The present invention relates to an instantaneous heat exchanger for a boiler of a combined type, i.e., a boiler designed to produce both hot water for a plant for heating an environment and hot water for sanitary purposes. The invention likewise relates to a boiler of a combined type using such an instantaneous heat exchanger.
The invention finds particular application in the case of boilers of a combined type that comprise:
In boilers of the type referred to, the main heat exchanger, which is usually of the type using a gas burner, brings about heating of the primary fluid which, via the pump, is made to circulate in the heating plant in order to supply a plurality of radiators located in a domestic environment.
In the absence of a requirement of hot water for sanitary purposes, a deviator device, such as a three-way valve, enables circulation of the primary fluid only in the plant for heating the environment. In the case where a user requires, instead, a supply of hot sanitary water (for example for a shower), the deviator device directs, in all or in part, the primary fluid into the aforesaid auxiliary branch of the primary circuit, and then towards the auxiliary heat exchanger. In this way then, the auxiliary heat exchanger can carry out heating of the sanitary water by virtue of the fact that the heat of the fluid of the heating plant is transferred to said water. Once the requirement of hot sanitary water has ceased, the deviator device returns to its original position, so that the primary fluid returns to circulate only in the heating plant. In certain solutions, the means for deviating the primary fluid towards the auxiliary heat exchanger comprise, instead of a three-way valve, a second pump with respective valve.
Boilers of a combined type should ideally be able to guarantee an immediate production of hot sanitary water, be constructionally simple and inexpensive, and above all have small overall dimensions.
In order to contain the overall dimensions, in the majority of combined boilers of a compact type, auxiliary heat exchangers of the plate type are used. Said heat exchangers are basically constituted by a plurality of metal plates, packed together so as to define a certain number of parallel cavities. The cavities are connected in alternating series so that, for example, the primary fluid circulates in the cavities of even number and the secondary fluid circulates in the cavities of odd number. In each cavity, one of the two fluids can thus exchange heat with the other, through both of the plates that delimit the cavity itself.
From a functional standpoint, the plate structure enables instantaneous heat exchangers to be obtained that are very compact and are provided with good characteristics of heat exchange. By virtue of their diffusion, plate-type heat exchangers for combined boilers have in effect become standardized components produced on a large scale, with evident advantages in terms of reduction of costs. On the other hand, the plate-type heat exchangers currently used on compact combined boilers present some drawbacks. A first drawback is represented by the fact that plate-type heat exchangers are particularly subject to clogging, typically on account of precipitation of lime within them. Said drawback is particularly felt in the case of boilers installed in areas where the mains water is very hard. Another drawback is that the volume of water that can be stored within a plate-type heat exchanger of a compact boiler is very small, never greater than one litre for each circuit. Said reduced capacity of storage has two main negative consequences from the functional standpoint:
The first of the above drawbacks, i.e., the short service life, is mitigated by the fact that plate-type heat exchangers have by now become available as spare parts having a relatively contained cost for combined boilers. On this point, it should be emphasized that the standardization of production has had as a consequence that also the interface or hydraulic/mechanical connection assembly of plate-type heat exchangers of combined boilers has over time assumed a substantially standardized configuration, suitable for enabling fast and simple replacement of the heat exchanger.
The aforesaid functional limits could, instead, be reduced using plate-type heat exchangers having cavities of dimensions larger than the current ones, and hence with greater storage capacity; however, this would inevitably entail an increase in the overall dimensions of the boiler.
In order to overcome the reduced functional capacities of plate-type heat exchangers there have thus been proposed boilers of a combined type having a storage tank in which a certain amount of water is maintained at a given temperature, ready for use. In certain cases, the storage tank has the function of maintaining a certain amount of water for heating at a given temperature, to be able to release it when required, in a fast way, to a secondary heat exchanger, so that this can produce the hot sanitary water quickly. In the meantime, the primary heat exchanger can overcome the thermal inertia and will then be able to exploit its maximum power in favour of the secondary heat exchanger. The temperature of the water in the tank is usually controlled via a suitable sensor. When said temperature drops below a threshold value, the control system of the boiler issues a command for a new heating thereof, via appropriate electrical means (such as a resistance), or else by starting the primary heat exchanger and possibly the circulation pump. In other cases, the storage tank has, instead, the function of maintaining a certain amount of sanitary water at a given temperature, to be able to release it in a fast way following upon a requirement for use for washing purposes. As in the previous case, the primary heat exchanger can in the meantime reach its own maximum power and thus enable a secondary heat exchanger to function at normal running conditions. Also in these solutions the temperature of the sanitary water in the tank is controlled via a suitable sensor and, if required, heated via electrical means.
If, on the one hand, the provision of a storage tank enables prevention of problems of slowness and inconstancy of supply of plate-type heat exchangers, on the other hand, this occurs at the expense of the compactness of the combined boiler, its simplicity of construction, and its cost.
Even though boilers provided with storage tanks are more cumbersome, they are, however, preferred in areas with very hard mains water. On the other hand, combined boilers with a secondary plate-type heat exchanger continue to be very much in demand on account of their compactness and their contained cost, above all in areas where the level of hardness of the mains water is relatively low. Their functional limits in terms of times of response and constancy of supply are considered acceptable for a fair share of the market.
For the aforesaid reasons, boiler manufacturers are thus forced to diversify their production, this being at the expense of the standardization of production.
The aim of the present invention is to solve the aforesaid problems. Said purpose is achieved, according to the invention, by a heat exchanger for a boiler of a combined type and by a boiler of a combined type having the characteristics indicated in the annexed claims, which form an integral part of the descriptive content of the present patent application.
Further purposes, characteristics and advantages of the invention will emerge from the ensuing description with reference to the annexed plate of drawings, which are provided purely by way of non-limiting example and in which:
Partially represented in
The boiler, designated as a whole by 1, presents an as a whole known structure and for this purpose comprises a body 2 for support and containment of the various functional components. Purely by way of indicative example, the overall dimensions of the body 2 may be approximately 450 mm in width, 325 mm in depth, and 800 mm in height.
Installed within the body 2 is a main heat exchanger, represented only schematically and partially in the figures, designated by 3 and preferably of the gas-burner heat-exchanger type. From the main heat exchanger 3 there branches off a delivery branch and a return branch for a primary circuit, in which a primary fluid, typically water, for a domestic heating plant, is to circulate.
The delivery and return branches are provided with respective hydraulic connections, designated respectively by 4 and 5, for connection to the pipes of the aforesaid heating plant (not represented). The connections 4 and 5, preferably of a threaded type, are associated to a supporting plate, designated by P, fixed to the body 2 in the rear part of the latter.
The connections 4, 5 are in hydraulic communication with respective threaded connections 4a, 5a, between which there is to be installed a known by-pass pipe (not represented herein in so far as it is of a type and operation in themselves known). The aforesaid delivery branch 4 and return branch 5 are moreover connected to one another by means of an auxiliary branch of the primary circuit, inside an auxiliary heat exchanger. For this purpose, from said two branches pipes are derived, designated by 6 and 7, which terminate with respective hydraulic connections 8 and 9 supported by the plate P, designed for connection with a secondary plate-type heat exchanger, designated as a whole by 10.
The reference numbers 11 and 12 designate two further hydraulic connections for connection with a branch, inside the heat exchanger 10, of a secondary circuit, provided for heating sanitary water. The attachments 11 and 12 are connected, via respective pipes 13 and 14, to further connections, preferably of a threaded type associated to the plate P, designated by 15 and 16, for connection to the rest of the secondary circuit, or to the plant for water for domestic washing purposes.
The arrangement or interface for connection of the boiler 1 is of a substantially standardized type for plate-type heat exchangers. Said arrangement consists basically of two connection assemblies, designated by 17 and 18, each having a respective connection 8, 9 to the stretch inside the heat exchanger 10 of the auxiliary branch of the primary circuit, as well as a respective connection 11, 12 to the stretch inside the heat exchanger 10 of the secondary circuit. The axes of said connections 8, 9 and 11, 12 are parallel to one another. The assemblies 17 and 18 further comprise a respective connection 4, 5 to the domestic heating plant and a respective connection 15, 16 to the plant for water for domestic sanitary purposes, said connections projecting below the plate P. Also the axes of the connections 4, 5 and 15, 16 are parallel to one another and extend perpendicularly with respect to the axes of the connections 8, 9 and 11, 12. The aforesaid connections 8, 9 and 11, 12 are of the quick-change type (i.e., they are not threaded) and for this purpose are provided with seats for the partial housing of respective O-rings, designated by 19, typically having an internal diameter of 16 mm. The ends of the connections 8, 9 and 11, 12 defining the seats for the O-rings 19, lie substantially on one and the same vertical plane. The body of each connection assembly 17, 18 further envisages a seat 20, designed to co-operate with a respective projection of the heat exchanger 10, for the purposes of fixing the latter, via screws designated by 21. The axes of the seats 20 are parallel to the axes of the connections 8, 9 and 11, 12.
As may be seen, the heat exchanger 10 has, in its end plate 10a, two upper holes, designated by 11a and 12a, horizontally aligned to one another, which are designed for connection with the connections 11 and 12 of the connection assemblies 17, 18. The plate 12a moreover envisages two lower holes 8a, 9a, aligned underneath the holes 11a, 12a, which are designed for connection to the connections 8 and 9 of the assemblies 17 and 18. From the surface of the plate 10a there moreover project two cylindrical projections 20a, having an axial cavity provided with female thread.
The mechanical and hydraulic connection of the heat exchanger 10 is obtained by positioning the O-rings 19 in the respective connections 8, 9 and 11, 12, the seats of which are sized so that a portion of said rings projects at the front on the outside of the seats themselves. The heat exchanger 10 is then set up against the boiler 1 so that the projections 20a of the front plate of the heat exchanger itself are inserted in the seats 20 of the assemblies 17, 18. In this way, there is also obtained rapid alignment between the holes 8a, 9a and 11a, 12a of the heat exchanger 10 with respect to the connections 8, 9 and 11, 12 of the assemblies 17 and 18. Next, the screws 21 are screwed, through the open ends of the seats 20, into the threaded holes of the projections 20a, so as to bring the heat exchanger 10 progressively up to the connection interface until the front surface of the plate 10a is brought into contact with the portions of the O-rings 19 projecting from the respective seats of the connections 8, 9 and 11, 12, with the projecting portion of each O-ring 19 that in this way comes to surround a respective hole 8a, 9a and 11a, 12a of the heat exchanger 10. The further tightening of the screws 21 brings about elastic deformation of each O-ring 19 between the surface of the plate 10a and the connections 8, 9 and 11, 12 of the assemblies 17 and 18. Once tightening is completed, the heat exchanger 10 is then fitted mechanically and in a fluid-tight way to the respective connection interface of the boiler 1.
As previously mentioned, the interface, including the assemblies 17 and 18, is practically of a standardized type for plate-type heat exchangers. Merely by way of indication, the standardized distance between centres of the holes 8a and 11a and the holes 9a, 12a, i.e., the distance designated by A in
To return to
Preferably associated to one of the assemblies 17, 18 is also a temperature sensor, having the function of monitoring the temperature of the sanitary water present within the auxiliary heat exchanger. In the case where said temperature drops below a predefined threshold value, the control system issues a command to the valve 23 to deviate the heating fluid of the primary circuit into the secondary heat exchanger 10, at the same time activating the main heat exchanger. Preferably, a temperature sensor is positioned in the proximity of the outlet branch 11 of sanitary water in order to control the temperature of the water and render it equal to the one required by modulation of the flame of the heat exchanger 3.
The heat exchanger, designated as a whole by 30, has an outer body or casing 31, preferably made up of two half-shells 31a and 31b, for example made of metal material, which are then welded to one another. In the non-limiting example provided herein, the overall dimensions of the body 31 are approximately 390 mm in width, 115 mm in depth, and 256 mm in height. In the example, the body 31 has a substantially toroidal overall shape, defining within it a substantially annular chamber. One half of said chamber, designated by 32, is visible in detail in
Formed within the chamber 32 is an internal space for containment and storage, defined by a spiral or coiled tubing, designated as a whole by 33, preferably made of metal. As may be noted in
According to an important aspect of the invention, the heat exchanger 30 is provided with a respective connection “interface”, designed to enable the connection of the heat exchanger itself in the position where a plate-type heat exchanger 10 is normally installed. For said purpose, and as may be seen in
The portions 34, 35 each have a respective front, preferably plane, surface designated by 34a, 35a, provided with an upper hole 11b, 12b and a lower hole 8b, 9b. The lower holes 8b, 9b communicate directly, via the hollow portions 34, 35, with the inside of the casing 31, and hence with the chamber 32. In a position corresponding to each upper hole 11b, 12b there is, instead, fixed in a sealed way, for example welded, a respective end 33a, 33b (see
In the case exemplified, each half-shell 31a, 31b is provided with a respective peripheral flange 31a′, 31b′ and with a central wall 31a″, 31b″, in a position corresponding to which are provided holes 37, for reciprocal fixing of the half-shells via the bolts 36. Between said flanges 31a′, 31b′ and central walls 31a″, 31b″ there are designed to be installed sealing gaskets, designated by 38′ and 38″. In the example provided, moreover, the front surfaces 34a, 35a of the portions 34, 35 in which the holes for hydraulic connection 8b, 11b and 9b, 12b are present, are constituted by plates or brackets fixed via screws 36 to the half-shell 31b of the body 31, also in this case with interposition of suitable sealing means. In said variant, moreover, the plates 34a, 35a are provided with seats or holes (not visible in the figure), in which are crimped or in any case mechanically immobilized the projections 20b, which, in said embodiment, are hence configured as distinct components. In the heat exchanger 30 according to the variant of
As has been explained, in the heat exchanger 30 according to the invention, the arrangement of the holes 8b, 9b, 11b, 12b and of the projections 20b is similar to that of the homologous elements 8a, 9a, 11a, 12a and 20a of the plate-type heat exchanger 10 described previously. Consequently, as may be appreciated from
Clearly visible in
From the foregoing description it may be appreciated how the heat exchanger 30 according to the invention can be installed, in a simple and fast way, on the boiler 1 in place of the plate-type heat exchanger 10. This can be done in the final stages of a cycle of production of the boiler 1, or else even directly at the premises of the end user, for the purposes of replacement of the plate-type heat exchanger 10, if the latter is clogged.
Operation of the heat exchanger 30 is substantially similar to that of a traditional plate-type heat exchanger 10 as regards the step of heating of the water for sanitary purposes and as regards maintenance of the latter at the desired temperature, via the deviator valve 23, the flow switch 24, and the sensor means for sensing the temperature of the boiler 1.
In the preferred embodiment, the heat exchanger 30 is conceived for obtaining a forced circulation, or a circulation in any case in a predefined direction, of the heating fluid within the chamber 32. Advantageously, moreover, the heat exchanger is pre-arranged so that the flow of the sanitary water present in the coiled tubing 33 will come about in countercurrent, i.e., in a direction opposite to the flow of the heating fluid. Said advantageous embodiment of the invention is illustrated in
In said embodiment, positioned in the chamber 32 are, in addition to the coiled tubing 33, a flow divisor 40, un upper flow deviator 41 and a lower flow deviator 42.
The divisor 40 is substantially configured as a wall or partition having the function of enabling circulation of the fluid in just one direction within the chamber 32, from the respective inlet 8b to the respective outlet 9b. The flow deviators 41, 42 have here a basically hollow cylindrical shape, each having a closed end that opposes the direction of the flow of the fluid within the chamber 32. As may be seen in
In the figures, moreover, the reference number 43 designates a device for bleeding the chamber 32, said device being of a conception in itself known.
The fluid coming from the primary circuit penetrates into the chamber 32 through the opening 8b. Given the presence of the partition constituted by the divisor 40, the fluid is forced to traverse the chamber 32 in a unidirectional way, in the direction designated by the arrow F1 in
On the other hand, the coiled tubing 33 is configured so that the flow of the sanitary water inside it flows in a direction opposite to that of the heating fluid, as indicated by the arrow F2 of
The provision of the heat exchanger 30 described, instead of the plate-type heat exchanger 10, enables important benefits to be obtained.
A first advantage is represented by the fact that the heat exchanger 30 according to the invention, even though it is in any case an instantaneous heat exchanger, enables accumulation within it of a substantial mass of water in the respective portions of circuit, which can be maintained at the desired temperature, waiting to be drawn off.
In the preferred embodiment, the heat exchanger 30 guarantees a substantial storage of sanitary water within the tubing 33 as compared to the usual plate-type heat exchangers for compact boilers, and in any case greater than one litre, preferably greater than two litres. In the specific case represented, the amount of sanitary water that can be stored in the heat exchanger 30 is approximately 4-5 litres, i.e., equal to at least four times the quantity that can be stored within a plate-type heat exchanger of the maximum capacity currently used for combined compact boilers.
As compared to the traditional plate-type heat exchanger 10, then, the heat exchanger 30 enables an adequate convenience of supply to be achieved, with fast delivery of a considerable mass of hot sanitary water, in short times and in a constant way, even in the presence of changes of flow rate, but without the need to equip the boiler with a specific storage tank. With respect to a plate-type heat exchanger, the properties of heat exchange moreover remain unvaried, notwithstanding the difference of the volume of water contained.
Another advantage is represented by the fact that the heat exchanger 30 is less subject to clogging, since the mains water for sanitary purposes passes through a single tube (i.e., the spiral tubing 33), and not through a series of cavities of small cross section in series, as occurs, instead, in the plate-type heat exchanger.
It is thus clear how, thanks to the heat exchanger 30, the problems deriving from the installation of the boiler 1 in areas with very hard mains water can be overcome. In such cases, in fact, the boiler can be equipped with the heat exchanger 30. In areas in which the mains water is soft, and for those who so desire, the boiler 1 can in any case be installed with the traditional plate-type heat exchanger 10.
It goes without saying that, given the standardized type of mechanical and hydraulic interfacing, in the case of boilers 1 already installed with plate-type heat exchanger, the latter may, if required, be replaced in a simple and fast way with a heat exchanger 30.
The invention enables important advantages to be obtained also for boiler manufacturers, for which the need to diversify production is reduced. In fact, it is possible to obtain two different types of products starting from one and the same basic structure of the boiler 1. Only in the advanced stage of production, the latter may be diversified, by installing the plate-type heat exchanger 10 to meet said type of requirement, or else the heat exchanger 30 according to the invention, thus preventing the need to equip the boiler with additional storage tanks.
Illustrated in
In the case exemplified in
In the body of each adapter there are moreover provided mechanical fixing seats; for example, a first threaded through seat 51 can be provided, designed to receive the end of a respective screw 21 for fixing of the adapter 50 to a respective assembly 17, 18. The body of the adapter can then comprise a second seat 52 with open end, designed to receive a respective projection 20b of the heat exchanger 30 for fixing via a respective screw (i.e., with modalities similar to the ones described previously with reference to the seats 20, the screws 21, and the projections 20b). In said variant, the seal between the adapters 50 and the attachments of the boiler will be obtained via the O-rings 19 described previously. On the other hand, the seal between the adapters 50 and the heat exchanger 30 will be obtained via similar O-rings, operatively set between the surface 50b of the adapter and a respective surface 34a, 35b of the heat exchanger. The holes 8c, 11c and/or 9c, 12c may be provided with a peripheral seat for partial housing of said O-rings.
Each internal passage of an adapter 50 can be obtained by making, in the body of the adapter itself, three blind holes, two parallel to one another and one orthogonal to these, which intersects them. For said reason, the end of the aforesaid orthogonal hole, designated by 53 in
Obviously the embodiment described is only one possible way of making the adapters 50, which may also have a different shape from the one described by way of example.
It may be appreciated how, via the pre-arrangement of a limited series of adapters 50, one and the same type of heat exchanger 30 can be installed also on boilers pre-arranged for different standard plate-type heat exchangers.
In accordance with a further advantageous embodiment of the invention, instead of the adapter elements 50 there can be provided some versions of half-shell 31b, differentiated with respect to one another by the position of the projecting portions 34, 35 with respect to one another and/or by the position of the holes 8b, 9b, 11b, 12b and of the projections 20b within said portions. As may be appreciated, in this way, to one and the same type of half-shell 31a, with the internal components of the heat exchanger (tubing 33, divisor 40, deviators 41, 42), there can be fitted, as required, different types of half-shell 31b, according to the type of standardized connection provided on the boiler concerned (see again what was described previously with reference to the distances designated by A and B in
Of course, without prejudice to the principle of the invention, the details of construction and the embodiments may vary widely with respect to what is described and illustrated herein purely by way of example, without thereby departing from the scope of the present invention.
The instantaneous heat exchanger according to the invention may also have a shape different from the substantially toroidal one illustrated previously; for example, it may as a whole be cylindrical, at the same time maintaining its capacity for storing a substantial mass of water unaltered and maintaining the prearrangement for installation in the place of an ordinary plate-type heat exchanger. Also in the case of a cylindrical shape, the body of the heat exchanger will be provided with the projecting portions, similar to the ones previously designated by 34, 35, and a single chamber in which a tubing or pipe in the form of a coil extends. It may be noted that a single projecting portion could also be provided, equipped with the inlets and outlets 8b,9b, 11b, 12b in the appropriate positions.
The heat exchanger could be designed for storing, within the coil-shaped channel 33, the heating fluid of the primary circuit, and, in the chamber 32, the water for washing purposes, and thus with an arrangement of connection that is reversed with respect to the one previously described by way of example. The holes 8b, 9b and 11b, 12b of the heat exchanger 30 could be shaped so as to present an annular peripheral seat for housing a portion of the respective O-ring 19.
Number | Date | Country | Kind |
---|---|---|---|
TO2004A000846 | Dec 2004 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/03604 | 11/11/2005 | WO | 00 | 1/18/2008 |