The present invention relates to solid-oxide fuel cells (SOFCs); more particularly, to heat exchangers for heating incoming combustion air in an SOFC assembly; and most particularly, to an improved heat exchanger for increasing heat exchange efficiency and reducing heat exchanger manufacturing cost and complexity.
Fuel cells combining hydrogen and oxygen to produce electricity are well known. A known class of fuel cells includes a solid oxide electrolyte layer through which oxygen anions migrate; such fuel cells are referred to in the art as “solid-oxide” fuel cells (SOFCs).
In some applications, for example, as an auxiliary power unit (APU) for an automotive vehicle, an SOFC is preferably fueled by “reformate” gas, which is the effluent from a catalytic gasoline oxidizing reformer. Reformate typically includes amounts of carbon monoxide (CO) as fuel in addition to molecular hydrogen. The reforming operation and the fuel cell operation may be considered as first and second oxidative steps of the liquid hydrocarbon, resulting ultimately in water and carbon dioxide. Both reactions are exothermic, and both are preferably carried out at relatively high temperatures, for example, in the range of 700° C. to 100° C.
Air enters an SOFC fuel cell at ambient temperature and desirably is preheated before being sent to the fuel cell stacks. A convenient and economical way to heat the air is by abstracting heat via a heat exchanger from the fuel cell exhaust which exits the fuel cell combustor at about 950° C. In the prior art, a typical heat exchanger employed for this purpose is of a well known plate-and-frame design wherein a plurality of heat-exchange modules is assembled as a stack. A plurality of alternating hot and cold gas flow spaces are separated by heat transfer plates. A typical prior art heat exchanger for use in an SOFC may comprise more than 100 individual plates and frames and can require more than 200 feet of brazing to seal the edges of all the modules, and is thus complicated and expensive to fabricate.
What is needed is an efficient heat exchanger for an SOFC wherein the number of components and fabrication costs are significantly reduced.
It is a principal object of the present invention to reduce the cost and complexity of an SOFC heat exchanger.
Briefly described, a heat exchanger for a solid-oxide fuel cell assembly includes a plurality of parallel tubes for conveying a first gas, preferably a hot gas, from a first manifold means to a second manifold means. The only brazing required is to attach each tube to each manifold. Preferably, the tubes are highly corrugated in bellows-like form to increase the wall area and decrease the wall thickness. The tubes are disposed in a jacket through which is passed a second gas, preferably a cool gas. The tubes may be linear between two manifolds, or they may be curved such that the first and second manifold functions are accommodated within a single component.
These and other features and advantages of the invention will be more fully understood and appreciated from the following description of certain exemplary embodiments of the invention taken together with the accompanying drawings, in which:
Referring to
Referring to
Metal tubes 112 preferably are axially corrugated as by hydro-forming into bellows form such that the surface area of each tube is substantially greater than the surface area of a non-corrugated tube having equal length and diameter. Preferably, the surface area is at least doubled. In addition, the bellows-forming process, which is well known in the art, causes thinning of the tube wall. As a result, the thermal conductance of heat exchanger 110 can be as much as 200% greater than that of prior art heat exchanger 10 of comparable size.
Preferably, tubes 112 are formed of a nickel-based high temperature alloy, for example, Inconel 625.
A base plate 124 has a planar upper surface 126 for mating against a planar lower surface 128 of lower end plate 114. Surface 126 is relieved in three areas. One is a central well 130 defining an intermediate manifold for mating with the central two rows of ten openings 116; the other two are lateral wells 132a,132b, each of which defines an intake and exhaust manifold, respectively, which mates with a respective lateral row of five openings 116. Well 132a is provided with slots 134 extending through plate 124 for mating with a supply such as an intake manifold (not shown) of a first fluid 23, preferably the hot exhaust gas from the fuel cell stack. Well 132b is provided with similar slots 136 for mating with a return pathway through an exhaust manifold (not shown) for first fluid 23.
A cover plate 138 has a planar lower surface 140 for mating against a planar upper surface 142 of upper end plate 120. Surface 142 is relieved in two wells 144a,144b, each of which defines a first and second crossover manifold, respectively. Each well contains two respective lateral rows of five openings 122. Wells 144a,144b are separated by a median 146.
The result of this arrangement is an “M” shaped path for gas through five parallel tube assemblies. A first gas (fuel cell exhaust gas) at a first starting temperature enters through slots 134, passes through openings 116 into the first staggered row of five tubes 112, passes upwards through openings 122 into crossover manifold 144a, passes downwards through openings 122 into the second staggered row of five tubes 112, passes through openings 116 into central well 130, passes upward through openings 116 into the third staggered row of five tubes 112, passes upward through openings 112 into second crossover manifold 144b, passes downward through openings 112 into the fourth staggered row of five tubes 112, passes downward through openings 116 into lateral well or manifold 132b, and passes out of heat exchanger 110 via slots 136.
Referring still to
Referring to
The “M” flow path indicated in first and second embodiments 110,210 can give rise to undesirably high back pressures because of the relatively long flow path. Referring to
A potential drawback of flowing a gas through corrugated tubing is stagnation of gas within the recesses of the corrugations. Referring still to
While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
This application is a continuation of application Ser. No. 10/375,834, which was filed on Feb. 25, 2003 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3185210 | Kuhne et al. | May 1965 | A |
3309072 | Cummings | Mar 1967 | A |
3516807 | Gray et al. | Jun 1970 | A |
3718506 | Fischer et al. | Feb 1973 | A |
4650728 | Matsumura et al. | Mar 1987 | A |
5449568 | Micheli et al. | Sep 1995 | A |
6232005 | Pettit | May 2001 | B1 |
6309770 | Nagayasu et al. | Oct 2001 | B1 |
20020074111 | Seeger et al. | Jun 2002 | A1 |
20020160246 | Walsh | Oct 2002 | A1 |
20030235745 | Mook et al. | Dec 2003 | A1 |
20040018403 | Burch et al. | Jan 2004 | A1 |
20040175605 | Eshraghi et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
494321 | May 1992 | EP |
2916055 | Apr 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050103479 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10375834 | Feb 2003 | US |
Child | 11018774 | US |