Claims
- 1. In a heat exchanger core (20) having a plurality of closely spaced fins (40) having peripheral edges (45) defining an inlet surface (60), an outlet surface (65), and first and second end surfaces (70,75) and having at least one tube (50) extending through the fins (40) and being spaced from said inlet surface (60), said tube (50) having an elongated cross-section, said inlet surface (60) positioned generally at an angle between 10.degree. and 40.degree. with the flow of air to the inlet surface (60), the improvement comprising:
- a cover (80 or 85) connected over the edges (45) of said fins (40) which define a respective one of said first and second end surfaces (70,75) and being spaced from said inlet surface (60) a distance substantially equal to the spacing of the tube (50) from the inlet surface (60), said cover (80 or 85) being substantially parallel to the tube (50).
- 2. The heat exchanger core (20) as in claim 1, futher including:
- a second cover (85 or 80) connected over the edges (45) of said fins (40) which define a respective other of said second and first end surfaces (75,70) and being spaced from said inlet surface (60) a distance substantially equal to the spacing of the tube (50) from the inlet surface (60), said second cover (85 or 80) being substantially parallel to the tube (50).
- 3. The heat exchanger core (20) as in claim 1, wherein said tube (50) generally has a tube dimension ("D1") and wherein said cover (80 or 85) has a cover dimension ("D2") substantially equal to the tube dimension ("D1").
- 4. The heat exchanger core (20) as in claim 1, wherein the tube (50) is spaced from the outlet surface (65) and the cover (80 or 85) is spaced from the outlet surface (65) a distance substantially equal to the spacing of the tube (50) from the outlet surface (65).
- 5. The heat exchanger core (20) as in claim 1, wherein there are a plurality of said tubes (50) and the spacing between said cover (80 or 85) and a nearest of the tubes (50) is substantially equal to half the spacing of adjacent parallel tubes (50).
- 6. The heat exchanger core (20) as in claim 1, wherein said cover (80' or 85') is formed of a plurality of tabs (88) which extend from said peripheral edges (45) at said respective first and second end surfaces (70,75) and are bent over generally parallel to the tube (50), said tabs (88) being spaced from the inlet surface (60) a distance substantially equal to the spacing of the tube (50) from the inlet surface (60).
- 7. The heat exchanger core (20) as in claim 6 wherein said tube (50) has a tube dimension ("D1") and said cover (80' or 85') has a tab dimension ("D3") substantially equal to the tube dimension ("D1").
- 8. In a heat exchanger (10) having first (20) and second (25) cores each having a plurality of closely spaced fins (40) having peripheral edges (45) defining an inlet surface (60), an outlet surface (65) and first (70) and second (75) end surfaces and each core (20,25) having at least one tube (50) extending through the fins (40) and being spaced from said respective inlet surface (60), said tubes (50) having an elongated cross-section, said cores (20,25) being mounted in a generally "V" configuration with said first end surfaces (70) defining an apex of said "V", the improvement comprising:
- a plurality of covers (80,85) connected over the edges (45) of said fins (40) which define said respective first and second end surfaces (70,75) of said respective cores (20,25) and being spaced from said inlet surface (60) of the respective cores (20,25) a distance substantially equal to the spacing of the respective tube (50) from the inlet surface (60), said covers (80,85) of the cores (20,25) being substantially parallel to the tube (50) of the respective cores (20,25).
- 9. The heat exchanger (10) as in claim 8, wherein said covers (80,85) of the respective cores (20,25) are spaced from said outlet surface (65) of the respective cores (20,25) a distance substantially equal to the spacing of the respective tube (50) from the outlet surface (65).
- 10. The heat exchanger (10) as in claim 8, wherein said tube (50) generally has a tube dimension ("D1") and wherein said covers (80,85) have a cover dimension ("D2") substantially equal to the tube dimension ("D1").
- 11. The heat exchanger (10) as in claim 8, wherein said covers (80',85') of the cores (20,25) are each formed of a plurality of tabs (88) which extend from said peripheral edges (45) at said respective first and second end surfaces (70,75) and which are bent over generally parallel to said tubes (50) of the respective cores (20,25), said tabs (88) being spaced from the inlet surface (60) of the respective cores (20,25) a distance substantially equal to the spacing of the respective tube (50) from the inlet surface (60).
- 12. The heat exchanger (10) as in claim 8, wherein each of said cores (20,25) includes a plurality of said tubes (50) generally equally spaced from one another and wherein the separation between each of said covers (80,85) and the respective nearest adjacent tube (50) is substantially equal to half the spacing between the adjacent parallel tubes (50).
- 13. The heat exchanger (10) as in claim 11 wherein said tubes (50) each have a tube dimension ("D1") and said covers (80',85') each have a tab dimension ("D3") substantially equal to the tube dimension ("D1").
Priority Claims (1)
Number |
Date |
Country |
Kind |
PCT/US79/01060 |
Dec 1979 |
WOX |
|
Parent Case Info
This is a continuation-in-part of application Ser. No. 133,635, filed as PCT/US 79/01060Dec. 3, 1979, now abandoned.
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
102e Date |
371c Date |
PCT/US80/01516 |
11/7/1980 |
|
|
11/7/1980 |
11/7/1980 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO81/01608 |
6/11/1981 |
|
|
US Referenced Citations (5)
Foreign Referenced Citations (5)
Number |
Date |
Country |
2450093 |
Jul 1975 |
DEX |
788080 |
Jul 1935 |
FRX |
2200888 |
Apr 1974 |
FRX |
2250089 |
May 1975 |
FRX |
2259341 |
Aug 1975 |
FRX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
133635 |
Dec 1977 |
|