Not applicable.
Not applicable.
The present invention relates to a heat exchanger, and more particularly to a heat exchanger usable in systems having heat exchange loops passing separately through the heat exchanger.
A radiator type heat exchanger is disclosed in EP 818 663 B1, in which two collecting tanks are arranged on opposite sides with longitudinal and end walls, as well as with a number of openings, each of which accommodates a tube through which a medium flows. The collecting tanks have an inlet and an outlet, and one of the collecting tanks has a partition with an opening which can be closed with a plug. Depending on the design of the employed closure plug, the radiator can be designed with or without a low temperature range. EP 818 663 B1 always involves a single cooling loop which is passed through the radiator. However, in systems in which several independent loops exist, heat exchangers such as disclosed in EP 818 663 B1 cannot be readily used unless several such heat exchangers are provided, each separately openable for emptying the associated loops. Such heat exchangers may require corresponding additional expense. Further, emptying of multiple loops may be correspondingly more difficult and time consuming, with it also being possible to inadvertently fail to empty one of the loops.
The present invention is directed toward overcoming one or more of the problems set forth above.
In one aspect of the present invention, a heat exchanger is provided, including a first collecting tank having an opening through a wall of the first tank, a second collecting tank, and at least one row of tubes extending between the collecting tanks. The tubes having spaces therebetween and the tubes and tanks are adapted to carry a first medium and a second medium is adapted to flow through the space between the tubes. An inlet is provided in one of the collecting tanks, and an outlet is provided in one of the collecting tanks. A first partition divides the first collecting tank and includes an opening therethrough, and a second partition divides the second collecting tank, with the first and second partitions defining separate loops for the first medium when the first partition opening is closed. A discharge device is adapted to selectively open both the first collecting tank opening and the first partition opening or close both the first collecting tank opening and the first partition opening.
In one form of this aspect of the present invention, the discharge device selectively opens or closes both openings simultaneously.
In another form of this aspect of the present invention, the discharge device includes a rod having one end adapted to plug the first partition opening and the other end plugging the first tank opening, with the rod being mounted for selected removal from the first tank.
In still another form of this aspect of the present invention, the discharge device includes a tubular member open on both ends with one open end defining the first partition opening, and a closure plug at the first tank opening adapted to selectively open or close the first tank opening and the other open end of the tubular member. In a further form, the tubular member is shorter than the distance between the first tank opening and the first partition opening, and the closure plug includes a pin whose cross-section generally corresponds to the cross-section of the tubular opening of the tubular member, with the pin being received in the tubular member tubular opening when the closure plug is in the first tank opening.
In yet another form of this aspect of the present invention, the first and second partitions are at substantially the same height.
A first embodiment of a cooling module 10 embodying the present invention is shown in
In the
The left collecting tank 30 of the radiator 24 has an inlet 40 for the coolant and the right collecting tank 34 has a corresponding outlet 42. However, the inlet 40 and outlet 42 may, alternatively, be situated on the same collecting tank such as is known in the art. This described design represents part of a first loop otherwise not further shown.
An additional loop separate from that which passes through the inlet 40 and outlet 42 as described above is also advantageously provided, but is also not otherwise further shown beyond the portion in the cooling module 10 shown in
Since the two loops (not further shown beyond the cooling module 10) are independent of each other, it should be appreciated that the flow direction is arbitrary, and the flow direction described and shown by the arrows in
The coolant, which flows through the lower part of the radiator 24 (between inlet 46 and outlet 48), leaves it with a lower temperature, and may therefore be described as “low temperature flow”. The coolant which flows through the upper part of the radiator 24 (between inlet 40 and outlet 42) may be described as “main coolant flow” due to the fact that the first loop there has a much larger mass flow rate (such as may commonly be used to cool the drive machine).
As illustrated in
In accordance with the present invention, an opening 70 is present in one partition 64, which opening 70 is closed as long as the discharge device 74 remains in the closed position depicted in
Specifically, in the
It should be appreciated that the present invention provides an inexpensive structure which may be conveniently and reliably maintained, with separate heat exchange loops easily emptied when desired. Moreover, the present invention is particularly well suited for applications in which the same media (e.g., coolants) are present in both loops, as the emptied media are then of the same type and can therefore be disposed of together appropriately.
Further, the present invention is particularly advantageous for use in so-called “all-metal heat exchangers”, which also have collecting tanks made of metal (e.g., aluminum), because an additional opening in the wall of the collecting tank is avoided. Such openings can be expensive to product in such collecting tanks.
Still other aspects, objects, and advantages of the present invention can be obtained from a study of the specification, the drawings, and the appended claims. It should be understood, however, that the present invention could be used in alternate forms where less than all of the objects and advantages of the present invention and preferred embodiment as described above would be obtained.
Number | Date | Country | Kind |
---|---|---|---|
DE 102005012082.2 | Mar 2005 | DE | national |
Not applicable.