The present disclosure relates to a heat exchanger which includes a drain plug.
Heat exchangers, such as motor vehicle radiators, are often configured to carry one or more coolant to exchange heat between the coolant and, for example, outside air. Such heat exchangers may include a coolant drain assembly for draining the coolant flowing therein. For instance, during servicing of a heat exchanger, an operator may need to drain the heat exchanger. In such cases, it is desirable to provide a drain assembly that improves the draining process.
According to an aspect of the present disclosure, a heat exchanger includes a drain assembly having a housing and a drain plug. The drain plug is movably disposed within the housing to extend along the same direction as a drain passage formed in the housing. The drain plug is movable along that same direction to selectively open or close the drain passage.
In the present embodiment, the heat exchanger 1 is designed to be installed in the orientation as shown, i.e., in a cross-flow configuration. However, as a practical matter, the heat exchanger 1 may be selectively installed in a slightly askew manner (e.g., due to measurement errors or preference), or in entirely different orientations depending on the specific application. As such, terms such as “height”, “width”, “top”, “bottom”, “left”, “right”, etc., as well as derivatives thereof, are used herein for illustrative purposes for facilitating understanding of relative positions and orientations.
As shown in
The inlet tank 10 and the outlet tank 20 are each formed in an elongate hollow shape, and may be formed of a metal or resin (e.g., plastic resin) material. Each of the inlet tank 10 and the outlet tank 20 is configured to store a coolant therein. In particular, the inlet tank 10 includes an inlet 11 configured to allow coolant to flow into the inlet tank 10. Similarly, the outlet tank 20 includes an outlet 21 configured to allow coolant to flow out of the outlet tank 20.
The fluid conduits 30 are connected between the inlet tank 10 and the outlet tank 20 to fluidly connect the inlet tank 10 with the outlet tank 20. The fluid conduits 30 are formed as tubes and interleaved with fins, and are preferably formed of a heat conductive material such as aluminum. As illustrated, in the present embodiment, the fluid conduits 30 extend along the width direction of the heat exchanger 1, and are formed to stack along a height direction of the heat exchanger 1, the height direction being orthogonal to the width direction. When coolant flows from the inlet tank 10 to the outlet tank 20 through the fluid conduits 30, the coolant is heat exchanged with, e.g., outside air passing through the heat exchanger 1. It should be noted that descriptions related to orientation herein are intended to cover a range typically associated with measurement errors, manufacturing tolerance, etc. As such, the fluid conduits 30 are not necessarily exactly parallel with the width direction, and may be slightly askew due to typical factors.
The fluid conduits 30 may be attached to the inlet tank 10 and the outlet tank 20 by a variety of manners. For example, each of the inlet tank 10 and the outlet tank 20 may include a header plate (not illustrated) which is coupled to the fluid conduits 30 through, e.g., brazing. As shown in
As shown in
The engagement feature 421 is disposed at the top end of the drain plug 42, and is configured to be manipulated by an operator or an external tool in order to rotate the entire drain plug 42. For example,
The threading 422 formed on the body 44 of the drain plug 42 is configured to engage the housing 41 to convert a rotation of the drain plug 42 into an up-down movement of the drain plug 42 with respect to the housing 41. The functions of the first seal 423 and the second seal 424 will be described in detail later with respect to
The drain plug 42, aside from the first seal 423 and the second seal 424, is preferably integrally formed, e.g., from metal casting or resin (such as plastic resin). In alternative embodiments, the cap 43 and the body 44 may be formed separately and coupled together through, e.g., brazing. The first seal 423 and the second seal 424 are preferably formed of an elastic material such as rubber, and are fixedly secured to the drain plug 42. For example, rubber gaskets or rubber O-rings may be used as the first seal 423 and the second seal 424. In addition, the first seal 423 and the second seal 424 may be secured to the body 44 in a variety of manners, such as through annular grooves (not illustrated) formed on the outer circumferential surface of the body 44.
As illustrated in
In addition, as shown in
Returning to
In
In alternative implementations, the distance between the cap 43 and the level difference 425 may be slightly greater than the depth of the plug chamber 413, such that when the level difference 425 abuts the bottom surface of the plug chamber 413, a small gap is provided between the cap 43 and the top surface of the housing 41. Further, this small gap between the cap 43 and the housing 41, this gap may be substantially eliminated or closed by, e.g., providing a seal member (not illustrated) between the cap 43 and the housing 41.
In the closed position, body 44 of the drain plug 42 spans across the drain passage 411, the drain chamber 412, and the plug chamber 413 such that the first seal 423 is disposed inside the drain passage 411 and the second seal 424 is disposed inside the plug chamber 413. In other words, a distance between the level difference 425 of the drain plug 42 and the first seal 423 is greater than the height of the drain chamber 412. As shown in
The first seal 423 is configured to, when uncompressed, have a greater radius than the drain passage 411. In this regard, when the first seal 423 is disposed within the drain passage 411, the first seal 423 is compressed to completely block the drain passage 411 to prevent coolant from being drained (i.e., sealed). Similarly, the second seal 424 is configured to, when uncompressed, have a greater radius than the plug chamber 413. In this regard, when the second seal 424 is disposed within the plug chamber 413, the second seal 424 is compressed to completely block the plug chamber 413 to prevent any coolant from exiting upward through the plug chamber 413 (i.e., sealed).
Here, the distal tip of the body 44 of the drain plug 42 may be shaped appropriately to control the flow of the coolant as desired based on the specific application, and so the present disclosure is not intended to be limited to the illustrated shape of the body 44. For instance, while in the present embodiment the distal tip of the body 44 is illustrated as having a tapered shape that extends past the first seal 423, in alternative embodiments, the distal tip of the body 44 may stop at the seal 423 instead (i.e., so as to not extend past the seal 423). In further alternative embodiments, the distal tip of the body 44 may be a more or less tapered shaped as compared to the configuration shown in
When the drain plug 42 is in the open position, the second seal 424 is preferably maintained within the plug chamber 413 to prevent draining coolant from exiting upward through the plug chamber 413. However, the drain plug 42 is not prevented from further upward movement (i.e., by further unthreading the threading 422). Accordingly, the drain plug 42 may be entirely removed from the housing 41 by further rotation. In the present embodiment, the open position of the drain plug 42 is defined as any position where the first seal 423 is outside of the drain passage 411.
The drain assembly 40 as described above confers numerous technical advantages during operation. The following advantages are not intended to describe essential features of the present disclosure, nor are the following advantages intended to represent an exhaust list. A skilled artisan will appreciate additional advantages conferred by the structures disclosed herein as will be apparent from the descriptions and drawings.
According to the present embodiment, the drain assembly 40 is configured such that an operator may drain coolant from the heat exchanger 1 in a directionally controlled manner while avoiding contact with the coolant. Specifically, the drain passage 411 and the drain plug 42 are provided to extend along the same direction, i.e., the height direction. Moreover, the drain plug 42 is disposed coaxially with the drain passage 411. Meanwhile, the engagement feature 421 of the drain plug 42 is on the opposite side of the housing 41 as the drain passage 411. As such, an operator may open or close the drain plug 42 to drain the coolant in a directionally controlled manner, while avoiding contact (e.g., accidental contact) with the coolant.
Accordingly to the present embodiment, the drain assembly 40 is provided as a bottom-flow drain, i.e., coolant directly drains from the bottom surface of the heat exchanger 1. This is because, as described above, the drain chamber 412 of the housing 41 is level with the bottom surface of the outlet tank 20. Then, the coolant flows directly downward through the drain passage 411. This bottom-flow drain design may reduce the package size of the heat exchanger 1. Further advantageously, this bottom flow drain configuration may provide drainage option for heat exchangers mounted with limited vehicle packaging space and/or service access in cross car and for/aft directions.
A second embodiment of the present disclosure will be described with respect to
As illustrated, a drain passage 511 and a drain chamber 512 are formed in the housing 51, in the same manner as the drain passage 411 and the drain chamber 412 of the housing 41 of the first embodiment. Accordingly, descriptions of these elements are omitted for the sake of brevity. In the present embodiment, the housing 51 also includes an outer threading 513 on the outer wall of the drain passage 511 that is an integrated part of the outlet tank 20.
The upper drain plug 52 is an integrally formed hollow body having a cylindrical shape. The top end of the upper drain plug 52 is open, while the bottom end of the upper drain plug 52 is closed. Here, an inner threading section 521 is formed at the top end portion of the upper drain plug 52. Specifically, the inner threading section 521 includes inner threading formed on the inner circumferential surface of the upper drain plug 52. The inner threading section 521 is configured to receive and engage with the outer threading 513 of the housing 51 to couple the upper drain plug 52 with the housing 51. In this case, the drain passage 511 of the housing 51 is connected to the inside of the upper drain plug 52. In addition, an outer threading section 522 is formed on the outer surface of the upper drain plug 52. In the present embodiment, the outer threading section 522 is adjacent to the inner threading section 521.
A first seal 523 and second seal 524 are secured to the outer surface of the upper drain plug 52. Similar to the first embodiment, the first seal 523 is located at a distal (i.e., lower) portion of the upper drain plug 52, while the second seal 524 is located at a proximal (i.e., higher) portion of the upper drain plug 52. The first seal 523 is formed with a smaller outer radius than the second seal 524. Other aspects of the first seal 523 and the second seal 524 (e.g., manner of being fixed to the upper drain plug 52) are the same as those of the first seal 423 and the second seal 424 of the first embodiment, and thus description of these points is omitted for brevity.
As described above, the bottom end of the upper drain plug 52 is closed. A side opening 525 is formed on the outer circumferential surface (i.e., the side wall) of the upper drain plug 52. The side opening 525 is in fluid communication with the inside of the upper drain plug 52. Accordingly, when the upper drain plug 52 is coupled to the housing 51, the inside of the outlet tank 20 is in fluid communication with the side opening 525 through the drain chamber 512 and the drain passage 511 of the housing 51. In the present embodiment, the side opening 525 is formed between the first seal 523 and the second seal 524 in the height direction (i.e., in the axial direction of the upper drain plug 52).
The lower drain plug 53 is an integrally formed hollow body having a cylindrical shape, thereby forming a plug passage 532 therein. Unlike the upper drain plug 52, both the top end and bottom end of the lower drain plug 53 are open. In other words, the lower drain plug 53 is formed as a pipe. An inner threading section 531 is formed on the inner circumferential surface (i.e., the inner side wall) at the top end portion of the lower drain plug 53. The inner threading section 531 of the lower drain plug 53 is configured to engage with the outer threading section 522 of the upper drain plug 52, thereby allowing the lower drain plug 53 to be assembled with the upper drain plug 52. Further, by threading or unthreading the inner threading section 531 with respect to the outer threading section 522, the lower drain plug 53 may be moved in the height direction with respect to the upper drain plug 52.
The lower drain plug 53 includes a first section 533 and a second section 534 along the axial direction of the lower drain plug 53. The first section 533 has a smaller inner circumferential radius than the second section 534. In other words, the cross section area of the plug passage 532 in the lower drain plug 53 is smaller in the first section 533 than in the second section 534. More specifically, the inner circumferential radius of the first section 533 is configured to be slightly smaller than the outer radius of the first seal 523 of the upper drain plug 52. Similarly, the inner circumferential radius of the second section 534 is configured to be slightly smaller than the outer radius of the second seal 524 of the upper drain plug 52. The inner threading section 531 is formed on the inner circumferential surface of the second section 534 of the lower drain plug 53.
While the lower drain plug 53 is in the closed position, although the side opening 525 of the upper drain plug 52 directly opens into the plug passage 532 of the lower drain plug 53, the plug passage 532 of the lower drain plug 53 is closed in both directions by the first seal 523 and the second seal 524, thereby forming a closed chamber. As shown by the arrow in
While the lower drain plug 53 is in the open position, the plug passage 532 of the lower drain plug 53 is closed by only the second seal 524 of the upper drain plug 52. In this case, since the side opening 525 of the upper drain plug 52 directly opens into the plug passage 532 of the lower drain plug 53, any coolant flowing out from the side opening 525 freely flows downward through the plug passage 532, and exits through the first section 533 and the open end of the lower drain plug 53, as shown by the arrow in
The drain assembly 50 as described above confers numerous technical advantages during operation. The following advantages are not intended to describe essential features of the present disclosure, nor are the following advantages intended to represent an exhaust list. A skilled artisan will appreciate additional advantages conferred by the structures disclosed herein as will be apparent from the descriptions and drawings.
According to the present embodiment, the drain assembly 50 is configured such that an operator may drain coolant from the heat exchanger 1 in a directionally controlled manner while avoiding contact with the coolant. Specifically, the drain passage 511, the upper drain plug 52, the lower drain plug 53, and the plug passage 532 are all provided to extend along the same direction, i.e., the height direction. Moreover, the upper drain plug 52 and the lower drain plug 53 are disposed coaxially with the drain passage 511. Meanwhile, the lower drain plug 53 may be manipulated by an operator through the outer circumferential surface of the lower drain plug 53. For example, an operator may grab the top end portion of the lower drain plug 53 to thread or unthread the lower drain plug. As such, an operator may open or close the lower drain plug 53 to drain the coolant in a directionally controlled manner, while avoiding contact (e.g., accidental contact) with the coolant.
Accordingly to the present embodiment, the drain assembly 50 is provided as a bottom-flow drain, i.e., coolant directly drains from the bottom surface of the heat exchanger 1. This is because, as described above, the drain chamber 512 of the housing 51 is configured in the same manner as the drain chamber 412 of the first embodiment, and thus is level with the bottom surface of the outlet tank 20. Then, the coolant flows directly downward through the drain passage 511. This bottom-flow drain design may reduce the package size of the heat exchanger 1. Further advantageously, this bottom flow drain configuration may provide drainage option for heat exchangers mounted with limited vehicle packaging space and/or service access in cross car and for/aft directions.
The present disclosure is described with reference to the above embodiments, but these embodiments are not intended to be limiting. A variety of modifications which do not depart from the gist of the present disclosure are contemplated.
In the first embodiment, an example is provided in which the second seal 424 is disposed higher than the threading 422 along the axial direction of the body 44. However, in an alternative embodiment shown in
In the first embodiment, an example is provided in which the engagement feature 421 is a hexagonal feature for engagement with a tool. However, in an alternative embodiment shown in
In the second embodiment, an example is provided in which the upper drain plug 52 is configured to be coupled to the housing 51 through the inner threading section 521 engaging with the outer threading 513. However, in an alternative configuration, the upper drain plug 52 may be permanently secured to the housing 51 through, e.g., brazing. Further alternatively, the upper drain plug 52 may be integrally formed with the housing 51 through, e.g., metal casting, resin welding, or integrated resin molding. In this case, there is no need to specifically form the drain passage 511 separately from the upper drain plug 52.
In the first and second embodiments described above, the various sealing members may be secured to different surfaces instead. For instance, in the first embodiment, the first seal 423 may be fixed to the inner circumferential surface of the drain passage 411 instead. Similarly, the second seal 424 may be fixed to the inner circumferential surface of the plug chamber 413 instead. In the second embodiment, the first seal 523 or the second seal 524 may be fixed to the inner circumferential surface of the lower drain plug 53 instead.
In the first and second embodiments described above, the drain assembly is attached to the outlet tank. However, the drain assembly may be attached to the inlet tank instead. Further,
In the first and second embodiments described above, the drain assembly is attached to the surface of the outlet tank that faces away from the inlet tank (i.e., the right side surface of the outlet tank as shown in the figures). However, the drain assembly may be attached to the front or rear surface of the outlet tank instead (i.e., facing into or out of the page in the figures).
In the figures, the specific shapes of the various passages, housings, drain plugs etc. are not intended to be limited to the specific illustrated shapes unless described otherwise. For instance, the upper drain plug and the lower drain plug in the second embodiment are illustrated with a slight tapered shape, but may instead be straight cylindrical shaped, or have a more tapered shape.
The use of terms such as “first”, “second”, etc. is solely for the purpose of identification, and is not intended to limit the order or relationships of applicable elements.
Number | Name | Date | Kind |
---|---|---|---|
3601181 | Avrea | Aug 1971 | A |
3854526 | Cole | Dec 1974 | A |
4006775 | Avrea | Feb 1977 | A |
4130159 | Ohta | Dec 1978 | A |
4139053 | Schaal | Feb 1979 | A |
4449692 | Rhodes | May 1984 | A |
4461342 | Avrea | Jul 1984 | A |
RE32434 | Avrea | Jun 1987 | E |
4679618 | Farkas | Jul 1987 | A |
4790369 | Avrea | Dec 1988 | A |
5044430 | Avrea | Sep 1991 | A |
5762130 | Uibel | Jun 1998 | A |
5899266 | Szucs | May 1999 | A |
5960860 | Kim | Oct 1999 | A |
6167946 | Uchikawa | Jan 2001 | B1 |
6575187 | Leys | Jun 2003 | B2 |
6619380 | Hartman | Sep 2003 | B1 |
6739352 | Munro | May 2004 | B1 |
7520318 | Kwon | Apr 2009 | B2 |
7640966 | Maeda | Jan 2010 | B2 |
7708025 | Johnson | May 2010 | B2 |
9169945 | Pint | Oct 2015 | B2 |
9732856 | Farlow | Aug 2017 | B2 |
20080011971 | Stoll | Jan 2008 | A1 |
20090159239 | Desai | Jun 2009 | A1 |
20190264601 | Floyd | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
204476544 | Jul 2015 | CN |
142247 | May 1920 | GB |
Number | Date | Country | |
---|---|---|---|
20190264601 A1 | Aug 2019 | US |