Thermal power cycles typically use either air breathing gas turbine direct fired Brayton Cycle or indirectly heated closed Rankine Cycle with steam as a working fluid. High efficiencies are obtained by combining the Brayton cycle with a bottoming Rankine Cycle to form a combined cycle. Whilst combined cycle power generation may achieve high efficiency, combined cycle power generation is not suitable for CO2 capture, and the installation can have high capital cost due to the large amount of equipment and pipe work required. In some case, a Supercritical CO2 (SCCO2) Brayton thermal power cycle may be used over the thermal power cycles. Advantageously, Supercritical CO2 (SCCO2) Brayton thermal power cycle may have reduced Greenhouse Gas (GHG) emissions, improved carbon capture, higher efficiency, reduced footprint and lower water consumption. However, there are several technical challenges that must be overcome before the benefits of Supercritical CO2 (SCCO2) Brayton thermal power cycle may be realized. In particular, the design and operation of recuperative heat exchangers for these Supercritical CO2 (SCCO2) Brayton thermal power cycles are an ongoing area of research and development.
A semi-closed direct fired oxy-fuel Brayton cycle may be called an Allam Power Cycle or Allam Cycle. The Allam Cycle is a process for converting fossil fuels into mechanical power, while capturing the generated carbon dioxide and water. Conventionally, the Allam Cycle requires an economizer heat exchanger and an additional low-grade external heat source to achieve high efficiency comparable to existing combined cycle-based technology, with the crucial added benefit of CO2 capture for use or storage. The efficiency of the Allam Cycle is increased if the turbine is operated at higher temperatures typically above 600° C. and at high pressure of 120 to 400 bar. These conditions lead to the simultaneous requirements of high-pressure high temperature and high effectiveness for the heat exchange system. Typically, multiple individual heat exchange units are required, and must be arranged in a network to achieve the required recuperative heat exchange simultaneously with heat recovery from the external low-grade heat source. Example of conventional heat exchanger systems and methods may be found in U.S. Pat. Nos. 8,272,429; 8,596,075; 8,959,887; 10,018,115; 10,422,252; and U.S. Pat. Pub. No. 2019/0063319. All of which are incorporated herein by reference.
Conventionally, heat exchanger systems have a common feature that they are split into high, medium and low temperature sections. Whilst it is desirable to cool the exhaust gas in the high temperature section to the lowest temperature (for instance a temperature coincident with the low grade heat source temperature), this is in conflict with the mechanical requirements that drive the layout, cost and reliability of such a system. Typically, the design temperature and pressure of the high temperature section are set by the highest temperature and pressure which in turn drives the mechanical requirements.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one aspect, embodiments disclosed herein relate to A heat exchanger system including a rigid framework. A first heat exchanger may be coupled to a first support structure on a top of the rigid framework. A second heat exchanger may be positioned below the first heat exchanger. The second heat exchanger may be coupled to a second support structure, the second support structure hanging from the rigid framework via a first set of tethers, the first set of tethers may be configured to vertically and horizontally move the second support structure. A second set of tethers may be connected to the second support structure and extend downward to hang a support beam. A third set of tethers may be connected to the support beam and extend downward to hang a third support structure, the third set of tethers may be configured to vertically and horizontally move the third support structure. A third heat exchanger may be coupled to the third support structure. The vertically and horizontally movement of the second support structure may be based on a thermal expansion of the second heat exchanger. The vertically and horizontally movement of the third support structure may be based on a thermal expansion of the third heat exchanger.
In another aspect, embodiments disclosed herein relate to a heat exchanger system including a rigid framework a rigid framework. A first heat exchanger may be coupled to a first support structure on a top of the rigid framework. A second heat exchanger may be positioned below the first heat exchanger. The second heat exchanger may be coupled to a second support structure. The second support structure may hang from the rigid framework via a first set of tethers. The first set of tethers may be configured to vertically and horizontally move the second support structure. The vertically and horizontally movement of the second support structure may be based on a thermal expansion of the second heat exchanger.
In yet another aspect, embodiments disclosed herein relate to a heat exchanger system including a rigid framework. A first support structure may hang from the rigid framework via a first set of tethers having one end coupled to the rigid framework and another end coupled to the first support structure. The first set of tethers may be configured to vertically and horizontally move the first support structure. A first heat exchanger may be coupled to the first support structure. A second set of tethers may be connected to the first support structure and extend downward to hang a support beam. A third set of tethers may be connected to the support beam and extend downward to hang a second support structure. The third set of tethers may be configured to vertically and horizontally move the second support structure. A second heat exchanger may be coupled to the second support structure. The vertically and horizontally movement of the first support structure may be based on a thermal expansion of the first heat exchanger. The vertically and horizontally movement of the second support structure may be based on a thermal expansion of the second heat exchanger.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
Embodiments of the present disclosure are described below in detail with reference to the accompanying figures. Like elements in the various figures may be denoted by like reference numerals for consistency. Further, in the following detailed description, numerous specific details are set forth in order to provide a more thorough understanding of the claimed subject matter. However, it will be apparent to one having ordinary skill in the art that the embodiments described may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description. As used herein, the term “coupled” or “coupled to” or “connected” or “connected to” may indicate establishing either a direct or indirect connection and is not limited to either unless expressly referenced as such. As used herein, fluids may refer to slurries, liquids, gases, and/or mixtures thereof. Wherever possible, like or identical reference numerals are used in the figures to identify common or the same elements. The figures are not necessarily to scale, and certain features and certain views of the figures may be shown exaggerated in scale for purposes of clarification.
In one aspect, embodiments disclosed herein relate to a heat exchanger system for electricity generation, petrochemical plants, waste heat recovery, and other industrial applications. The heat exchanger system may also be interchangeably referred to as a network or assembly of heat exchangers in the present disclosure. Additionally, the heat exchanger system may incorporate a heat exchanger hanger system to minimize expansion stresses arising from thermal expansion of heat exchangers and interconnecting pipework. The heat exchanger hanger system may minimize life cycle cost of heat exchangers that are critical to efficient recuperative thermal energy exchange at high pressure and with high thermal effectiveness. In some embodiments, the heat exchanger hanger system may be used for Supercritical Carbon Dioxide (SCCO2) power cycles, such as an Allam cycle.
Turning to
In one or more embodiments, the heat exchanger system 400 may have a top-down configuration to allow for easier to installation in the field. A rigid frame may include two columns 401, 402 spaced a distance D″′ from each other. The two columns 401, 402 may be made from a metal material and extend upward a height H″. A first end 401a, 402a of each column 401, 402 may be removably fixed to a floor at a work site. Additionally, the two columns 401, 402 may be rigid to allow for cranes, trailers, or forklifts to lift the heat exchanger system 400 using the two columns 401, 402 as an anchor point. Between the two columns 401, 402, one or more heat exchangers 403, 404, 405 may be provided in the heat exchanger system 400. While it is noted that three heat exchangers 403, 404, 405 are shown in
In the configuration of
A second heat exchanger 404 may be positioned below the first heat exchanger 403. The second heat exchanger 404 may be coupled to a second support structure 408. The second support structure 408 may be a rigid metal plate for the second heat exchanger 404 to be coupled thereof. A first set of tethers 409 may hang the second support structure 408 from the two columns 401, 402. The first set of tethers 409 may include two or more tethers. In a non-limiting example, the first set of tethers 409 may be angled at an angle to center the second support structure 408 between the two columns 401, 402. The first set of tethers 409 may be a tension member, a steel rod, chain links, a wire rope, or any type of rod or bar to support a weight and movement of the second heat exchanger 404. Further, ends 410 of the first set of tethers 409 may be a connection point for the first set of tethers 409 on the two rods 401, 402 and the second support structure 408. In some embodiments, the connection point may be a variable position by means of a rack and pinion or a gear driven cam to allow the first set of tethers 409 to be repositioned. The means of the rack and pinion or the gear driven cam, the connection point may be adjusted to allow for active control to directly move the second heat exchanger 404 and a third heat exchanger 405.
From the second support structure 408, a second set of tethers 411 may extend vertically downward to hang a support beam 412. The second set of tethers 411 may include two or more tethers. Ends 413 of the second set of tethers 411 may be a connection point for the second set of tethers 411 on the second support structure 408 and the support beam 412. In some embodiments, the connection point may be variable position by means of a rack and pinion or a gear driven cam to allow the second set of tethers 411 to be repositioned. The means of the rack and pinion or the gear driven cam, the connection point may be adjusted to allow for active control to directly move the third heat exchanger 405. The second set of tethers 411 may be a tension member, a steel rod, chain links, a wire rope, or any type of rod or bar to support a weight and movement of the support beam 412.
In one or more embodiments, the third heat exchanger 405 may be positioned near the first ends 401a, 402a of the two columns 401, 402 and below the second heat exchanger 404. The third heat exchanger 405 may be coupled to a third support structure 415. The third support structure 415 may be a rigid metal plate for the third heat exchanger 405 to be coupled thereof.
From the support beam 412, a third set of tethers 414 may extend downward to hang the third support structure 415. The third set of tethers 414 may include two or more tethers. In a non-limiting example, the third set of tethers 414 may be angled at an angle to center the third support structure 415 between the two columns 401, 402. In some embodiments, ends 416 of the third set of tethers 414 may be a connection point for the third set of tethers 414 on the support beam 412 and the third support structure 415. In a non-limiting example, the connection point may be variable position by means of a rack and pinion or a gear driven cam to allow the third set of tethers 414 to be repositioned. The means of the rack and pinion or the gear driven cam, the connection point may be adjusted to allow for active control to directly move the third heat exchanger 405. The third set of tethers 414 may be a tension member, a steel rod, chain links, a wire rope, or any type of rod or bar to support a weight and movement of the third heat exchanger 405.
Still referring to
In one or more embodiments, the three heat exchangers 403, 405, 405 are thermally decoupled within the heat exchanger system 400. By having the first heat exchanger 403 coupled to the first support structure 406 at the vertical-most position, the first heat exchanger 403 may thermally expand independently without affecting the second heat exchanger 404 and the third heat exchanger 405. In addition, the first set of tethers 409 may allow for the second heat exchanger 404 to be thermally decoupled from the first heat exchanger 403. As the second heat exchanger 404 thermally expands, the first set of tethers 409 may vertically move the second support structure 408 such that the second heat exchanger 404 is thermally independent from the first heat exchanger 403 and the third heat exchanger 405. Further, by having the support beam 412 hanging from the second set of tethers 411, the support beam 412 may thermally decoupled the second heat exchanger 404 and the third heat exchanger 405 from each other.
Now referring to
In one or more embodiments, the first heat exchanger (see 403) may be vertically coupled while the second heat exchanger (see 404) and the third heat exchanger (see 405) may be supported by the second support structure 408 and the third support structure 415, respectively. Therefore, the second heat exchanger (see 404) and the third heat exchanger (see 405) may experience vertical displacement as a result of thermal expansion of 403, as well as their own thermal expansion in operation.
As showing in
With the heat exchanger hanger system 420, both horizontal and vertical thermal expansion in various components in the heat exchanger system (see 400) may change or tune angles of the set of tethers 409, 411, 414 to compensate thermal expansion. By compensating for thermal expansion, thermal imbalances from various components cooling and heating at different rates may be managed by the heat exchanger hanger system 420. The heat exchanger hanger system 420 further minimize expansion stresses arising from thermal expansion of heat exchangers and interconnecting pipework in the heat exchanger system (see 400). It is further envisioned that insulation may be used in conjunction with the heat exchanger hanger system 420 to further aid in managing in thermal imbalances. The insulation may be used to prevent heat loss, and to improve system efficiency, which may also have a benefit of helping to manage the thermal balance and result in more accurate predictions of displacements from thermal expansion.
Referring now to
Referring now to
Referring now to
Referring now to
As described in
In the heat exchanger systems 400, the support bar 412 may enhance the independent movement of the heat exchangers (404, 405). With inclusion of the support bar 412, the second heat exchanger 404 does not impact an ability of the third heat exchanger 405 to independently move. Thus, the support bar 412 provides various degrees of freedom to accommodate pipe movement and expansion within the heat exchanger systems 400. The support bar 412 allows one to isolate and use expansion methods to advantageously decouple the thermal expansion of each heat exchangers to minimize load on nozzles and may allow shorter expansion piping lengths. By minimizing the load and allowing shorter piping, an overall weight of unit may be reduced. Additionally, stresses associated with the heat exchanger hanger system (420), allows various piping to be decreased in length and to allow the overall system to become more compact.
While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.
Number | Date | Country | |
---|---|---|---|
63045721 | Jun 2020 | US |