header 53 is disposed at the other end side in the longitudinal direction. Inlet side header 51 is provided with a refrigerant inlet/outlet 55. Outlet side header 53 is provided with a refrigerant inlet/outlet 55. For example, the refrigerant that has flown in through refrigerant inlet/outlet 55 of inlet side header 51 flows through flat tubes 3 and is transferred to outlet side header 53. The refrigerant that has flown in through refrigerant inlet/outlet 55 of outlet side header 53, on the other hand, flows through flat tubes 3 and is transferred to inlet side header 51.
Each corrugated fin 21 is disposed between one flat tube 3 and another flat tube 3 vertically adjacent to each other. Corrugated fin 21 is a fin formed by bending a plate-like fin into a bellows shape. Here, corrugated fin 21 has a curved portion 25 and a planar portion 23. As shown in
As shown in
As shown in
A distance TH from the top 13 of the roughened surface of anticorrosive layer 11 to an upper surface of adhesive 41 (the thickness of adhesive 41) is not less than 0.1 μm and not more than 5.0 μm. When the thickness of adhesive 41 is smaller than 0.1 μm, it is difficult to control the distribution (thickness) of adhesive 41 applied to flat tube 3, possibly resulting in variation in bonding state after the bonding. When the thickness of adhesive 41 exceeds 5.0 μm, on the other hand, thermal conduction between flat tube 3 and corrugated fin 21 is more likely to be hindered. There is also a risk of an outflow of the adhesive during the bonding. Heat exchanger 1 according to the first embodiment is configured as described above.
Next, an exemplary method of manufacturing heat exchanger 1 described above is described. First, flat tube 3 is prepared as shown in
Next, a blasting process is performed on flat tube 3. As shown in
Next, as shown in
Next, flat tubes 3 and corrugated fins 21 are bonded together. As shown in
Next, heat treatment is conducted under a temperature condition of approximately 200° C. (see wavy line arrows), while the pressure is being applied to the plurality of flat tubes 3 and the plurality of corrugated fins 21. As a result, corrugated fins 21 and flat tubes 3 are bonded together with adhesive 41, while corrugated fins 21 and flat tubes 3 are in close contact with each other. Here, since the temperature for the heat treatment is approximately 200° C., coating material 27 covering corrugated fin 21 does not melt, so that the hydrophilic property, antifouling property and the like of corrugated fin 21 are maintained.
The wires (not shown) are subsequently untied, to complete heat exchanger 1 having flat tubes 3 and corrugated fins 21 bonded together with adhesive 41 (see
In heat exchanger 1 described above, first, anticorrosive layer 11 of flat tube 3 is subjected to the roughening process, and then adhesive 41 is sprayed onto or applied to the roughened surface of anticorrosive layer 11, to thereby fix adhesive 41 to flat tube 3 (cladding). Here, the thickness of adhesive 41 (distance TH from the top 13 of the roughened surface of anticorrosive layer 11 to the upper surface of adhesive 41) is at least not less than 0.1 μm. As a result, a uniform distribution (thickness) of adhesive 41 applied to flat tube 3 can be achieved.
Next, the heat treatment is conducted while pressure is being applied such that corrugated fin 21 is sandwiched between one flat tube 3 and another flat tube 3, to thereby bond flat tubes 3 and corrugated fin 21 together while corrugated fin 21 is in reliable contact with adhesive 41. As a result, a bonding ratio of flat tubes 3 and corrugated fins 21 can be improved. The bonding ratio means a ratio of the number of actual bonding portions to the number of all bonding portions.
Adhesive 41 has a lower melting point than base materials for flat tube 3 and corrugated fin 21. In addition, adhesive 41 is not diffused into these base materials and does not form a metallic bond, and therefore tends to have lower bonding power than common brazing.
In the method described above, adhesive 41 can be reliably fixed to the roughened surface of flat tube 3, and the bonding ratio of bonding corrugated fin 21 bonded to adhesive 41 reliably fixed to flat tube 3 can be increased, to thereby improve the bonding strength between corrugated fin 21 and flat tube 3. In addition, bonding failure during the manufacture of heat exchanger 1 can be suppressed to improve the productivity, thus contributing to reduction in production costs.
As described above, generally, a fin of a heat exchanger of an air conditioner is required to have hydrophilic property and antifouling property. The surface of corrugated fin 21 is covered with coating material 27 having hydrophilic property, antifouling property and the like. Coating material 27 will melt under a temperature condition (approximately 600° C.) when a corrugated fin and a flat tube are joined together by brazing.
On the other hand, the temperature for the heat treatment when corrugated fin 21 and flat tube 3 are bonded together with adhesive 41 is approximately 200° C. Accordingly, coating material 27 will not melt, and the hydrophilic property, antifouling property and the like of corrugated fin 21 can be maintained.
When a corrugated fin and a flat tube are to be joined together by brazing, a process of covering the corrugated fin with a coating material is performed after the brazing.
In this case, the coating material needs to be uniformly applied to the corrugated fin, with the corrugated fin being bonded to the flat tube. However, it is difficult to uniformly apply the coating material to the corrugated fin due to limited viscosity of the coating material, resulting in degradation in performance such as hydrophilic property and antifouling property as compared to a corrugated fin covered with a coating material before the bonding.
Particularly, in the case of a heat exchanger of an indoor unit, degradation in hydrophilic property of the surface of a corrugated fin may cause water droplets produced during dehumidification to be detached from the corrugated fin, resulting in the water droplets dropping in a room. Particularly, in the case of a corrugated fin, a heat exchanger has fins arranged in a bellows shape at high density, causing an increase in the amount of water droplets held due to an increase in surface tension. Thus, the water droplets that have adhered to the corrugated fin are more likely to drop in a room.
In the case of a heat exchanger of an outdoor unit, on the other hand, degradation in hydrophilic property of the surface of a corrugated fin may cause degradation in drainage performance during defrosting operation. Thus, heating performance sometimes cannot be fully utilized when the defrosting operation is switched to the heating operation. Moreover, water droplets remaining on the corrugated fin may freeze into ice, in which case the heat exchanger may be damaged. The manufacturing method according to the first embodiment can avoid such problems.
Although only one row of heat exchanger 1 is shown as disposed in heat exchanger 1 described above, multiple-row heat exchanger 1 including two or more rows of heat exchangers 1a, 1b, 1c and the like may be employed as shown in
Here, an exemplary modification of the corrugated fin of the heat exchanger is described. As shown in
In corrugated fin 21 of the heat exchanger described above, the bonding strength can be further increased by the bonding of planar portion 26 to flat tube 3. This is now described.
In contrast, in heat exchanger 1 according to the first embodiment, curved portion 25 of corrugated fin 21 is bonded to flat tube 3 (see
Accordingly, in heat exchanger 1 according to the second embodiment, a bonding area S1 between corrugated fin 21 and flat tube 3 is represented as A1×A2. In heat exchanger 1 according to the first embodiment, on the other hand, a bonding area S2 between corrugated fin 21 and flat tube 3 is represented as A2×B2 (A2<A1). As a result, bonding area S1 is larger than bonding area S2, so that the bonding strength can be improved.
Here, as another exemplary modification of the corrugated fin of the heat exchanger, a corrugated fin capable of improving the bonding strength between the corrugated fin and the flat tube is described.
As shown in
Next, the bonding strength between corrugated fin 21 and flat tube 3 is described.
Then, with regard to a region where planar portion 26 is bonded to flat tube 3, length A2 of this region in the direction in which flat tube 3 extends is equal to length A1. On the other hand, the length of this region in the direction orthogonal to the direction in which flat tube 3 extends is length B2 shorter than length B1, because the outer wall curved portion of flat tube 3 is located.
The area of the region where planar portion 26 faces flat tube 3 is represented as A1×B1. The bonding area of the region where planar portion 26 is bonded to flat tube 3 is represented as A1×B2. When a ratio of the bonding area of the region where planar portion 26 is bonded to flat tube 3 to the area of the region where planar portion 26 faces flat tube 3 is referred to as a bonding area ratio, then the bonding area ratio is represented as (A1×B2)/(A1×B1)=B2/B1.
Here,
Moreover, in corrugated fin 21 of heat exchanger 1 described above, planar portions 26 are bonded with adhesive 41 to flat tube 3 in such a manner that adjacent planar portions 26 are located closest to each other. Thus, when a fin pitch of corrugated fin 21 is represented as fp, length A1 is represented as: length A1=2·fp.
Accordingly, as compared to the heat exchanger described in the second embodiment (see
Here, a modification of the corrugated fin and the flat tube is described. As shown in
In the heat exchanger described above, flat tube 3 is provided with protrusions 15, and corrugated fin 21 is provided with recesses 29. Thus, as compared to a heat exchanger not provided with such protrusions and recesses, a bonding distance (area) between corrugated fin 21 and flat tube 3 can be increased, thereby improving the bonding strength.
This method is particularly effective when adhesive 41 susceptible to peeling in a direction of air flow is used as adhesive 41. At least one pair of protrusion 15 and recess 29 in the direction of air flow is enough to obtain a desired effect. In addition, the effect of suppressing the peeling of corrugated fin 21 is obtained even when the protruding length of protrusion 15 (the depth of recess 29) is not more than 1 mm.
In the heat exchanger described above, protrusions 15 have been described as provided at portions in a width direction of flat tube 3. The positions of the protrusions are not limited to such arrangement. For example, protrusions 15 may be provided at one end side and the other end side in the width direction of flat tube 3, respectively, as shown in
Here, a modification of the corrugated fin is described. As shown in
Generally, in an outdoor unit of an air conditioner, heat exchange takes place when outdoor air (air) fed into a casing of the outdoor unit passes through a heat exchanger. When the outside air is passing through the heat exchanger, an external force in the same direction as the direction of flow of the outside air tends to act on a corrugated fin. When louvers are disposed on the windward side of the corrugated fin, there is a risk that the external force may break openings in the louvers to close the louvers, resulting in degradation in heat exchange performance.
In contrast, when louvers 31 are disposed on the leeward side, peel strength on the windward side on which the external force acts can be increased, as compared to an example where louvers 31 are disposed on the windward side, thereby suppressing the closing of louvers 31. Thus, the outside air can flow through louvers 31 to easily generate a turbulent flow, thereby further facilitating the heat exchange between the outside air and the refrigerant.
Epoxy resin-based adhesive 41 has been described as an example of the bonding agent in each embodiment. Epoxy resin-based adhesive 41 has excellent heat resistance, water resistance, and stability to chemical materials. Moreover, epoxy resin-based adhesive 41 does not contain volatile organic chemical materials such as formaldehyde which has been identified as a cause of sick house syndrome. Epoxy resin-based adhesive 41 is therefore an adhesive suitable for a heat exchanger used for an indoor unit. Furthermore, epoxy resin-based adhesive 41 also has excellent oil resistance, and therefore can also be applied in a place where oil is frequently used such as a kitchen.
Epoxy resin-based adhesives include a one-component adhesive and a two-component adhesive. In the two-component adhesive, a mixing ratio between epoxy resin and a curing agent may vary. In the one-component adhesive, on the other hand, a curing agent is added to epoxy resin in advance, so that stable bonding strength can be obtained without variation in components.
In addition, epoxy resin-based adhesive 41 has a thermal conductivity (0.6 W/m·k) higher than the thermal conductivities (0.2 to 0.3 W/m·k) of other adhesives such as a nylon-based adhesive or polyester-based adhesive. It can be said also from this fact that epoxy resin-based adhesive 41 is an adhesive suitable for a heat exchanger.
Alternatively, solder may be used, instead of epoxy resin-based adhesive 41, as the bonding agent. In the case of solder, the solder may be formed on the surface of flat tube 3 by plating. In the case of solder, corrugated fin 21 can be bonded with the solder to flat tube 3 under a temperature condition of two hundred and several tens of ° C., and furthermore, coating material 27 coating corrugated fin 21 (see
Moreover, any bonding agent may be used other than the adhesive and the solder, as long as corrugated fin 21 (fin) and flat tube 3 (heat transfer tube) can be bonded together without causing melting of coating material 27 coating corrugated fin 21 (fin).
Although corrugated fin 21 has been described as an example of the fin, a plate-like can also be applied. In this case, it is desirable that a clearance between the flat tube and the fin be set to a minimum value (5 μm) in order to suppress degradation in thermal conductivity caused by an increased thickness of the adhesive.
The heat exchangers described in the respective embodiments can be combined in various ways as needed.
The embodiments disclosed herein are illustrative and non-restrictive. The present invention is defined by the terms of the claims, not the description above, and is intended to include any modifications within the meaning and scope equivalent to the terms of the claims.
The present invention is effectively utilized for a heat exchanger including a fin and a flat tube.
This application is a divisional of application Ser. No. 16/464,035 filed on May 24, 2019, which is a U.S. national stage application of International Application PCT/JP2016/088115 filed on Dec. 21, 2016, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3731732 | Awe et al. | May 1973 | A |
5277358 | Cottone et al. | Jan 1994 | A |
5295302 | Takai et al. | Mar 1994 | A |
5490559 | Dinulescu | Feb 1996 | A |
6176959 | Clarke | Jan 2001 | B1 |
6186222 | Doko | Feb 2001 | B1 |
6397939 | Swiger et al. | Jun 2002 | B1 |
7431074 | Fellman et al. | Oct 2008 | B1 |
20070251091 | Minami et al. | Nov 2007 | A1 |
20090008068 | Minami et al. | Jan 2009 | A1 |
20090242177 | Morioka et al. | Oct 2009 | A1 |
20090307907 | Carl et al. | Dec 2009 | A1 |
20100012308 | Scheidegger et al. | Jan 2010 | A1 |
20100024351 | Pope | Feb 2010 | A1 |
20100175863 | Denoual | Jul 2010 | A1 |
20110232881 | Downing | Sep 2011 | A1 |
20120227945 | Taras et al. | Sep 2012 | A1 |
20130043013 | Iino et al. | Feb 2013 | A1 |
20130212881 | Kamoshida et al. | Aug 2013 | A1 |
20130327512 | Brotz | Dec 2013 | A1 |
20140054017 | Takahashi | Feb 2014 | A1 |
20150060035 | Furumura et al. | Mar 2015 | A1 |
20170160023 | Schiehlen | Jun 2017 | A1 |
20180169801 | Ueda | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
1997271 | Jul 2007 | CN |
1102014217075 | Mar 2016 | DE |
0 823 296 | Feb 1998 | EP |
0 907 064 | Apr 1999 | EP |
H06-221787 | Aug 1994 | JP |
H10-246592 | Sep 1998 | JP |
2001-280891 | Oct 2001 | JP |
2003-001409 | Jan 2003 | JP |
2004-042059 | Feb 2004 | JP |
2005-207728 | Aug 2005 | JP |
2007-051787 | Mar 2007 | JP |
2008-256236 | Oct 2008 | JP |
2009-150587 | Jul 2009 | JP |
2009-250510 | Oct 2009 | JP |
2012-073014 | Apr 2012 | JP |
2012-241973 | Dec 2012 | JP |
2013-250016 | Dec 2013 | JP |
2016-031158 | Mar 2016 | JP |
2016-130603 | Jul 2016 | JP |
2016-183787 | Oct 2016 | JP |
2015032631 | Mar 2015 | WO |
WO-2015032631 | Mar 2015 | WO |
2015122185 | Aug 2015 | WO |
Entry |
---|
International Search Report of the International Searching Authority dated Mar. 21, 2017 for the corresponding International application No. PCT/JP2016/088115 (and English translation). |
Extended European Search Report dated Nov. 26, 2019 issued in corresponding EP patent application No. 16924289.8. |
Office Action dated Apr. 24, 2020 issued in corresponding CN patent application No. 201680091596.8 (and English translation). |
Office Action dated May 12, 2020 issued in corresponding JP patent application No. 2018-557455 (and English translation). |
Office Action dated Mar. 4, 2022 issued in corresponding EP Patent Application No. 16 924 289.8. |
Number | Date | Country | |
---|---|---|---|
20230022462 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16464035 | US | |
Child | 17958021 | US |