The present disclosure relates to a heat exchanger including a plurality of fins and a plurality of heat transfer pipes each extending in a direction intersecting the plurality of fins and to a refrigeration cycle apparatus including the same.
Patent Literature 1 discloses a heat exchanger including a plurality of fins arranged parallel to each other to form a flow passage of gas and heat transfer pipes each passing through the plurality of fins and through which a medium that exchanges heat with the gas flows. The plurality of fins each have a plurality of through-holes and the heat transfer pipes are fitted separately in the plurality of respective through-holes. The plurality of through-holes are provided at equal intervals along a step direction perpendicular to both a direction in which the plurality of fins are arranged and a direction of flow of the gas, and are provided in a plurality of rows along a row direction parallel to the direction of flow of the gas.
The heat exchanger of Patent Literature 1 is a part of a refrigeration cycle apparatus such as an air-conditioning apparatus. There has recently been a demand for a reduction in amount of refrigerant charge to reduce the total value of GWP of a refrigeration cycle apparatus. A possible way of reducing the amount of refrigerant charge in a refrigeration cycle apparatus is to reduce the inner capacity of each of the heat transfer pipes of the heat exchanger by reducing the pipe diameter of each of the heat transfer pipes. However, reducing the pipe diameter of each of the heat transfer pipes usually causes a decrease in heat transfer performance of the heat exchanger. For this reason, to maintain the heat transfer performance of the heat exchanger while reducing the pipe diameter of each of the heat transfer pipes, it is necessary to narrow the intervals at which the fins are placed and increase the number of rows of the heat transfer pipes. Meanwhile, narrowing the intervals at which the fins are placed and increasing the number of rows of the heat transfer pipes result in deterioration in ventilation performance of the heat exchanger. That is, there is a trade-off between heat transfer performance and ventilation performance in a heat exchanger whose heat transfer pipes each have a reduced inner capacity. Heat transfer performance and ventilation performance both affect the heat exchanger performance of a heat exchanger. Accordingly, it has been undesirably difficult to improve the heat exchanger performance of a heat exchanger while reducing the inner capacity of each of the heat transfer pipes.
The present disclosure has been made to solve such a problem, and has as an object to provide a heat exchanger that makes it possible to improve the heat exchanger performance of the heat exchanger while reducing the inner capacity of heat transfer pipes and a refrigeration cycle apparatus including the same.
A heat exchanger according to an embodiment of the present disclosure includes a plurality of fins arranged in parallel to each other and a plurality of heat transfer pipes each extending in a direction intersecting the plurality of fins. In a plane perpendicular to a direction in which the plurality of heat transfer pipes extend, the plurality of heat transfer pipes are placed in a plurality of rows in a row direction that is along a direction of airflow at a row pitch L1. In the plane, the plurality of heat transfer pipes are placed in a plurality of steps in a step direction perpendicular to the row direction at a step pitch L2. Where an outer diameter of each of the plurality of heat transfer pipes is defined as Do, a wall thickness of a portion having a smallest distance between an outer wall surface and an inner wall surface of each of the plurality of heat transfer pipes is defined as tP, an area represented by a numerical expression of L1×L2 is defined as A, and an area represented by a numerical expression of ((Do−2×tP)/2)2×π is defined as B, a relation of Do<5.5 mm, a relation of (0.0219×tP2−0.0185×tP+0.0043)×ln(Do)+(1.6950×tP2+1.8455×tP+1.5416)≤B/A≤(0.2076×tP2−0.1480×tP+0.0545)−Do{circumflex over ( )}(−0.0021×tP2−0.0528×tP+0.0164), and a relation of B/A<0.0076×tP2−0.0417×tP+0.0574 are satisfied.
A refrigeration cycle apparatus according to another embodiment of the present disclosure includes the heat exchanger according to an embodiment of the present disclosure.
An embodiment of the present disclosure makes it possible to improve the heat exchanger performance of a heat exchanger while reducing the inner capacity of heat transfer pipes.
A heat exchanger according to Embodiment 1 is described.
As shown in
The first heat exchange unit 10 includes a plurality of first fins 11 arranged parallel to each other at intervals and a plurality of first heat transfer pipes 12 each passing through the plurality of first fins 11 and each extending parallel to each other in a direction intersecting the plurality of first fins 11. Each of the plurality of first fins 11 has a rectangular flat-plate shape elongated in one direction. Each of the plurality of first fins 11 is placed perpendicular to a direction in which the first heat transfer pipes 12 extend. The plurality of first fins 11 are provided parallel to each other at regular placement pitches in a direction perpendicular to a surface of paper of
Each of the plurality of first heat transfer pipes 12 extends in the direction perpendicular to the surface of paper of
The second heat exchange unit 20 includes a plurality of second fins 21 arranged parallel to each other at intervals and a plurality of second heat transfer pipes 22 each passing through the plurality of second fins 21 and each extending parallel to each other in a direction intersecting the plurality of second fins 21. As with the first fins 11, each of the plurality of second fins 21 has a rectangular flat-plate shape. Each of the plurality of second fins 21 is placed parallel to the first fins 11 and perpendicular to a direction in which the second heat transfer pipes 22 extend. The plurality of second fins 21 are provided parallel to each other at regular placement pitches in the direction perpendicular to the surface of paper of
Each of the plurality of second heat transfer pipes 22 extends in a direction parallel to the direction in which the first heat transfer pipes 12 extend. The plurality of second heat transfer pipes 22 are arrayed at step pitches L2 in one row in the step direction of the heat exchanger 100. Each of the step pitches L2 is equal to a step pitch between first heat transfer pipes 12. Each of the plurality of second heat transfer pipes 22 is placed with a displacement of, for example, approximately half a pitch from the corresponding one of the plurality of first heat transfer pipes 12. The plurality of second heat transfer pipes 22 constitute a second row of heat transfer pipes as counted from a windward side in the heat exchanger 100. The plurality of first heat transfer pipes 12 and the plurality of second heat transfer pipes 22 are arrayed at row pitches L1 in the row direction of the heat exchanger 100. Each of the row pitches can be specified by a distance in the row direction between the tube axis 12a of a first heat transfer pipe 12 and a tube axis 22a of a second heat transfer pipe 22. A row pitch between first heat transfer pipes 12 in the first heat exchange unit 10 and a row pitch between second heat transfer pipes 22 in the second heat exchange unit 20 can both be considered as L1. Each of the plurality of second heat transfer pipes 22 is a circular pipe having an outer diameter Do that is equal to the outer diameter of a first heat transfer pipe 12. Further, each of the plurality of second heat transfer pipes 22 is a circular pipe having a wall thickness tP that is equal to the wall thickness of a first heat transfer pipe 12.
The heat exchanger 100 includes a plurality of refrigerant paths (not illustrated) connected parallel to each other in a flow passage of refrigerant. Each of the plurality of refrigerant paths is formed using one or more first heat transfer pipes 12, one or more second heat transfer pipes 22, or a combination of one or more first heat transfer pipes 12 and one or more second heat transfer pipes 22.
The second heat exchange unit 30 includes a plurality of second fins 31 and a plurality of second heat transfer pipes 32 each passing through the plurality of second fins 31. As with the first fins 11 and the second fins 21, each of the plurality of second fins 31 has a rectangular flat-plate shape. Each of the plurality of second fins 31 is placed parallel to the first fins 11 and the second fins 21 and perpendicular to a direction in which the second heat transfer pipes 32 extend. The plurality of second fins 31 are provided parallel to each other at regular placement pitches in a direction perpendicular to a surface of paper of
Each of the plurality of second heat transfer pipes 32 extends in the direction parallel to the direction in which the first heat transfer pipes 12 extend. The plurality of second heat transfer pipes 32 are arrayed at step pitches L2 in one row in the step direction of the heat exchanger 100. Each of the step pitches L2 is equal to a step pitch between first heat transfer pipes 12 and a step pitch between second heat transfer pipes 22. The plurality of second heat transfer pipes 32 constitute a third row of heat transfer pipes as counted from the windward side in the heat exchanger 100. The plurality of first heat transfer pipes 12, the plurality of second heat transfer pipes 22, and the plurality of second heat transfer pipes 32 are arrayed at row pitches L1 in the row direction of the heat exchanger 100. Each of the plurality of second heat transfer pipes 32 is a circular pipe having an outer diameter Do that is equal to the outer diameter of a first heat transfer pipe 12 and the outer diameter of a second heat transfer pipe 22. Further, each of the plurality of second heat transfer pipes 32 is a circular pipe having a wall thickness tP that is equal to the wall thickness of a first heat transfer pipe 12 and the wall thickness of a second heat transfer pipe 22.
In the present embodiment, the respective wall thicknesses tP of the first heat transfer pipes 12, the second heat transfer pipes 22, and the second heat transfer pipes 32 each range, for example, from 0.1 to 0.4 mm. Note, however, that the respective wall thicknesses of the first heat transfer pipes 12, the second heat transfer pipes 22, and the second heat transfer pipes 32 may be each less than 0.1 mm or may be each greater than 0.4 mm.
In a process of manufacturing the heat exchanger 100, the first heat transfer pipes 12, the second heat transfer pipes 22, and the second heat transfer pipes 32 may be subjected to pipe expanding. In this case, the respective outer diameters Do of the first heat transfer pipes 12, the second heat transfer pipes 22, and the second heat transfer pipes 32 may of course be specified by outer diameters after pipe expanding.
The following describes heat exchanger performance and cost performance in a case in which the outer diameters Do, the row pitches L1, the step pitches L2, and the wall thicknesses tP of the heat transfer pipes of the heat exchanger 100 are varied.
Table 1 is a table showing effects exerted on the intra-pipe volume V, the extra-pipe heat transfer coefficient αo, the ventilation resistance ΔP, the extra-pipe heat transfer area Ao, and the heat exchanger weight M in a case in which the outer diameters Do, the row pitches L1, the step pitches L2, and the wall thicknesses tP of the heat transfer pipes of the heat exchanger 100 according to the present embodiment are varied. It should be noted, in Table 1, when each of the parameters, namely the outer diameters Do, the row pitches L1, the step pitches L2, and the wall thicknesses tP of the heat transfer pipes, are varied, the other parameters are fixed.
The intra-pipe volume V [m3] is a value obtained by multiplying the cross-sectional area of an interior channel of one heat transfer pipe by the length of the heat transfer pipe. The extra-pipe heat transfer coefficient αo [W/m2·K] is the proportion of the amount of heat that is transferred between an outer wall surface of a heat transfer pipe and air. The ventilation resistance ΔP [Pa] is a pressure loss of air passing through the heat exchanger 100. The extra-pipe heat transfer area Ao [m2] is the gross area of the respective outer wall surfaces of the heat transfer pipes of the heat exchanger 100. The heat exchanger weight M [kg] is the weight (core weight) of a heat exchange core unit of the heat exchanger 100 and the heat exchange core unit is formed by the heat transfer pipes and the fins.
In a case in which the outer diameter Do is reduced and the step pitch L2 is increased for the purpose of reducing the intra-pipe volume V, that is, the amount of refrigerant charge, the extra-pipe heat transfer coefficient αo decreases, so that energy-saving effectiveness decreases because of lack of heat transfer performance. Accordingly, for improving the heat transfer performance, it is necessary to increase the extra-pipe heat transfer area Ao by increasing the row pitch L1 or to increase the extra-pipe heat transfer coefficient αo by reducing the row pitch L1 and increase the extra-pipe heat transfer area Ao by increasing the number of rows of the heat transfer pipes. However, in either case, the amount of use of the fins or the heat transfer pipes increases, so that there is a possibility that cost performance, that is, the heat exchange performance of the heat exchanger 100 per unit weight, may decrease. Further, in a case in which the wall thickness tP of each of the heat transfer pipes is increased for the purpose of reducing the intra-pipe volume V, that is, the amount of refrigerant charge, the amount of use of the heat transfer pipes increases, so that there is a possibility that cost performance may similarly decrease. For these reasons, it is necessary to appropriately set the outer diameters Do, the row pitches L1, the step pitches L2, and the wall thicknesses tP of the heat transfer pipes of the heat exchanger 100 to achieve both a reduction in the intra-pipe volume V and an increase in cost performance of the heat exchanger 100.
The following describes the extra-pipe heat exchange performance of the heat exchanger 100 per unit weight.
Note here that the heat transfer pipes may include first heat transfer pipes 12, second heat transfer pipes 22, and second heat transfer pipes 32. The fins may include first fins 11, second fins 21, and second fins 31. The area A is an area represented by the product L1×L2 of a row pitch L1 and a step pitch L2. The area A is equivalent to the area of each fin per heat transfer pipe. Also, the area B is an area represented by ((Do−2×tP)/2)2×7 using the outer diameter Do and wall thickness tP of each of the heat transfer pipes. The area B is equivalent to the cross-sectional area of an interior channel of one heat transfer pipe.
In each of
In each of
A relationship between each of the extra-pipe heat transfer performance, the ventilation resistance ΔP, the heat exchanger weight M, and the extra-pipe heat exchange performance and the area ratio B/A is described here with reference to
Continued reference is made to
The extra-pipe heat exchange performance of the heat exchanger 100 according to the present embodiment per unit weight as shown in
In general, the heat transfer coefficient αa [W/m2·K] between air and the fins is defined by the following equations.
Note here that Nu is a Nusselt number and Re is a Reynolds number. Pr is a Prandtl number, λa is the thermal conductivity of air, and ν is the kinematic viscosity of air. At ordinary temperatures and pressures, Pr=0.72, λa=0.0261 [W/m·K], and ν=0.000016 [m2/s]. Further, C1 and C2 are constants, and NL is the number of rows of the heat transfer pipes.
The characteristic length De [m] is defined by the following equations.
Note here that Vc [m3] is a free flow volume, FP [m] is a fin pitch, tF [m] is the thickness of each of the fins, and dc [m] is a fin collar outer diameter.
The wind velocity U [m/s] based on a free passage volume between fins and the front wind velocity Uf [m/s] of the heat exchanger are defined by the following equations.
Note here that Qair [m3/s] is the flow rate of air flowing into the heat exchanger, EH is the overall height of the heat exchanger in the step direction, and EL is the overall height of the heat exchanger in a direction in which the fins are stacked.
In general, the extra-pipe heat transfer coefficient αo is defined by the following equations.
Note here that q is fin efficiency and αa is an air-side heat transfer coefficient. Ao [m2] is the air-side total heat transfer area of the heat exchanger, AP [m2] is the air-side pipe heat transfer area of the heat exchanger, AF [m2] is the air-side fin heat transfer area of the heat exchanger, and Acon [m2] is the area of contact between the heat transfer pipes and the fins. Ao, Ap, AF, and Acon are values that can be calculated once the dimensions dependent on the shape of the heat exchanger, namely the number NL of rows of heat transfer pipes, the number ND of steps of heat transfer pipes, the number NF of fins, the row pitch L1, the step pitch L2, the fin pitch FP, the fin thickness tF, and the outer diameter Do of each of the heat transfer pipes, are determined. The contact heat transfer coefficient αc between the heat transfer pipes and the fins of the heat exchanger is constant.
The fin efficiency η is defined by the following equations.
Note here that dF [m] is a fin equivalent diameter and λF [W/m·K] is the thermal conductivity of the fins.
The ventilation resistance ΔP [Pa] is defined by the following equations.
Note here that f is a coefficient of friction loss, ρ is the density of air, and C3 and C4 are constants.
It should be noted that the constants C1, C2, C3, and C4, which are used in the Nusselt number Nu and a coefficient of flow loss f, are set to represent the thermal conductivity αa and ventilation resistance ΔP of the fins of a heat exchanger of a commercially widely-distributed common air-conditioning apparatus.
The extra-pipe heat exchange performance of the heat exchanger 100 according to the present embodiment per unit weight as shown in
Dry-bulb temperature of air flowing into heat exchanger 100: 35 degrees Celsius
Wet-bulb temperature of air flowing into heat exchanger 100: 24 degrees Celsius
Wind velocity at front of heat exchanger 100 of air flowing into heat exchanger 100: 1.2 m/sec
Refrigerant: R32
Outer diameter Do of heat transfer pipe: 2.0 mm to 5.5 mm
Wall thickness tP of heat transfer pipe: 0.1 mm to 0.4 mm
Material of heat transfer pipe: copper
Row pitch L1: 11 mm to 22 mm
Step pitch L2: 5 mm to 42 mm
Thickness of fin: 0.10 mm
Fin pitch FP: 1.50 mm
Material of fin: aluminum
Shape of fin: flat fin
As a comparative example, a performance calculation is performed under the following calculation conditions. The other parameters are similar to the aforementioned calculation conditions. The calculation conditions of the comparative example are conditions under which the intra-pipe volume is smallest in Patent Literature 1 (Japanese Unexamined Patent Application Publication No. 2013-92306).
Outer diameter Do of heat transfer pipe: 5.5
Row pitch L1: 20.35 mm
Step pitch L2: 20.35 mm
Fin pitch FP: 1.50 mm
Further, under the calculation conditions of the comparative example, the area ratio B/A is 0.053 in a case in which Wall Thickness tP=0.1 mm, is 0.049 in a case in which Wall Thickness tP=0.2 mm, is 0.046 in a case in which Wall Thickness tP=0.3 mm, and is 0.042 in a case in which Wall Thickness tP=0.4 mm.
As shown in
A range of numerical values of the area ratio B/A in which Extra-pipe Heat Exchange Performance/Weight [Ratio] exceeds 100% and the area ratio B/A can fall below that of the comparative example varies with the outer diameter Do and the wall thickness tP. For example, as shown in
An upper limit of the range of numerical values of the area ratio B/A in which the outer diameter Do of each pipe is less than 5.5 mm, Extra-pipe Heat Exchange Performance/Weight [Ratio] exceeds 100%, and the area ratio B/A can fall below that of the comparative example, shown in
It should be noted that ln is a natural logarithm whose base is e.
Further, the area ratio B/A of the comparative example is expressed by Formula (3) below as a function of the wall thickness tP.
The upper limit function F (Do, tP) is an approximate expression calculated, for example, by a logarithmic approximation of the method of least squares after obtaining, for each wall thickness tP and each outer diameter Do, an upper limit value of the range of numerical values of the area ratio B/A in which Extra-pipe Heat Exchange Performance/Weight [Ratio] exceeds 100% and the area ratio B/A can fall below that of the comparative example. Further, the lower limit function G (Do, tP) is an approximate expression calculated, for example, by a power approximation of the method of least squares after obtaining, for each wall thickness tP and each outer diameter Do, an upper limit value of the range of numerical values of the area ratio B/A in which Extra-pipe Heat Exchange Performance/Weight [Ratio] exceeds 100% and the area ratio B/A can fall below that of the comparative example. Further, the area ratio function H (tP) of the comparative example is an approximate expression calculated, for example, by a power approximation of the method of least squares after obtaining a value of the area ratio B/A of the comparative example for each wall thickness tP.
With Formulas (1) to (3) above, a relationship among the outer diameter Do, the area ratio B/A, and the wall thickness tP in which Extra-pipe Heat Exchange Performance/Weight [Ratio] exceeds 100% and the area ratio B/A can fall below that of the comparative example is expressed by Formula (4) below.
Specific examples of the range of numerical values identified by Formula (4) above under the aforementioned calculation conditions are described here with reference to
In each of
As shown in
As noted above, configuring the heat exchanger 100 such that when Outer Diameter Do<5.5 mm, Lower Limit Function G (Do, tP) s Area Ratio B/A≤Upper Limit Function F (Do, tP) and Area Ratio B/A<Area Ratio Function H (tP) of Comparative Example allows the amount of refrigerant charge to fall below that of the comparative example while allowing Extra-pipe Heat Exchange Performance/Weight [Ratio] to exceed 100%. This in turn makes it possible to improve heat exchanger performance while reducing the inner capacity of each of the heat transfer pipes of the heat exchanger 100. Therefore, the heat exchanger 100 according to the present embodiment can achieve both improvement in cost performance and a reduction in total value of GWP through a reduction in amount of refrigerant charge. As a result, this makes it possible to reduce the amount of refrigerant charge while improving energy-saving effectiveness in a refrigeration cycle apparatus including the heat exchanger 100.
Further, the foregoing calculation conditions of the heat exchanger 100 according to the present embodiment correspond to cooling rated conditions of an air-conditioning apparatus serving as an example of a refrigeration cycle apparatus. This makes it possible to, under the cooling rated conditions of an air-conditioning apparatus, reduce the amount of refrigerant charge while improving energy-saving effectiveness. It should be noted that even under other conditions such as cooling intermediate conditions, heating rated conditions, and heating intermediate conditions of an air-conditioning apparatus serving as an example of a refrigeration cycle apparatus, the heat exchanger 100 according to the present embodiment brings about effects that are similar to those brought about under the cooling rated conditions.
A heat exchanger according to Embodiment 2 is described.
In the heat exchanger 100 of the present embodiment, as shown in
In both the first heat exchange unit 10 and the second heat exchange unit 20, the relation of Formula (4), which is described above in Embodiment 1, is satisfied. Further, a value of B/A in the first heat exchange unit 10 is smaller than a value of B/A in the second heat exchange unit 20.
In both the first heat exchange unit 10 and the second heat exchange unit 20, the relation of Formula (4), which is described above in Embodiment 1, is satisfied. Further, a value of B/A in the first heat exchange unit 10 is smaller than a value of B/A in the second heat exchange unit 20.
As described above, the heat exchanger 100 according to the present embodiment further includes a plurality of heat exchange units, arrayed along the direction of airflow, each of which has one or more of the plurality of heat transfer pipes. The plurality of heat exchange units include a first heat exchange unit 10 located furthest windward and at least one second heat exchange unit 20 located further leeward than the first heat exchange unit 10. A value of B/A in the first heat exchange unit 10 is smaller than a value of B/A in the at least one second heat exchange unit 20.
In general, in the first heat exchange unit 10 located furthest windward, frost easily forms, as a great temperature difference between the first fins 11 or the first heat transfer pipes 12 and air results in an increased amount of heat that is exchanged. The foregoing configuration makes it possible to make the first heat exchange unit 10 lower in heat exchange performance than the second heat exchange unit 20. This makes it possible to inhibit the formation of frost in the first heat exchange unit 10 and therefore makes it possible to prevent an air trunk of the first heat exchange unit 10 from being closed by an increased amount of frost that is formed. This makes it possible to improve cost performance while reducing deterioration in ventilation performance of the heat exchanger 100.
A refrigeration cycle apparatus according to Embodiment 3 is described.
The refrigeration cycle apparatus 200 includes an outdoor unit 110 and an indoor unit 120 as heat exchange units. The outdoor unit 110 houses the compressor 51, the four-way valve 52, the outdoor heat exchanger 53, the expansion valve 54, and the outdoor fan 56. The indoor unit 120 houses the indoor heat exchanger 55 and the indoor fan 57. The outdoor unit 110 and the indoor unit 120 are connected to each other via a gas pipe 130 and a liquid pipe 140, which are some of the refrigerant pipes.
Operation of the refrigeration cycle apparatus 200 is described by describing cooling operation as an example. For cooling operation, the four-way valve 52 is switched such that refrigerant discharged from the compressor 51 flows into the outdoor heat exchanger 53. The high-pressure gas refrigerant discharged from the compressor 51 flows into the outdoor heat exchanger 53 via the four-way valve 52. During cooling operation, the outdoor heat exchanger 53 operates as a condenser. That is, the outdoor heat exchanger 53 allows refrigerant circulating through inside and outdoor air supplied by the outdoor fan 56 to exchange heat with each other, so that the refrigerant transfers heat of condensation to the outdoor air. This causes the gas refrigerant having flowed into the outdoor heat exchanger 53 to condense into high-pressure liquid refrigerant.
The liquid refrigerant having flowed out of the outdoor heat exchanger 53 is decompressed by the expansion valve 54 into low-pressure two-phase refrigerant. The two-phase refrigerant having flowed out of the expansion valve 54 flows into the indoor heat exchanger 55 via the liquid pipe 140. During cooling operation, the indoor heat exchanger 55 operates as an evaporator. That is, the indoor heat exchanger 55 allows refrigerant circulating through inside and indoor air supplied by the indoor fan 57 to exchange heat with each other, so that the refrigerant removes heat of evaporation from the indoor air. This causes the two-phase refrigerant having flowed into the indoor heat exchanger 55 to evaporate into low-pressure gas refrigerant. The indoor air having passed through the indoor heat exchanger 55 is cooled by exchanging heat with the refrigerant. The gas refrigerant having flowed out of the indoor heat exchanger 55 is suctioned into the compressor 51 via the gas pipe 130 and the four-way valve 52. The gas refrigerant suctioned into the compressor 51 is compressed into high-pressure gas refrigerant. During cooling operation, the refrigeration cycle described above is continuously and repeatedly executed. Although not described, for heating operation, a direction of refrigerant flow is switched by the four-way valve 52 such that the outdoor heat exchanger 53 operates as an evaporator and the indoor heat exchanger 55 operates as a condenser.
As described above, the refrigeration cycle apparatus 200 according to the present embodiment includes the heat exchanger 100 of Embodiment 1 or 2. This configuration allows the refrigeration cycle apparatus 200 to achieve both a reduction in total value of GWP and improvement in energy-saving effectiveness.
Embodiments 1 to 3 and the modifications described above may be combined with each other.
10: first heat exchange unit, 11: first fin, 12: first heat transfer pipe, 12a: tube axis, 20: second heat exchange unit, 21: second fin, 22: second heat transfer pipe, 22a: tube axis, 30: second heat exchange unit, 31: second fin, 32: second heat transfer pipe, 50: refrigeration cycle circuit, 51: compressor, 52: four-way valve, 53: outdoor heat exchanger, 54: expansion valve, 55: indoor heat exchanger, 56: outdoor fan, 57: indoor fan, 100: heat exchanger, 110: outdoor unit, 120: indoor unit, 130: gas pipe, 140: liquid pipe, 200: refrigeration cycle apparatus, Do: outer diameter, Doa: outer diameter, Dob: outer diameter, L1: row pitch, L2: step pitch, L2a: step pitch, L2b: step pitch, tP: wall thickness
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/030927 | 8/6/2019 | WO | 00 |