1. Field of the Invention
The present invention relates to a heat exchanger.
2. Description of the Background Art
Heat exchangers, in particular heaters for motor vehicles, have a liquid medium, such as coolant, flowing through them on the primary side, and are exposed on the secondary side to ambient air that is delivered to the passenger compartment. Conventional heaters have a block having tubes and ribs. The air to be heated enters this block and exits it again at its rear. A problem in heating the air in the heater block is that the outlet air temperatures at the air outlet area are not the same everywhere, so that strands of differing air temperature occur. This is a disadvantage for controlled heating of the interior.
A variety of flow patterns are known for flow through a heater, which is generally designed with multiple rows or multiple flows, with the simplest form being parallel flow in which flow passes through all tubes in the same direction. Also known is a U-shaped flow through the heater in which a baffle (transverse baffle) is located in a header tank. Since this redirection of the coolant takes place transverse to the direction of air flow, it is referred to as redirection “across the width.” With respect to the two media flows, coolant and air, this is called a cross-flow. The coolant cools off on the way from the coolant inlet to the coolant outlet, so that the air at the half of the heater on the inlet side is heated more than that on the outlet side half, resulting in the aforementioned strand effect. It is also known to direct the coolant in the parallel direction or counterflow direction to the airflow, in other words the coolant is redirected from one row into the adjacent row in a multiple-row heater. This requires a longitudinal baffle, which separates adjacent rows on one side. This is referred to as redirection “over depth.” Depending on whether the redirection takes place in or opposite to the direction of airflow, this is referred to as parallel flow or counterflow. It is known that better efficiencies can be achieved with counterflow. It is a disadvantage, in particular for relatively wide heaters, that the coolant at the inlet side must be distributed over the full width; this can have the result that flow through the outer tubes is slower with a central coolant inlet, which likewise has an unfavorable effect on the outlet air temperature.
DE 10 2005 048 227 A1, which is incorporated herein by reference, discloses a heater with flat tubes in which the coolant is directed in cross-counterflow to the airflow, which is to say that a redirection in depth takes place towards the air inlet side. In another variant that is not shown and is not described in detail, a redirection in the width is additionally provided.
DE 102 47 609 A1 describes a heater in which the coolant is redirected exclusively in width, and specifically in multiple stages, with multiple coolant flows being connected in parallel. The purpose of this arrangement is to achieve relatively high pressure drops at the redirection points of the water tanks through turbulence of the coolant.
DE 44 31 107 C1 discloses a heater for motor vehicles which operates according to the counterflow principle. In this concept, the coolant is redirected from the air outlet side towards the air inlet side in one or more stages. Better heat-transfer performance can be achieved in this way.
DE 603 06 291 T2 (corresponding to EP 1 410 929 B1) discloses a heater for motor vehicles with separate control of the right and left sides (driver's side and passenger's side) of the passenger compartment. In this concept, the coolant is delivered through two supplies, is redirected to the middle in width, and is removed there through a common return. In a special embodiment (
It is therefore an object of the present invention to create the most homogeneous possible outlet air temperature profile in a heat exchanger of the initially mentioned type.
In an embodiment of the invention, in a cross-counterflow heat exchanger the liquid medium (coolant) enters a first region, the inlet region, and in this row on the air outlet side is redirected into a second region, with both the first and second regions having subregions. In other words, the coolant entering the first row of flow channels can be redirected at least once in width. The coolant is then redirected from the first row into the second row, i.e. the row on the air inlet side, with flow through all flow channels in the second row being in the same direction. The inventive coolant routing by means of redirections in width and depth achieves the advantage that a largely homogeneous temperature profile is produced at the air outlet side.
In an embodiment, the coolant can be also redirected at least once in the second row as well, which is to say in the windward row. In all, the coolant flow is thus redirected twice in width and once in depth. As a result of the opposite coolant flow in the two rows of tubes, the outlet air temperature profile can be homogenized still further.
According to a first aspect of the invention, the inlet region can be located in the center of the first row, while the second region comprises two subregions that are symmetrically arranged next to the first region. The incoming coolant flow is thus divided after the first pass and redirected in opposite directions in the width of the heat exchanger. Subsequently, the coolant flows exiting the two subregions are redirected in depth and distributed over the second row such that flow passes through all flow channels in the same direction. In this way, a symmetrical outlet air temperature profile is achieved, which is to say that any deviations from a homogenous temperature distribution occur symmetrically. Alternatively, redirection in the second row can also take place in width.
According to a second aspect of the invention, the inlet region is located off-center in the first row, preferably in a first half, while the second region is located next to the first region. The coolant here flows into the first half of the row in the heat exchanger, is redirected in width, and the entire coolant flow enters the second region. From there, the redirection in depth and the distribution of the coolant flow over the entire second row take place in turn, wherein it is possible for flow through the latter to take place in the same direction or in different directions.
According to a third aspect of the invention, two inlet regions, which can be symmetrically arranged, are provided that communicate with one another through a connecting pipe. As a result, two flow branches are obtained on the inlet side, which are deflected inward in width, and enter the second region. This is followed by the redirection in depth and the distribution of the coolant over all the tubes of the second row. Alternatively, redirection in the second row can also take place in width, with a flow pattern similar to that in the first row.
The flow cross-sections in the first and second regions can be identical, which is to say that, in accordance with the known continuity equation, equal flow velocities result in the flow channels of the first and second regions, which is to say viewed across the full width. It is especially preferred, however, for the flow cross-section of the second region to be larger than that of the first region—with the result that a slowing of the flow takes place in the flow channels of the second region. This compensates for the cooling of the liquid medium, so that one obtains a homogeneous outlet air temperature distribution as an advantage.
In another embodiment, the flow cross-section in the second row can be matched to the flow cross-section of the second region in the first row, namely in such a manner that the entire flow cross-section of the second row is either identical to or larger than the entire flow cross-section of the second region. An expansion of the flow cross-section takes place due to the continued cooling of the liquid medium. In this way, either the same flow velocities can be achieved in the second row as in the first row, or even a delay in the flow—with the result that more heat can be dissipated to the air and a smaller pressure drop takes place. An expansion of the flow cross-section with resultant flow velocity can take place in the case of redirection in the width in the second row, as well.
According to an embodiment, the heat exchanger can be designed as a heater of a heating system for motor vehicles, which is to say the flow channels are designed as tubes, preferably as flat tubes or multichamber tubes through which the coolant flows and between which are arranged, preferably, corrugated fins as secondary surfaces.
The flat tube cross-sections of the second row can have an equal, larger, or smaller depth as compared to the flat tubes of the first row, depending on the flow pattern. This results in an increase in the flow cross-section after the redirection in depth, with the result that the flow velocity of the coolant is reduced in the second row. A greater cooling of the coolant, and thus greater heat-transfer performance, is achieved in this way.
The heater can have collecting reservoirs or chambers, i.e., an inlet chamber through which the coolant enters, an outlet chamber through which the coolant exits, or a coolant inlet and outlet chamber or a redirecting chamber.
In order to implement the above-described flow pattern in a heater, baffles in the form of longitudinal and/or transverse baffles are located in the collecting reservoirs, dividing the collecting reservoirs into individual chambers. Preferably, the inlet region for the flow channels or flat tubes of the first region is divided by a longitudinal baffle and at least one transverse baffle in the inlet chamber. In contrast, the outlet chamber has one longitudinal baffle, so that the first and second rows are divided from one another and a redirection in width can take place in the first row. Furthermore, in the case of “double” redirection in width, transverse and longitudinal baffles can be arranged in an H shape.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
a illustrate example embodiments for shapes of tubes;
b is a flow model according to
a, 5b illustrate a heater with flow arrows, closed and in exploded view;
a, 6b illustrate the heater with flow arrows in an exploded view facing the air inlet side and air outlet side;
a, 7b, 7c show views from above and below of the heater block, and an enlarged depiction of the heater tubes;
a shows the heater from
b shows the same heater in cross-section;
a, 10b, 10c are views from above and below of the tube ends of the heater block;
b shows a schematic view of the heater block 1 according to
a shows two equivalent example embodiments of the tubes 2 mentioned above and shown, each of which has a flat tube cross-section. In principle, it is possible to use separate tubes 2 in different rows (two-row construction), or a two-chambered tube 2′, i.e., a tube with two chambers (single-row construction).
a and 5b show a design embodiment of a heater 22 that corresponds to the first example embodiment from
b shows the heater 22 in an exploded view, which is to say that the lower inlet chamber 24, the upper outlet chamber 25, and the block 23 are shown separated from one another. As a result, the interior of the inlet chamber 24 is visible, in particular the inlet region 26 separated by one longitudinal baffle and two transverse baffles 26a, 26b, 26c. The coolant inlet flow in block 23 is indicated by three upward-pointing arrows. The redirection in width takes place as shown by the arrows UB (a longitudinal baffle that is not visible is located in the upper header tank 25 here). The redirection in depth takes place in the lower header tank 24 as shown by the arrows UT. The flow in the windward row is indicated by five upward-pointing arrows.
For clarification,
a shows a view from above of the heater block 23 corresponding to
b shows a view of the heater block 23 from below, with the first tube row 28 and second tube row 29, and with the inlet region 26 (first region) and baffles 26a, 26b, 26c. The number of tubes in the individual regions, which is to say in the first and second regions, and in the second row 29, are indicated by the arrow heads a, b1, b2, c. The number of tubes shown in the drawing or the dimensional relationships correspond to a preferred example embodiment, in which fifteen tubes 30 are provided in the first region a, and nine tubes are provided in each of the second regions b1, b2. In this way, after the redirection in width an enlargement of the flow cross-section occurs in the second regions b1, b2, so that a delay of the coolant flow takes place in the tubes 30 with the dot symbol. This is desirable because of the cooling of the coolant from region a to the regions b1, b2. The following relationship applies: a≦(b1+b2).
c shows an enlarged view of the tubes 30, 31 from the first row 28 and second row 29, wherein the depth dimensions T1 apply for the tubes 30, T2 for the tubes 31, and T for the overall block depth. The width of the tubes is labeled B. The drawing is dimensionally accurate for a preferred example embodiment, which is to say that the depth dimension T2 of the second row 29 is smaller than the depth dimension T1 of the first row 28. The number of tubes 30, 31 in the two rows 28, 29 is identical, just as in
According to a preferred embodiment, the inventive heaters or their flat tubes have the following dimensions: The tube width B is in a range from 0.5 to 4.0 mm, preferably in a range from 0.8 to 2.5 mm. The material thickness (tube wall thickness) s of the flat tubes is in a preferred range of 0.10 to 0.50 mm. The depth T of the block (so-called wetted depth) is in a range from 10 to 100 mm, preferably in a range from 20 to 70 mm.
Due to the stepwise expansion of the flow cross-section after each redirection in width and/or redirection in depth, there also results, in conjunction with the delay in the coolant flow, a smaller pressure drop on the coolant side, which reduces the power requirement for the coolant pump.
a shows the heater 32 from
b shows the heater 32 in a cross-sectional view in which can be seen the two rows of tubes 33, 34, the two header tanks 35, 36, the entry of the coolant indicated by an arrow E, the exit of the coolant indicated by an arrow A, and the direction of flow indicated by an arrow L. The counterflow principle is clearly evident here.
a, 10b, and 10c show top views of the tube ends, as well as the numbers and dimensions thereof. Once again, the same reference numbers are used for identical parts.
b shows a view from below of the tube ends of the rows of tubes R1 and R2, between which is located the longitudinal baffle 40. The overall width of the rows of tubes R1, R2 is indicated by c; this region is not subdivided by baffles, so that a redirection in width can take place in both the rows R1, R2.
c shows an enlarged section of the two rows of tubes R1, R2, each with five flat tubes 37a, 37b whose extent in depth (in the direction of air flow) is labeled with T1 and T2. The overall depth of the two rows of tubes (of the block) is labeled T. In order to achieve an additional delay of the coolant flow in the second row R2 as well, which is to say after the redirection in depth, the depth T2 of the flat tubes 37b can be chosen larger than the depth T1 of the flat tubes 37a—while retaining the same tube width B and same number of tubes.
For a preferred example embodiment, the tube width B is in a range from 0.5 to 4.0 mm, preferably 0.8 to 2.5 mm. The material thickness of the flat tubes 37a, 37b is in the range from 0.10 to 0.50 mm. The installation depth T (wetted or block depth) is 10 to 100 mm, preferably 25 to 70 mm. In the drawing, two rows of flat tubes 37a, 37b are shown which are designed as two-chambered tubes. However, multi-chambered tubes or even a single-row construction with a continuous flat tube which has a baffle (bead) approximately in the center region are also possible.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
DE 102007059672.5 | Dec 2007 | DE | national |
DE 102008017485.8 | Apr 2008 | DE | national |
This nonprovisional application is a continuation of International Application No. PCT/EP2008/009271, which was filed on Nov. 4, 2008, and which claims priority to German Patent Application No. DE 102007059672.5, which was filed in Germany on Dec. 10, 2007, and to German Patent Application No. DE 102008017485.8, which was filed in Germany on Apr. 3, 2008, and which are all herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2008/009271 | Nov 2008 | US |
Child | 12796012 | US |