Air-air heat exchangers or gas-gas heat exchangers are needed in applications where there is the need to transfer heat energy from an air or gas flow to a different air or gas flow. Such heat exchangers are used, for example in heat recovery plants, where the outlet air flow from a building is caused to interact with the inlet air into the building, such that the outlet air is cooled in favor of the inlet air or the inlet air is heated in favor of the exhaust air. Thereby, thermal losses are prevented, while at the same time air exchange is obtained, i.e. used air is dissipated and fresh air is supplied. Such heat exchangers are configured, for example, as plate heat exchangers where the air flow is guided on the primary side, such as the outlet air side of the thermo-dynamic device across a first number of plate-shaped channels, while the other air flow is guided on the secondary side, i.e. the inlet air side of the thermo-dynamical device via a second number of plate-shaped channels without the two air or gas flows interacting directly, i.e. the same cannot mix. On the other hand, the warmer outlet air flow dissipates its heat energy to the wall of the plate-shaped channels, wherein the inlet air flow to be heated absorbs the heat energy from that wall. Thereby, continuous heat exchange of outlet air flow into the inlet air flow takes place without the two flows mixing in molecular respect.
An important aspect for such heat exchangers is the efficiency of the heat exchanger, i.e. how efficient heat energy is brought from one side to the other. The efficiency is accompanied by the volume of the heat exchanger, as the percentage of transmitted heat energy typically increases with increasing volume of the heat exchanger. However, on the one hand, regarding the volume there is a limit with respect to the possible size of the heat exchanger and on the other hand because an increasing size of the heat exchanger results in an increasing flow resistance of the heat exchanger. A best possible gas-gas heat exchanger should therefore have a high efficiency on the one hand and a low flow resistance on the other hand, so that the heat exchanger has a good degree of heat transfer on the one hand and can be configured with moderate volume on the other hand, i.e. as small as possible.
A field of usage for such heat exchangers is the usage as recuperator of a gas refrigerating machine or cold air refrigerating machine. Cold air refrigerating machines are known and are used, for example, in astronautics. In the publication “High-capacity turbo-Brayton cryocoolers for space applications”, M. Zagarola et. al., Cryogenics 46 (2006), pages 169 to 175, a cryocooler is disclosed. A compressor compresses gas that circulates in the closed system. The compressed gas is cooled by a heat exchanger. The cooled gas is fed into a recuperator which supplies the gas cooled in that manner to a turbine. From the turbine, cold gas is discharged, which absorbs heat via a heat exchanger or obtains a cooling effect. The gas leaving the heat exchanger providing the cooling effect and that is again warmer than the gas at the input of the same is also fed into the recuperator in order to be heated again.
The temperature entropy diagram of the cycle is known. Isentropic compression takes place by the compressor. Isobaric heat removal takes place by the heat exchanger for heat dissipation. Isobaric heat removal also takes place by the recuperator. Then, in the turbine, isentropic expansion takes place. The cooling effect of the heat exchanger again presents an isobaric heat supply.
Other cold air refrigerating machines in various other implementations are presented in the lecture “Luft als Kältemittel—Geschichte der Kaltluftkältemaschine” by I. Ebinger held at the Historikertagung (historian convention) 2013 in Friedrichshafen on Jun. 21, 2013.
Compared to heat pumps used for cooling and heating, gas refrigerating machines have the advantage that energy-intensive circulation of liquid refrigerants can be prevented or avoided. Additionally, gas refrigerating machines do not need continuous evaporation on the one hand and continuous condensation on the other hand. In the relevant cycle, only gas circulates without any transitions between the different aggregate states. Further, very low pressures close to vacuum are needed for heat pumps, in particular if refrigerants that are problematic for the climate are to be dispensed with, and these pressures can lead to considerable expense for generation, handling and maintenance during operation, especially in terms of equipment. Still, the use of cold air refrigerating machines is limited.
A gas refrigerating machine is also described in the not pre-published German application 102020213544.4, which is incorporated herein by reference. In this gas refrigerating machine, a gas-gas heat exchanger is used as recuperator. Further, in the above-described “cyrocooler”, both for the heat source side as well as for the heat sink side and also for the recuperator, a gas-gas heat exchanger is used. In particular in the usage as recuperator, the efficiency of the heat exchanger provides a significant contribution to the efficiency of the overall system.
According to an embodiment, a heat exchanger may have: a first number of channels for a first fluid extending along a first flow direction of the first fluid and in a first transverse direction, wherein the first transverse direction varies along the first flow direction; a second number of channels for a second fluid extending along a second flow direction of the second fluid and in a second transverse direction, wherein the second transverse direction varies along the second flow direction; a wall structure configured such that the first number of channels and the second number of channels are in thermal interaction, and such that, at a first location of the heat exchanger with respect to the first or second flow direction, the first transverse direction or the second transverse direction differ from a first or second transverse direction at a second location of the heat exchanger with respect to the first or second flow direction.
According to another embodiment, a gas refrigerating machine may have: an input for gas to be cooled; a recuperator including an inventive heat exchanger; a compressor having a compressor input, wherein the compressor input is coupled to a first recuperator output; a further heat exchanger; a turbine; and a gas output, wherein the compressor input is connected to a suction area, which is limited by a suction wall and extends away from the compressor, and wherein the recuperator extends at least partly around the suction area and is limited by the suction wall.
According to another embodiment, an apparatus for treating gas may have: a compressor with a compressor input and a compressor output; an inventive heat exchanger including a first heat exchanger input, a first heat exchanger output, a second heat exchanger input and a second heat exchanger output; and a turbine with a turbine input and a turbine output, wherein the compressor output is connected to the second heat exchanger input and wherein the second heat exchanger output is connected to the turbine input.
According to another embodiment, an air-conditioning device may have: a room outlet air terminal; a room inlet air terminal; and an inventive apparatus, wherein the room outlet air terminal is coupled to the gas supply and the room inlet air terminal is coupled to the gas exhaust.
According to another embodiment, a method for producing a heat exchanger with a first number of channels for a first fluid extending along a first flow direction of the first fluid and in a first transverse direction, wherein the first transverse direction varies along the first flow direction; and a second number of channels for a second fluid extending along a second flow direction of the second fluid and in a second transverse direction, wherein the second transverse direction varies along the second flow direction, may have the step of: forming a wall structure, such that the first number of channels and the second number of channels are in thermal interaction, and such that, at a first location of the heat exchanger with respect to the first or second flow direction, the first transverse direction or the second transverse direction differ from a first or second transverse direction at a second location of the heat exchanger with respect to the first or second flow direction.
According to another embodiment, a method for operating a heat exchanger with a first number of channels for a first fluid extending along a first flow direction of the first fluid and in a first transverse direction, wherein the first transverse direction varies along the first flow direction; and a second number of channels for a second fluid extending along a second flow direction of the second fluid and in a second transverse direction, wherein the second transverse direction varies along the second flow direction; and a wall structure configured such that the first number of channels and the second number of channels are in thermal interaction, and such that, at a first location of the heat exchanger with respect to the first or second flow direction, the first transverse direction or the second transverse direction differ from a first or second transverse direction at a second location of the heat exchanger with respect to the first or second flow direction, may have the steps of: guiding the first fluid through the first channels of the first number of channels along the first flow direction; and guiding the second fluid through the first channels of the second number of channels along the second flow direction.
The present invention is based on the finding that improved efficiency can be obtained by providing a wall structure in a heat exchanger, which is also referred to as fractal heat exchanger, with a first number of channel for first fluid that extend along a first flow direction of the first fluid and in a first transverse direction, and with a second number of channels for a second fluid that extend along a second flow direction of the second fluid and in a second transverse direction, wherein the wall structure is configured such that the same varies with respect to the first number of channels for the first fluid in transverse direction along the flow direction and/or such that the wall structure varies with respect to the second number of channels in the second transverse direction that is transverse to the second flow direction of the second fluid along the second flow direction.
In particular, the wall structure has the effect that the first number of channels and the second number of channels are in thermal interaction. Further, the wall structure is configured such that, at a first location of the heat exchanger with respect to the first or second flow direction, the first transverse direction or the second transverse direction differs from the respective first or second transverse direction at a second location of the heat exchanger with respect to the first or second flow direction. In other words, the channel extension along the flow direction varies, advantageously varies in a continuous manner, so that in embodiments no sharp edges occur along the flow direction, which might result in flow turbulences.
Advantageously, the wall structure is configured such that the transverse direction of the channels changes from one location to a different location, for example from a horizontal direction to a vertical direction and then, “returns” again to the horizontal direction during the further course and then changes again to a vertical direction etc. Depending on the embodiment, this is obtained in that a vector describing the transverse direction continuously “rotates” i.e. increases its angle continuously from a horizontal direction along the flow direction, which means continuously transitions from an angle of 45° to an angle of 90°, wherein then the transverse direction is a vertical direction, i.e. perpendicular with respect to the transverse direction at the start of the heat exchanger or at the previous location with respect to the flow direction of the heat exchanger etc.
Above that, the heat exchanger is advantageously configured such that the number of channels for the first fluid extends across a relatively large and advantageously the entire width of a cuboid-shaped heat exchanger or around the entire or large part of the circumference of a cylindrical heat exchanger and that this also applies for the second number of channels for the second fluid, such that the channels have a low height but a large width in the transverse direction or circumferential direction.
Thereby, low flow resistance is obtained. On the other hand, the wall structure is further configured such that when the channels have changed their transverse direction by 90°, for example, the channels extend across the entire height of, for example, a cuboid-shaped or cylindrical volume, such that again the channels are relatively narrow, but in the transverse direction at the second location or again relatively long although the width has again a small dimension. Such particularly flat but wide channels are particularly favorable for heat exchange taking place via the adjacent wall structure, but offer only low flow resistance due to the high other dimension.
The wall structure is advantageously configured such that the first number of channels and the second number of channels extend completely through the volume at the first location in the first and second transverse direction and such that the first number of channels and the second number of channels extend completely through the volume at the second location in the first and second transversal direction, wherein the first and second transverse directions at the first location differ from the first and second transverse directions at the second location. At the first location, the two transverse directions can be vertical and at the second location horizontal in the case of a cuboid-shaped volume. In the case of a cylindrical volume, the two transverse directions can be vertical at the first location and can be configured circumferentially at the second location, such that each channel has a radius and runs in a circular shape in the case of a full cylinder or in the shape of a circular sector in the case of a cylinder sector. In the case of a spherical volume, the first two transverse directions run at the first location like the longitudes of the sphere and at the second location like the latitudes of the sphere. By “bending” a cuboid-shaped volume along the horizontal direction, a cylindrical volume results and when the cylindrical volume is then bent along the vertical direction, a circular volume results. The volume includes at least five first and five second channels and in embodiments at least 50 first and 50 second channels and in particularly advantageous embodiments at least 100 first and 100 second channels. However, all channels have a small flow resistance as the same extend again through the entire volume, i.e. at the first location at the second locations and along the flow direction at further first or second locations whose number depends on the number of periods.
The continuous dividing and joining of the channels in an embodiment further provides a useful contribution for highly efficient heat transfer between the first and the second fluid.
Thus, in embodiments, it is achieved that at the transition from a horizontal transverse direction of the channels into the vertical transverse direction of the channels a plurality of dividing portions is provided in the channels to “divide” the channel that is relatively wide and hence provided with little flow resistance into different partial channels. Thereby, it is ensured that wall structures are provided in as many areas within the channels as possible to obtain a good heat transfer from the first to the second number of channels. Despite the relatively long extending channels in one direction still only very small areas within the channels are obtained where a fluid flowing in the channels is not in touch with a wall structure or is relatively far apart from a wall structure. The individual partial channels are joined again after their generation by the dividing portions but now into channels having a different transverse direction, i.e. for example a perpendicular transverse direction. This results in the fact that the fluid has only been connected with a wall structure in a relatively short flow portion by the dividing portions to dissipate energy, to be joined then again into a “large” channel so that the flow resistance remains low. The dividing portions further have the advantage that they result in a significant stability of the heat exchanger in that the heat exchanger can be provided with high pressures without any problematic deformation. This is due to the additional support effect of the dividing or joining portions.
This large, now for example vertical channel will be divided again in the further course and the individual partial channels are again joined along the flow direction of the fluid, again into a large but still again horizontal channel. Thus, a specific number of channels exists at the beginning of the heat exchanger, i.e., when fluid is introduced into the heat exchanger, which are interleaved with the other number of channels where the other fluid flows that is to dissipate heat or from which heat transfer is to take place. At the same time, along the heat exchanger, i.e., due to the continuous dividing and joining of the channels in the individual areas, all individual channels of the first number of channels are “short-circuited”. This applies also for the second number of channels that are also “short-circuited” such that an optimum heat transfer takes pace with low flow resistance across the wall structure distributed as evenly as possible across the entire e.g., cuboid shaped or cylindrical volume of the heat exchanger from the one number of channels to the other number of channels.
In a normal plate heat exchanger, for example, this is not the case. There, all channels are separate from each other in their entire course across the heat exchanger, even when the same fluid, i.e., e.g., the outlet air fluid or alternatively the inlet fluid flows through the same.
All channels of the first fluid along the heat exchanger are continuously short-circuited, but are not brought in direct connection with the channels of the second number of channels where the other fluid, for example the outlet air fluid, flows.
Depending on the embodiment, the heat exchanger is configured as longitudinal, for example cuboid-shaped or rectangular heat exchanger, such that the flow direction is directed from a first end of the heat exchanger to a second end of the heat exchanger and the transverse direction is a direction perpendicular to this flow direction. In other embodiments, the heat exchanger is configured as rotationally symmetric heat exchanger or as a heat exchanger where the flow direction is radial, i.e., from outside to inside in a cylindrical body, wherein in such a case the primary inlet takes place on the outside of the cylinder and the primary outlet takes place on the inside of the cylinder and the secondary inlet and the secondary outlet also take place on the outside or inside of the cylinder.
In embodiments of the present invention, the first number of channels and the second number of channels are interleaved, such that between two channels of the first number of channels exactly one or at least one channel of the second number of channel is located, independent of the fact whether the first location of the heat exchanger or the second location of the heat exchanger or any location between the first and the second location of the heat exchanger is considered. Advantageously, the heat exchanger is further configured as counter-flow heat exchanger, such that, at each location of the heat exchanger, the first flow direction of the fluid in the number of channels is opposite to the second flow direction i.e., the flow direction of the second fluid in the second number of channels. Depending on the implementation, the fluid can be a liquid, such as water or a gas, such as air.
The implementation of the heat exchanger as counter-flow heat exchanger is obtained in that the primary input and the primary output on the one hand as well as the secondary input and the secondary output on the other hand are occupied or connected accordingly, with respective gas terminals or air terminal in the case of an air-air heat exchanger or with respective air terminals for a gas refrigerating machine, when the heat exchanger is used as recuperator in a gas refrigerating machine.
In embodiments of the present invention, the wall structure is configured such that areas of the wall structure can be considered as coils, that are “cut” compared to a proper round coil so that the same fit into a rectangular overall pattern. Still, in a finished heat exchanger, these individual “areas” are not separate regarding the material but are configured in an integral manner as it can be obtained, for example, by specific three-dimensional printing methods, or the same are connected in a gas-tight manner by connecting means, such as can be obtained by adhesion, soldering etc.
All in all, the heat exchanger, which is also referred to as a fractal heat exchanger due to its structure, provides a transparent and logically consistent implementation that is further characterized by a low flow resistance with high efficiency due to an optimum even distribution of the heat transfer effect across the entire volume of the heat exchanger.
An application of the inventive heat exchanger is the usage of the same as recuperator and/or as heat exchanger in a gas refrigerating machine, which is structured in a particularly compact manner to prevent losses by conduits, in particular in the recuperator or in the connection between recuperator and compressor. For this purpose, the recuperator or heat exchanger is arranged to extend around a suction area of the compressor, the suction area being separated from the recuperator by an intake wall. This integrated arrangement between the compressor with the suction area on the one hand and the recuperator on the other hand leads to the fact that a compact setup with optimum flow conditions can be achieved in order to suck in gas present in the primary side of the recuperator, through the recuperator. In addition, the effect of the recuperator is important for the efficiency of the entire gas refrigerating machine, which is why the recuperator is arranged to extend at least partially and advantageously completely, around the suction area. This ensures that a substantial amount of gas is sucked from the recuperator from all sides over the entire suction area, which extends away from the compressor input, and is separated from the recuperator by the intake wall. Thus, although the recuperator may occupy a considerable volume, a compact design is still achieved because the compressor is integrated directly with the recuperator. On the other hand, this implementation also ensures that sufficient space remains for the secondary side in the recuperator, which have to thermally interact with the primary side in the recuperator, to allow the flows of the warm gas flowing on the primary side and the flows of the warmer gas flowing on the secondary side to thermally interact well.
In embodiments, a direct flow or counter-flow principle is used in the recuperator to achieve a particularly good efficiency at this component. In further embodiments of the present invention, the first input of the recuperator into the primary side thereof represents a gas or air input, so that the gas refrigerating machine is operable in an open system. Then the turbine output or the gas outlet are also directed into a space, for example, into which the cooled air or, more generally, the cooled gas is introduced. Alternatively, the gas input on the one hand and the gas output on the other hand may be connected via a piping system and a heat exchanger to a system to be cooled. Then, the gas refrigerating machine according to the present invention is a closed system.
Advantageously, the entire gas refrigerating machine is installed in a housing, which is typically rotationally symmetrical at least in its “interior” with an upright shape and a greater height than diameter, i.e. as a slender upright shape. This housing contains the gas input as well as the gas output and the recuperator, the compressor and the turbine and advantageously also the heat exchanger.
Advantageously, in operation, the compressor is arranged above the turbine. Again advantageously, the compressor comprises a radial wheel and the turbine comprises a turbine wheel, the compressor wheel and the turbine wheel being arranged on a common axis, which axis further comprises a rotor of a drive motor interacting with a stator of the drive motor. Advantageously, the rotor is arranged between the compressor wheel and the turbine wheel.
In yet other embodiments, the recuperator is arranged in an outer area of the volume of the gas engine and the compressor input is arranged in an inner area of the volume of the gas engine, wherein the suction area is also located in the inner area of the volume. Advantageously, the suction area has an opening area that increases continuously from a first end to the second end so that the intake wall is formed continuously, i.e. advantageously without any edges. The end with the smaller opening area is connected to the compressor input and the end with the larger opening area is closed off so that the compressor operation creates a suction effect in the suction area which extends via the primary output of the recuperator, which is fluidically coupled to the suction area, through the recuperator to the primary input of the recuperator, which is either formed directly as a gas inlet or is connected to a gas outlet in the housing.
Again, a guide chamber of the compressor is arranged to guide the compressed gas from the center of the volume of the gas engine to the outside, where it is fed directly into a primary input of the heat exchanger. Through the heat exchanger, the heated gas flows from the outside to the inside and from there enters the secondary input or second input of the recuperator, which is located inside the volume and extends around the suction area and in particular around the intake wall, but is fluidically separated from the suction area. The gas fed into the secondary input flows from the inside to the outside in the secondary side of the recuperator, thus allowing a counter-flow principle which is particularly favorable thermally, and then flows from the outside with respect to the recuperator, into the suction area of the turbine, the gas flowing from the outside to the inside to relax through the turbine wheel into the air output, which is formed as a large surface in the lower part of the gas refrigerating machine. On the other hand, the gas input is formed in the lateral upper area of the gas refrigerating machine, by a plurality of perforations connected to corresponding gas channels, which form the gas inlet or primary inlet into the recuperator.
Electronics needed to control and operate the gas refrigerating machine are located in an area below the turbine suction area, i.e., adjacent to the air outlet, so that the cooled air can provide a cooling effect on electronic elements via the turbine output wall.
Furthermore, the setup of a cold air refrigerating machine is technically less complex and thus less prone to errors when compared to a heat pump, for example. In addition, a higher efficiency can be expected since no work has to be provided to move a considerable amount of liquid refrigerant in the circuit.
One aspect of the present invention relates to the arrangement of the recuperator at least partially around the suction area.
Another aspect of the present invention relates to the arrangement of the recuperator, the compressor, the heat exchanger, and the turbine in a single housing which may be cylindrical in shape, for example, having an elongated shape with a height greater than the diameter.
Another aspect of the present invention relates to the special implementation in which the compressor is located above the turbine to achieve an optimum flow effect of the gas in the gas refrigerating machine.
Another aspect of the present invention relates to placing the compressor wheel and the turbine wheel on an axis on which the rotor of the engine is also located, in order to create an optimal and efficient transmission of power from the turbine to the compressor in order to save drive energy to be supplied as much as possible.
Another aspect of the present invention relates to the implementation of a rotationally symmetrical recuperator with the compressor and the turbine, whose axis of rotation coincides with the axis of the recuperator, whether to achieve efficient flow guidance in the gas refrigerating machine.
Another aspect of the present invention relates to the arrangement and design of the heat exchanger in the gas refrigerating machine to achieve a space-saving gas refrigerating machine with efficient conversion of thermal energy.
Another aspect of the present invention relates to placing an electronic assembly in a cool area of the gas refrigerating machine, for example between the compressor wheel and the turbine wheel or in thermal interaction with the boundary of the turbine input on the path of the gas from the recuperator output into the turbine or near the particularly cool turbine output.
A further application of the heat exchanger of the present invention is the usage in a compressor-heat exchanger-turbine combination to obtain a simple and at the same time robust measure for treating gas, wherein the heat exchanger is configured as gas-gas heat exchanger and coupled between the compressor output and the turbine input on its primary side. The primary side of the gas-gas heat exchanger, which can also be referred to as recuperator, can be provided with different gas flows, depending on the implementation.
In embodiments, the compressor gas-gas heat exchanger turbine combination is provided with an input interface and an output interface, wherein the input interface is configured to couple the compressor input and the heat exchanger input of the primary side with a gas supply. Then, the output interface is configured to couple the turbine output and the heat exchanger output of the primary side of the heat exchanger to a gas exhaust.
Depending on the implementation, the input interface and the output interface can be firmly “wired”, i.e., firmly installed to place the apparatus for treating gas into a “summer operation”, where the cooling power of the apparatus for treating is emphasized. In another implementation of the input interface and/or the output interface, the apparatus for treating gas is “firmly wired” placed into a “winter operation”, where the heating, i.e., the heating effect of the apparatus is emphasized.
In again another embodiment, both the input interface and the output interface are configured in a controllable manner to place the input side of the apparatus for treating gas and the output side of the apparatus for treating gas into a cooling operation or a heating operation, depending on a control signal that can be detected manually or automatically. Detecting the environmental situation, such as temperature detection or target temperature detection of inlet air for a room can take place automatically by using a temperature sensor or a flow sensor or both sensors, or can be derived manually or in dependence on a greater control, for example a building control.
Depending on the implementation, the input interface or the output interface can be set as two-way switch having two inputs and two outputs, wherein switching can take place between two connections from the inputs to the outputs. Alternatively, the interface can also consist of individual switching elements to connect an input to one of two outputs depending on a control signal.
In embodiments, the apparatus for treating gas is configured to have a specific compressor turbine combination, wherein the compressor wheel and the turbine wheel are arranged on one axis, wherein a drive motor is arranged between the compressor wheel and the turbine wheel and wherein in particular the rotor of the drive motor is arranged on the same axis on which also the turbine wheel and the compressor wheel are arranged.
In embodiments of the present invention, further, the heat exchanger that is a gas-gas heat exchanger is configured as a recuperator, wherein further advantageously a counter-flow principle is used, wherein a plurality and in particular, a large amount of flow channels forming the primary side are in thermal interaction with the plurality and in particular a large number of flow channels that form the secondary side. Further, it is advantageous that the heat exchanger has a rotationally symmetric shape with a first recuperator output in the center of the recuperator.
In embodiments of the present invention, the apparatus for treating gas is coupled to an air-conditioning device via the input and/or output interface, in particular with an air-conditioning device offering an outlet air terminal, an inlet air terminal, and possibly also an exhaust air terminal and a fresh air terminal. The air-conditioning device typically dissipating at least part of the outlet air from a room, typically to the outside as exhaust air, is supplemented by the apparatus for treating gas in that, for example, for heating in the room i.e., in winter operation, the terminal energy is drawn from the outlet air and is transferred to the inlet air via the heat exchanger. In that way, also for cooling in the room, energy is drawn from the supplied fresh air and removed from the system via the already warm outlet air via the exhaust air. In the compressor/turbine combination, relatively “hot” fresh air can be used to generate even hotter exhaust air from the outlet air, such that inlet air can still bring adequate cooling power into the room.
In particular in an embodiment, the air-conditioning device has a divider that divides the room outlet air into an outlet air flow and a re-feeding flow. The re-feeding flow is advantageously treated by a treater, such as amended regarding humidity, disinfected or enriched with oxygen, but typically not thermally amended, i.e., with respect to its temperature. This treated air flow is supplied to a combiner that at the same time receives air-conditioned fresh air from the apparatus for treating gas which then, depending on the implementation, is cold when the room is to be cooled, i.e., when the room inlet air is to be colder than the room outlet air or that is warm when the room is to be heated, i.e., when the room is to be heated, i.e., when the room inlet air is to be warmer than the room outlet air.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
The second number of channels includes the channels 102a, 102b, 102c and the second number of channels serves for a second fluid, wherein the second number of channels extends along a second flow direction of the second fluid and in a second transverse direction. The second transverse direction is advantageously also the same transverse direction as the first transverse direction when the channels are configured in a parallel and interleaved manner. However, alternative implementations with non-constant wall thickness or several walls between the channels could be configured, wherein, for example, the first transverse direction would extend in an x-y-direction, which is, for example, +30° and the second channel would extend in the transverse direction by −30°, for example. However, parallel and symmetrical orientation of the channels as shown in
According to the invention, the first transverse direction varies along the first flow direction and the second transverse direction also varies along the second flow direction as can be seen from the combination of
The wall structure 200a to 200e is configured such that a first transverse direction or second transverse direction, which is oriented along the x-direction or the y-direction exists at the first location (
At a second location of the heat exchanger with respect to the first and second flow directions illustrated in
By a further “rotation” of areas 301 to 304 and obviously all other partial areas of the wall structure no longer individually indicated around the respective rotation axis illustrated by thicker points, a situation is obtained as shown in
However, when comparing
The further development of the heat exchanger along the first or second flow direction is shown in
Again, as illustrated in
Thus, in embodiments of the present invention, the heat exchanger has a period T in the first or second flow direction. The starting situation is shown in
In
An entire period is illustrated by the work piece of
Above that, it is shown in
Further, the vertical channels have the advantage that dissipation of condensed liquid, such as condensed water, can be easily obtained. As two areas exist within one period that vertically go through the entire heat exchanger from top to bottom, condensed water, which typically will be condensed as small drops at the dividing portions, simply flows off towards the bottom. The wall structure is advantageously configured such that the first number of channels or the second number of channels has one or several vertical areas in the operating direction of the heat exchanger, which extend from top to bottom through the heat exchanger and wherein a condensed-liquid dissipation means is configured below the one or several vertical areas to dissipate condensed liquid existing in the one or several vertical areas. In one implementation, this dissipation means includes the water collection means, such as a collecting pan at the bottom end of the heat exchanger, advantageously for each of the two pressure areas, and a pump or another means for water dissipation. Thereby, simple handling and early dissipation of the condensed water can be obtained, such that icing in the heat exchanger or other problems with condensed liquid can be prevented.
In the cylindrical heat exchanger shown in
Depending on the embodiment, the direction in the collecting areas can be different, when, for example, the primary side and secondary side are fed differently than in other directions and the inputs/outputs are arranged in different other positions of the heat exchanger. Further, it should be noted that the collecting areas 711, 721, 731, 741 are fluidically separate from one another apart from the connection by the respective channels. In any case, the collecting area 711 and the collecting area 721 are also connected via the respective channels and the collecting area 731 and 741 are also only connected by the respective channels. On the other hand, the collecting area 711 is fluidically completely separated by the collecting area 741 by the wall structure, which also applies for the collecting area 721 and the collecting area 731, such that no short-circuits occur.
A further aspect of the present invention is that the number of channels along the flow direction can easily be changed, due to the fact that vertical and horizontal channels continuously alternate (in transverse direction, i.e., transversal to the flow direction). In the extreme case, the number of horizontal and/or vertical channels is changed, i.e., increased by one or several channels in the collecting area from a single first channel and a single second channel after a period of approximately 90°, i.e., when a change of horizontal channels to vertical channels has taken place. For example, by a smaller division of the wall structures as shown, for example, based on
This step-by-step miniaturization of the channels in favour of to a larger number of channels is advantageous to implement a collecting area that is easy to “connect”. The heat exchanger can be connected particularly well when there is only a single first channel and a single second channel at the interface, i.e., at the end of the heat exchanger. Then, the first channel would include the top half, for example with reference to
In this context,
For also increasing the number of horizontal channels, the procedure is as illustrated in
Obviously, the procedure illustrated based on
In the following, an implementation of the wall structure of the heat exchanger is described based on
It should be noted that the implementation of the present invention can be scaled according to size in any way according to the embodiment, as the actual length in millimetres, for example of a period duration, can be arbitrarily adjusted. The length of a period duration of less than 10 cm and advantageously less than 2 cm is advantageous to obtain a small-scale structure, which is in particular characterized in that the wall structure is relatively thin to obtain a good heat transfer from the first fluid to the second fluid. However, it should be noted that the thermal conductivity of the wall structure alone is not so important as, for example, in a plate heat exchanger, as the channels are continuously divided and joined again and the position of the channels continuously changes. Thereby, due to the large area of the wall structure that is in touch with the fluid and due to the homogeneous touch of the wall structure with the fluid across the volume, a good heat transfer from the fluid to the wall structure is obtained. This efficient heat transfer is independent of whether the wall structure itself has a particularly good heat transfer coefficient, such as metal, or whether the wall structure is made of plastic for reasons of efficient and economic production, which has a lower heat transfer coefficient than, for example, aluminium. Due to the wall structure, the contribution of the actual material coefficient compared to the heat transfer due to the structuring is reduced, such that a good efficiency is obtained with reasonable volume.
From these structures, it is obvious they are merely soft transitions, such that despite the continuous division of the flow into a relatively large channel, still a small flow resistance is obtained advantageously with a least possible turbulent gas flow in the heat exchanger.
Regarding the dimensioning of the wall structure, the same is configured to have a thickness of 0.01 mm and 1 mm between a channel of the first number of channels and an adjacent channel of the second number of channels, or to include a proportion of 5 to 40 percent of the volume of the heat exchanger and advantageously a proportion of 15 to 20% of the volume of the heat exchanger. In embodiments, the heat exchanger is configured to have at least two periods.
Advantageously, many periods are used, in an area of 10,0000 to 10 million per litre of the volume of the heat exchanger. Particularly advantageous dimensions are in the range of 100,000 to 300,000 periods per litre volume.
In implementations, the numbers of channels can be set in higher ranges areas, such as in a range of more than one million or in ranges between 100,000 and 2 million. Here, the number of periods can be adjusted in the upper range or in a range of 5 to 8 when a particularly low flow resistance is intended.
Although the above-described heat exchanger has been described as air-air heat exchanger or gas-gas heat exchanger, this heat exchanger can also be operated as a liquid-gas or liquid-liquid heat exchanger. In the operation as liquid heat exchanger, the structures through which the respective liquid flows are dimensioned differently in dependence on the viscosity of the liquid which, however, can be easily adapted, depending on the application situation due to the size-independent shaping of the inventive wall structure.
Above that, the inventive heat exchanger can also be used in any applications where a highly efficient heat exchanger is needed, such as in the described application as recuperator in the form of a gas refrigerating machine or as heat exchanger in an air heat recovery device or in any other applications where, for example, plate heat exchangers or other heat exchangers are used in the counter-flow or parallel flow.
The implementation of a gas refrigerating machine will be illustrated below based on
However, the present invention can also be implemented as a closed system in which the gas output 5 is connected to a primary side of a heat exchanger and the gas input 2 is also connected to the primary side of the heat exchanger, but to the “warm” end, and the secondary side of this heat exchanger is connected to a heat source.
The gas refrigerating machine further comprises a recuperator 10 having a first recuperator input 11, a first recuperator output 12, a second recuperator input 13, and a second recuperator output 14. The path from the first recuperator input 11 to the first recuperator input 12 represents the primary side of the recuperator, and the path from the second recuperator input 13 to the second recuperator output 14 represents the secondary side of the recuperator.
Furthermore, a compressor 40 is provided with a compressor input 41 and a compressor output 42. The compressor input 41 is coupled to the first recuperator output 12 via a suction region 30, which is bounded by the intake wall 31. In addition, a heat exchanger 60, which is sometimes also referred to as further heat exchanger in order to distinguish the same from the recuperator heat exchanger, is provided with a heat exchanger input 61 and a heat exchanger output 62. The first heat exchanger input 61 and the first heat exchanger output 62 form the primary side of the heat exchanger 60. The second heat exchanger input 63 and the second heat exchanger output 64 form the secondary side of the heat exchanger 60. The secondary side is coupled to a heat sink 80, which may be arranged, for example, on a roof if the gas refrigerating machine is used for cooling, or which may be a floor heating system if the gas refrigerating machine is used for heating, wherein a pump 90 is further provided in the secondary side, which is advantageously arranged between the heat sink 80 and the second heat exchanger input 63. As is shown in
As shown in
The openings provided in the intake wall thus represent the first recuperator output 31. The intake wall is further configured to provide fluidic separation between the suction region 30 and both the second recuperator input 13 and the second recuperator output 14 (and also with respect to the first recuperator input 11, which is only accessible by gas via the provided path in the recuperator).
The recuperator 10 in
In contrary to the embodiments in
Further, the first recuperator input 11 corresponds to the first input P.IN 710. The first recuperator output (12) corresponds to the output P.OUT 720. The second recuperator input 13 corresponds to the input S.IN 730 and the second recuperator output 14 corresponds to the output S.OUT 740 of
Further, the recuperator 10 is advantageously configured such that the collecting areas are obtained by continuous or stepwise increase of the channels at the expense of the number of channels, as discussed based on
Thereby, by a fractal implementation that is similar to itself, on the one hand, a transparent and logical implementation is obtained, which is further characterized by a low flow resistance with at the same time high efficiency due to an optimum even distribution of the heat transfer effect across the entire volume of the heat exchanger.
In embodiments, the recuperator 10 extends completely around the suction region 30, as shown, for example, in
Other larger or smaller extensions around the suction region are also conceivable for the recuperator, depending on the implementation. However, an implementation in which the recuperator extends completely, i.e. 360°, around the suction region is particularly efficient.
Here, this is further advantageous for the recuperator to have a circular cross-section in top view. Other cross-sections, such as triangular, square, pentagonal or other polygonal cross-sections in top view are also conceivable, since these recuperators with such cross-sections in top view can also be easily designed with corresponding gas channels in order to achieve a recuperation effect with high efficiency advantageously from all sides.
In an embodiment of the present invention, the entire gas refrigerating machine is accommodated in a housing, as shown, for example, in
Furthermore, all components of the gas refrigerating machine, i.e. both the compressor 40 and the recuperator 10 as well as the heat exchanger 60 and the turbine 70, are located within the housing 100, as shown in an exemplary, particularly compact implementation in
The electronic assembly 102 is advantageously used to provide power to a drive motor for the compressor 40, or to provide control data to an element of the gas refrigerating machine, or to acquire sensor data from an element of the gas refrigerating machine, and is disposed in a region of the gas refrigerating machine configured or suitable to cool the electronics assembly.
As it has been pointed out, the gas refrigerating machine can be used for cooling. In this case, the gas input is connected to a room to be cooled either directly or connected to an area to be cooled via a heat exchanger, and the heat exchanger 60 or the secondary side 63, 64 of the heat exchanger is connected to a heat sink 80, such as a ventilator on the roof of a building or a ventilator outside an area to be cooled.
On the other hand, if the gas refrigerating machine is used to heat a building or an area to be heated, the secondary side 63, 64 of the heat exchanger is connected to, for example, a floor heating system (FHS), or to any heating circuit that may have heating capabilities other than floor heating. In this case, the gas input 2 is connected to a source of hot gas if a direct system is used, or to a heat exchanger connected on its primary side to a heat source, and whose secondary side is formed by the gas input 2 and the gas output 5. In particular, the secondary input of this heat exchanger not shown in
With reference to
In one implementation, as shown in
Furthermore, in the embodiment shown in
Further, as shown in
Advantageously, the recuperator is arranged in an outer region of a volume of the gas refrigerating machine so that the suction region 30, which is connected to the compressor input 41, can be arranged in the inner region of the recuperator. Then, air is drawn in from all sides, as shown in
Advantageously, the recuperator 10 is rotationally symmetrical, and an axis of symmetry of the recuperator 10 coincides with an axis of the compressor or an axis of the turbine or an axis of the suction region and/or with an axis of the housing.
In one embodiment, the recuperator is implemented as a counter-flow heat exchanger, which is indicated as one aspect in the schematic diagram of
Thermal interaction takes place via material of the recuperator, which is arranged between gas channels 15 and 16, i.e. between a gas channel 15 and a corresponding gas channel 16, i.e. heating of the sucked warm gas at the expense of cooling the gas flowing in the secondary region of the recuperator, which is brought to the turbine for relaxation.
The recuperator includes the collection space 17 to distribute gas supplied via the left connection 4 from the bottom to the top in the embodiment shown in
In the embodiment, the housing in which the compact gas refrigerating machine is arranged is rotationally symmetrical or cylindrical and has a diameter between 0.5 and 1.5 meters and a height between 1.0 and 2.5 meters. In particular, sizes with a diameter between 70 and 90 and especially 80 centimeters are advantageous, and a height between 170 and 190 and advantageously of 180 cm is advantageous in order to create an already significant cooling for, for example, a computer room, which is advantageously implemented as direct air cooling. Furthermore, to ensure an optimal flow distribution, a widening is provided from the turbine output 72 to the gas outlet 5, which also runs in a parabolic or hyperbolic shape, so that a favorable adaptation of the flow conditions from the high speed at the turbine output 72 to an adapted reduced speed at the air outlet 5 is achieved, so that no excessive noise is generated by the cooling.
Advantageously, the housing has an elongated shape, and the gas inlet is formed by a plurality of perforations in an upper region of the housing with respect to the operating direction of the gas refrigerator or a wall of the housing. Furthermore, the gas outlet is formed by an opening in a lower region or in the bottom of the housing, wherein the opening in the bottom of the region corresponds to at least 50% of a cross-sectional area of the housing in the upper region, i.e. in the air inlet. By making the opening of the gas outlet as large as possible, low air velocities at the gas outlet and thus a pleasant noise behavior and also a pleasant “draft” behavior in the room with only low air movement occurrence are achieved.
Advantageously, the compressor 40 is arranged to achieve air movement in the suction region, in the operating direction of the gas refrigerating machine, from top to bottom. The compressor 40 then results in a deflection of the flow from bottom to top, favorably employing here a guide chamber 45 of the compressor, which already inherently achieves a 90° deflection at the transition from the compressor wheel to the guide chamber 45. The next 90° is then achieved by feeding the gas, which has been compressed, at the output of the guide chamber from the bottom to the top via the heat exchanger input 61, which is also the compressor output 42. In the second heat exchanger, the gas then moves from the outside to the inside, towards the heat exchanger output 62, which coincides with the input of the recuperator 13. The gas then moves through collection regions, as has been illustrated with reference to
In the embodiment shown in
Locating the turbine output at the bottom of the gas refrigerating machine is further advantageous in that condensed moisture falls away from the unit downward due to gravity and can be easily collected and discharged without having to elaborate on the protection of the engine from the moisture.
It should be noted that, depending on the implementation, the flow directions can also be designed differently, as long as the lines 15 on the one hand and 16 on the other hand are separated from each other in the recuperator 10, so that essentially no short-circuiting of the gas flows takes place. In the same way, the collection spaces 17, 18 are separated from the lines 15. In the embodiment shown, the collection spaces 17, 18 are associated with the lines 16, which connect the second recuperator input 13 to the second recuperator output 14. Alternatively, the implementation may be such that the collection spaces are associated with the first recuperator input and the first recuperator output, and the second input and the second recuperator output are gas-isolated from the collection spaces.
Advantageously, the heat exchanger 60 has a disc-shaped volume, and the heat exchanger input is located outside the disc-shaped volume and the heat exchanger output is located inside the disc-shaped volume. Furthermore, the heat exchanger input is advantageously located at the bottom of the heat exchanger and the heat exchanger output is located at the top of the disc-shaped volume. In other embodiments, it is advantageous to form the heat exchanger wedge-shaped in cross-section, wherein a cross-section of the heat exchanger input 61 is formed to be larger than a cross-section of the heat exchanger output 62 This results in a advantageously rotationally symmetrical heat exchanger, which is formed to be somewhat annular as in
A liquid, such as a water/glycol mixture, which carries the waste heat to the heat sink 80 advantageously flows in the secondary side of the heat exchanger, the input of which represents the line 63 and the output of which represents the line 64. The medium cooled in the heat sink 80, which may be, for example, a liquid/air heat exchanger with a ventilator on a roof, is fed back into the input 63 of the secondary side of the heat exchanger 60 by the pump 90, as is also shown in
Advantageously, the suction region extends by a distance greater than 10 cm and advantageously greater than 60 cm away from the compressor input. Furthermore, the gas channels are arranged such that the same are distributed substantially evenly over the volume on all sides and can thus feed as much air as possible with low resistance into the suction region as efficiently as possible.
In a method of operating the gas refrigerating machine according to the present invention, the gas refrigerating machine is operated such that the suction is achieved through the suction region 30 specifically projecting into the recuperator.
Although it is not shown in
Also, the compressor and the turbine do not necessarily have to be located on the same axis, but other measures can be taken to use the energy released by the turbine to drive the compressor.
Furthermore, the heat exchanger does not necessarily have to be located in the housing between the recuperator and the turbine or between the recuperator and the compressor. The heat exchanger could also be connected externally, although an arrangement located in the housing is advantageous for a compact design.
Furthermore, the compressor and the turbine do not necessarily have to be implemented as radial wheels, although this is advantageous since a favorable power adjustment can be achieved by continuously controlling the number of revolutions of the compressor via the electronic assembly 102 of
Depending on the embodiment, the compressor can be designed as shown in
Advantageously, the electronic assembly 102 for electrically supplying power and/or control signals to the gas refrigerating machine has an opening at the center and is disk-shaped and extends around a stator of a drive motor for the compressor 40 or is formed integrally with the stator, and is further exemplarily disposed in a region between a base of a compressor wheel of the compressor 40 and a base of a turbine wheel of the turbine.
Although an annular assembly is shown in cross-section in
In the following, exemplary implementations of the inventive gas refrigerating machine with the inventive fractal heat exchanger as recuperator and/or the inventive fractal heat exchanger as heat exchanger will be illustrated.
1. Gas refrigerating machine, comprising: an input (2) for gas to be cooled; a recuperator (10) comprising a heat exchanger as described above and claimed below; a compressor (40) with a compressor input (41), wherein the compressor input (41) is coupled to a first recuperator output (12); a further heat exchanger (60); a turbine (70); and a gas output (5), wherein the compressor input (41) is connected to suction area (30) limited by a suction wall (31) and extending away from the compressor (40) and wherein the recuperator (10) extends at least partly around the suction area (30) and is limited by the suction wall (31).
2. Gas refrigerating machine according to example 1, wherein the recuperator (10) comprises a first recuperator input (11), the first recuperator output (12), a second recuperator input (13) and a second recuperator output (14), or wherein the compressor comprises a compressor input (41) and a compressor output (42) or
wherein the further heat exchanger (60) comprises a first heat exchanger input (61) and a first heat exchanger output (62) on a primary side, a second heat exchanger input (63) and a second heat exchanger output (64) on a secondary side, wherein the first heat exchanger input (61) is coupled to the compressor output (42) and wherein the first heat exchanger output (62) is coupled to the second recuperator input (13) or
wherein the turbine (70) comprises a turbine input (71) and a turbine output (72), wherein the turbine input (71) is connected to the second recuperator output (14) and wherein the gas output (5) is coupled to the turbine output (72).
3. Gas refrigerating machine according to any of the preceding examples comprising a housing (100) in the wall of which the input (2) for gas to be cooled is arranged, and in the wall of which the gas output (5) is arranged, wherein the recuperator (10), the compressor (40), the turbine (70) or the further heat exchanger (60) are arranged in the housing (100).
4. Gas refrigerating machine according to any of the preceding examples, wherein the compressor (40) is arranged above the turbine (70) in operating direction or
that is configured such that suction of warm gas takes place at a first portion of the housing (100) of the gas refrigerating machine and dissipation of gas cooler than the warm gas takes place at the second portion of the housing (100) of the gas refrigerating machine, wherein the first portion is arranged above the second portion in operating direction.
5. Gas refrigerating machine according to any of the preceding examples, wherein the compressor (40) comprises a compressor wheel (40) and the turbine (70) comprises a turbine wheel, wherein the compressor wheel and the turbine wheel are arranged on a common axis, wherein a rotor (44) of a drive motor that is in cooperation with a stator of the drive motor is arranged on the axis, or wherein a compressor wheel (40) comprises a greater diameter than a rotor (44) of a drive motor or a greater diameter than a turbine wheel of the turbine (70).
6. Gas refrigerating machine according to example 5, wherein the rotor (44) is arranged between the compressor wheel (40) and the turbine wheel (70), or wherein the compressor wheel (40), a first axis portion (43), a rotor (44), a second axis portion (43) and the turbine wheel (70) are integrally formed, or wherein a first bearing portion is formed on the compressor wheel (40) and a second bearing portion on the turbine wheel (70), or wherein the rotor (44) is formed of a non-ferromagnetic material, such as aluminum and a ferromagnetic material feedback element is arranged around the router (44) and magnets are arranged on the feedback element.
7. Gas refrigerating machine according to any of the preceding examples, wherein the recuperator (10) is arranged in an outer area of a volume of the gas refrigerating machine and the compressor input (41) is arranged in an inner area of the volume of the gas refrigerating machine.
8. Gas refrigerating machine according to any of the preceding examples, wherein the recuperator (10) has a volume shape comprising a central opening positioned in a central area forming the suction area (30), wherein the suction wall (31) extends from a first end of the central opening forming the compressor input (41) to a second end closed by a cover (32).
9. Gas refrigerating machine according to any of the preceding examples, wherein the suction area (30) comprises a continuously increasing opening area from a first end to a second end and the suction wall (31) is formed continuously or without steps.
10. Gas refrigerating machine according to any of the preceding examples, wherein the recuperator (10) is rotationally symmetrical, wherein a symmetry axis of the recuperator (10) essentially corresponds to an axis of the compressor (40) or an axis of the turbine (70) or an axis of the gas output (5) or the gas input (2) or with an axis of the suction area (30).
11. Gas refrigerating machine according to any of the preceding examples, wherein the recuperator (10) comprises a counter-flow heat exchanger.
12. Gas refrigerating machine according to example 11, wherein the gas moves from outside to the inside through the input (2) for gas to be cooled and the gas output by the counter-flow heat exchanger moves from inside to outside.
13. Gas refrigerating machine according to any of the preceding examples, wherein a housing (100) comprises a side wall and a bottom wall or a lid wall, wherein the input (2) for gas to be cooled is arranged in the side wall and the gas output (5) is arranged in the bottom wall or the top wall or
wherein the gas output (5) is formed in a bottom of the gas refrigerating machine in an operating direction and is formed such that the gas output can be placed onto a cooling gas inlet in a floor of a room where the gas refrigerating machine can be set up or
wherein the gas output (5) is formed in a bottom of the gas refrigerating machine in an operating direction and further a humidity collecting apparatus is provided to collect condensate accumulating in the gas output (5).
14. Gas refrigerating machine according to any of the preceding examples, wherein a housing (100) is rotationally symmetrical or cylindrical or has a diameter between 0.5 m and 1.5 m or a height between 1.0 m and 2.5 m.
15. Gas refrigerating machine according to any of the preceding examples, wherein the turbine output (72) comprises a smaller opening area than the gas outlet (5) wherein an opening area continuously widens from the turbine output (72) to the gas output (5).
16. Gas refrigerating machine according to any of the preceding examples, wherein a housing (100) has a longitudinal shape, wherein the input (2) for gas to be cooled comprises a plurality of perforations in an upper area of the housing (100) or a wall of the recuperator (10) with respect to an operating direction of the gas refrigerating machine and the gas output (5) comprises an opening in a bottom area of the housing (100) with an opening area that is at least 50% of a cross sectional area of the housing (100) in the upper area.
17. Gas refrigerating machine according to any of the preceding examples, wherein the compressor (40) is arranged to move gas via the suction area (30) into the compressor input (41) from top to bottom and to feed gas compressed by an output-side guide room (45) from the bottom into the further heat exchanger.
18. Gas refrigerating machine according to any of the preceding examples, wherein the further heat exchanger (60) has a wedge-shaped or disc-shaped volume and a heat exchanger input (61) is arranged on the outside of the wedge-shaped or disc-shaped volume and a heat exchanger output (62) is arranged on the inside of the wedge-shaped or disc-shaped volume, or wherein the heat exchanger input (61) is arranged at the bottom of the wedge-shaped or disc-shaped volume and the heat exchanger output (62) is arranged at the top of the wedge-shaped or disc-shaped volume.
19. Gas refrigerating machine according to any of the preceding examples, wherein the recuperator (10) comprises a volume that has a counter-flow heat exchanger structure at an outer area and connects to the suction area (30) in an inner area, wherein a first recuperator input (11) is arranged on the outside the outer area, wherein a first recuperator output (12) is arranged at the inner area to guide gas into the suction area (30), wherein a second recuperator input (13) is also arranged on the inner area and the second recuperator output (14) is also arranged on the outer area,
wherein the first recuperator input (11) and the second recuperator output (14) are fluidically separated in the recuperator (10) and the first recuperator output (12) and the second recuperator input (13) are fluidically separated in the recuperator (10).
20. Gas refrigerating machine according to any of the preceding examples, wherein the recuperator (10) comprises first gas channels (15) connected to each other from a first recuperator input (11) to a first recuperator output (12) and second gas channels (16) connected to each other between a second recuperator input (13) and a second recuperator output (14),
wherein the first gas channels (15) and the second gas channels (16) are arranged in thermal interaction, wherein the recuperator (10) comprises, at the second recuperator input, a first collecting area (18) connecting the second gas channels (16) on one side and extending along the inner area and forming the second recuperator input (12), and a second collecting area (17) connecting the second gas channels on a different side and extending along an edge area of the outer area and forming the second recuperator output (14), wherein the suction wall (31) limits the first collecting area (18) and separates the first collecting area (18) from the suction area (30).
21. Gas refrigerating machine according to any of the preceding examples, wherein the further heat exchanger (60) is arranged between the recuperator (10) and the compressor (40).
22. Gas refrigerating machine according to any of the preceding examples, wherein the turbine input (71) is connected to a second recuperator output (14) via a connecting area, wherein the connecting area extends around the further heat exchanger (60).
23. Gas refrigerating machine according to any of the preceding examples, wherein the further heat exchanger (60) is a gas-liquid exchanger and comprises a conductive structure in a volume through which gas flows, through which liquid can flow, wherein the liquid structure is coupled to a secondary input (63) and a secondary output (64) of the further heat exchanger (60).
24. Gas refrigerating machine according to example 23, wherein a housing (100) comprises a liquid outlet (64) from a further heat exchanger (60) and a liquid inlet (63) to the further heat exchanger (60).
25. Gas refrigerating machine according to example (24), wherein the liquid inlet and the liquid outlet are connected to a heat sink (80), wherein a pump (90) is arranged in a cycle with the heat sink (80).
26. Gas refrigerating machine according to any of the preceding examples, wherein the recuperator (10) comprises a volume completely enclosing the suction area (30), wherein the suction area (30) and the volume of the recuperator (10) extend away from the compressor input (41) by a distance greater than 10 cm, wherein the input (2) for gas to be cooled is formed by first ends from the first gas channels (15), wherein second ends of the first gas channels lead into the suction area (30), wherein the first gas channels (15) are distributed across the volume to guide gas from several sides into the suction area (30).
27. Gas refrigerating machine according to any of the preceding examples formed as open system, wherein the input (2) for gas to be cooled is arranged in an area to be cooled and the gas output (5) is arranged in the area to be cooled to suck in hot gas from the area to be cooled and to output cold gas into the area to be cooled.
28. Gas refrigerating machine according to any of the preceding examples, wherein an electronic assembly (102) for supplying a drive motor for the compressor with energy or for providing control data to an element of the gas refrigerating machine or for detecting sensor data from an element of the gas refrigerating machine is arranged in an area of the gas refrigerating machine that is configured to cool the electronic assembly or
wherein an electronic assembly (102) for the electrical supply of the gas refrigerating machine with energy and/or control signals is arranged in an area between the turbine output (72) and the gas output (5) and a housing wall outside the gas output (5), or wherein an electronic assembly (102) for the electrical supply of the gas refrigerating machine with energy and/or control signals is arranged in an area between a base of a compressor wheel of the compressor (40) and a base of a turbine wheel of the turbine, or wherein an electronic assembly (102) for the electrical supply of the gas refrigerating machine with energy and/or control signals is arranged at a limiting element (71a) of a turbine input (71) of the turbine (70), wherein the electronic assembly further is arranged outside the turbine input (71) of the turbine (70) or
wherein an electronic assembly (102) for the electrical supply of the gas refrigerating machine with energy and/or control signals comprises an opening in the center and is disc-shaped and extends around a stator of a drive motor for the compressor (40) or is formed in an integrated manner with the stator and is arranged, for example, in an area between a base of a compressor wheel of the compressor (40) and a base of a turbine wheel of the turbine (70).
In an alternative embodiment of the present invention, the heat exchanger can also be configured as liquid-gas heat exchanger or solid-gas heat exchanger. Then, at least one input interface or an output interface or both interfaces are provided, which advantageously couple to a material supply that is a gas supply or also a liquid supply. In both cases, the input or output interface cannot only be switchable or firmly wired, but the respective interface can also include a heat exchanger to bring thermal energy from the material supply into the heat exchanger or to dissipate thermal energy from the heat exchanger 10.
In an embodiment of the present invention, the apparatus 1600 for treating gas is supplemented by an input interface 1000 or an output interface 200 or both interfaces. The input interface 1000 is configured to couple the compressor input 41 and the heat exchanger input 11 to a material supply, which is advantageously a gas supply, which advantageously consists of an outlet air channel 1102a and a fresh air channel 1102b. Further, the output interface 200 is configured to couple the turbine output 72 and the first heat exchanger output 12 to a material exhaust, which is advantageously a gas exhaust, which advantageously comprises an inlet air channel 1202a and an exhaust air channel 1202b. In particular, the input interface comprises an outlet air input or channel 1102a on an input side and a fresh air input 1102, also on the input side. Further, the input interface 1000 comprises a first input interface output 1104 and a second input interface output 106 on an output side of the input interface 1000. Further, the output interface 200 advantageously comprises an inlet air output 1202a and an exhaust air output 1202b on an output side and a first output interface input 206 and a second output interface input 204 on an input side of the output interface 200.
As shown in
Above that, the input interface 1000 is configured to couple the input side of the input interface 1000 to the output side of the input interface 1000. Above that, the output interface is configured to couple the input side of the output interface 200 to the output side of the output interface 200.
Depending on the implementation, this coupling can be a fixed coupling as illustrated for example in
Further,
Advantageously, the control 300 is configured to set the input interface 1000 or the output interface 200 by the control signal 1302, 1304 to a summer operation for cooling a gas for an inlet gas channel 1202 for the gas exhaust, and to set the input interface 1000 or the output interface 200 by the control signal 1302, 1304 into a winter operation for heating a gas for the inlet gas channel 1202a. The control can store, for example, a control table 1301 of
In the embodiment of
A respective direct connection exists further between the output interface input 206 and the inlet air channel 1202a on the one hand and the second heat exchanger input 12 or the output interface input 204 and the exhaust air output 1202b as shown in
Further,
Further,
The 5° C. cold air is then given into the inlet air channel 1202a and can be used for cooling purposes in the room 400. The primary side of the heat exchanger 10 includes, on the input side, hot air from the room having, for example, a temperature of 25° C. and this temperature is increased to a temperature of approximately 87° C. by the effect of the heat exchanger 10, and this now very hot air is dissipated to the outside, for example a shadow side or roof of a building via the exhaust air channel 1202b. Even when an outside temperature is very high and is around 50° C., the exhaust air with 87° C. is still significantly hotter than the environmental air and it has therefore shown that the energy dissipated via the exhaust air can be easily received by the environment and no additional heat sink is needed. Typical heat exchanger temperature differences of 3° C. have been assumed for the heat exchanger 10, which exist between the secondary side input and the secondary side output or the primary side input and the secondary side output.
By mixing the 5° C. cold air into the output of the treater 504 in the combiner 506 by the combiner 506 of the air-conditioning device, for example, 18° C. cold air can be easily generated, which can be fed for cooling purposes into the room 400, which is, for example, a room in a building, such as a conference room, a room, a hall or the same or also a “function room” such as a data center.
The temperature examples shown in
The same applies for the temperature example shown in
Although in the embodiment shown in
It should be noted that, when the outside temperatures are warmer than
The part of the room outlet air in the channel 508, which does not finally become the exhaust air via the channel 1102a, represents the re-feeding flow 512 whose temperature is typically not changed but can merely be treated with respect to other air quality parameters in the treater 504, such as enriched with oxygen, enriched with humidity or depleted from humidity. Further treating processes are disinfecting the re-feeding flow or filtering the re-feeding flow for dust or biological particles, such as bacteria or viruses. As illustrated in dotted manner in
In the combiner 506, the inlet air in the inlet air channel 1202a, which is based on fresh air with a changed temperature, is combined with the re-feeding flow directly or the processed re-feeding flow and supplied to the room 400 via the room inlet air channel 510. For this, the combiner 506 advantageously includes a blower, e.g. 506 of
It should further be noted that the room 400 can be any room such as a house, an office, an office space but also a car or even the inside of a tumble dryer. Even a room that is not divided off completely, such as a partly open outside room, for example, of a restaurant can be air-conditioned according to the invention, such as cooled or heated.
The present invention is further particularly advantageous as tasks normally to be performed can be simply performed in addition to air-conditioning by the apparatus for treating gas, such as dehumidifying the inlet air in particular for the cooling operation, for example in the summer. With respect to the exemplary temperatures shown in
On the other hand, air humidification, such as for the heating operation in winter as illustrated in
It should be noted that in contrary to existing air-conditioning devices, where heat recovery from the room outlet air flow takes place by using a heat pump that uses a liquid, for example water, as working medium, the inventive apparatus for treating gas operates completely without any liquid as working medium, but merely uses gas as working medium. Therefore, the inventive apparatus for treating gas can be implemented in a particularly efficient and energy-saving manner as all losses resulting from circulating water or from the expensive (due to a very small needed pressure) and energy-intensive evaporation of water become obsolete. According to the invention, merely gas is used both in the primary circuit of the heat exchanger and the secondary circuit of the heat exchanger, such that the heat exchanger is implemented as gas-gas heat exchanger. In the entire apparatus, merely gas is used as working medium, such that all difficulties accompanying the usage of a liquid as working medium are obsolete. Such problematic and expensive implementations when using liquids as working medium are, for example, also the storage and sealing of liquids, even when environmentally friendly liquids such as water are used and in the measures needed, for example, for evaporating water at low temperatures.
The implementation of the output interface is analogously, wherein here the bottom labeling in
The output interface includes a first switch 200a for the terminal A2 and a second switch 200b for the terminal A4. The first switch 1000a has a fresh air terminal 308 and an outlet air terminal 320. The second switch 1000b has an outlet air terminal 108 and a fresh air terminal 120. The terminal 108 and the terminal 320 can be separate terminals or can all go back to the same outlet air terminal or outlet air channel. The fresh air terminal 120 and the fresh air terminal 308 can again be different terminals or can go back to the same fresh air channel.
The control of the switch takes place via a control signal 1302b for the first control signal C1 and via a second control signal 1302a via the control terminal C3.
The output interface 200 is implemented analogously via a first switch 200a and a second switch 200b. The output interface includes, for the first switch, an inlet air channel 208 and an exhaust air channel 220 and, for the second switch, an exhaust air channel 400 and an inlet air channel 420. The exhaust air channel 220 and the exhaust air channel 400 can be different channels or the same exhaust air channel.
The same applies for the inlet air channel 420 and the inlet air channel 208, which can be configured separately or which can lead into a common inlet air channel. The control takes again place via a control signal 1304a for the second switch i.e. for the control signal C2 and via a second control signal 1304b for the control terminal C4.
Through the recuperator 10, the gas flows again to the outside in the collecting room 17 and from there to the bottom as illustrated by the arrow ends 53. From the collecting room 17, the gas reaches the turbine input 71 via the recuperator output 14.
It should be noted that the flow directions can be configured differently, depending on the implementation, as long as in the recuperator 10 the lines 15 on the one hand and 16 on the other hand are separate, so that essentially no short circuit of gas flows takes place. In the same way, the collecting rooms 17, 18 are separate from the lines 15. In the shown embodiment, the collecting rooms 17, 18 are allocated to the lines 16, which connect the second recuperator input 13 to the second recuperator output 14. Alternatively, the implementation can also be such that the collecting rooms are allocated to the first recuperator input and the first recuperator output and the second input and the second recuperator output are isolated from the collecting rooms as regards to gas.
At the same time, however,
Advantageously, the recuperator extends by a distance of more than 10 cm and advantageously more than 60 cm in longitudinal cylinder direction. Further, the gas channels are arranged such that the same are distributed essentially evenly on all sides across the volume and can hence guide as much air as possible as efficiently as possible from the primary-side input 11 with little resistance into the suction area.
In a method for operating the apparatus according to the present invention, the apparatus is operated such that gas-gas operation is obtained in the heat exchanger.
In a method for producing the apparatus, the individual elements are configured and arranged such that the specific compressor-heat exchanger-turbine arrangement is obtained.
Although not illustrated in
The compressor and the turbine do also not have to be necessarily arranged on the same axis, but other measures can be taken to use the energy released by the turbine for driving the compressor.
Above that, the compressor and the turbine do not necessarily have to be implemented as radial wheels although this is advantageous, as by continuous rotational speed control of the compressor via an electronic assembly 102 of
Depending on the embodiment, the compressor can be configured as turbo compressor with radial wheel and with a guide path or guide room obtaining a 180° deflection of the gas flow. However, other gas guiding measures can be obtained via different shape of the guide room, for example via a different form of the radial wheel to still obtain a particularly efficient structure resulting in a good efficiency.
In embodiments, the combination is formed of a material such as aluminum or plastic, wherein the rotor 44 is surrounded by a ferromagnetic feedback ring on which the magnets are for example mounted by adhesive in order to form a motor gap with a stator not shown in
As further shown in
Advantageously, the electronic assembly 102 for the electrical supply of the apparatus with energy and/or control signals an opening in the center and is disc-shaped and extends around the stator of a drive motor for the compressor 40 or is integrated with the stator and is further exemplarily arranged in an area between the base of a compressor wheel 4a of the compressor 40 and the base of a turbine wheel 71a of the turbine.
Although
In the following, exemplary implementations of the inventive apparatus for treating gas and the inventive air-conditioning device are illustrated with the inventive fractal heat exchanger.
1. Apparatus for treating gas, comprising: a compressor (40) with a compressor input (41) and a compress output (42); a heat exchanger (10) with a first heat exchanger input (11), a first heat exchanger output (12), a second heat exchanger input (13) and a second heat exchanger output (14), wherein the heat exchanger is configured as gas-gas heat exchanger; and a turbine (70) with a turbine input (71) and a turbine output (72), wherein the compressor output (42) is connected to the second heat exchanger input (13) and wherein the second heat exchanger output (14) is connected to the turbine input (71).
2. Apparatus according to example 1, further comprising an input interface for coupling the compressor input (41) and the first heat exchanger input (11) with a gas supply (1102a, 1102b), or an output interface (200) for coupling the turbine output (72) and the first heat exchanger output (12) with a gas exhaust (1202a, 1202b).
3. Apparatus according to example 2, wherein the input interface (1000) comprises, on an input side, an outlet air input (1102a) and a fresh air input (1102b) and, on an output side, a first input interface output (1104) and a second input interface output (106), wherein the input interface (1000) is configured to couple the input side of the input interface to the output side of the input interface, or wherein the output interface (200) comprises, on an input side, a first output interface input (204) and a second output interface input (206), and, on an output side of the output interface (200), an inlet air channel (1202a) and an exhaust air channel (1203b), wherein the output interface (200) is configured to couple the input side of the output interface (200) to the output side of the output interface.
4. Apparatus according to any of the preceding examples configured for cooling operation, wherein an input interface (1000) is configured to connect the compressor input (41) to a fresh air channel (1102b) of the gas supply and to connect the first heat exchanger input (11) to an outlet gas channel (1102a) of the gas supply, or wherein an output interface (200) is configured to connect the turbine output (72) to an inlet gas channel (1202a) of the gas exhaust, and to connect the first heat exchanger output (12) to the exhaust gas channel (1202b) of the gas exhaust.
5. Apparatus according to any of examples 1 to 3 configured for heating operation, wherein an input interface (1000) is configured to connect the compressor input (41) to an outlet gas channel (1102a) of the gas supply and to connect the first heat exchanger input (11) to a fresh gas channel (1102b) of the gas supply, or wherein an output interface (200) is configured to connect the turbine output (72) to an exhaust gas channel of the gas exhaust and to connect the first heat exchanger output to an inlet gas channel (1202a) of the gas exhaust.
6. Apparatus according to any of the preceding examples, wherein the input interface (1000) or the output interface (200) are controllable depending on a control signal (1302, 1304), and wherein the apparatus comprises a control (300) that is configured to obtain a control input and to provide the control signal (1302, 1304) in response to the control input, wherein the control (300) is configured to obtain the control signal (1302, 1304) by manual input or sensor-controlled input.
7. Apparatus according to example 6, wherein the control (300) is configured to set the input interface (1000) or the output interface (200) by the control signal (1302, 1304) into a summer operation for cooling a gas for an inlet gas channel (1202a) of the gas exhaust and to set the input interface (1000) or the output interface (200) by the control signal (1302, 1304) into a winter operation for heating a gas for the inlet gas channel (1202a).
8. Apparatus according to any of the preceding examples, wherein the input interface (1000) comprises a two-way switch comprising an outlet gas input and a fresh gas input for the gas supply and comprises a first input interface output connected to the first heat exchanger input and a second input interface output connected to the compressor input (41), wherein the two-way switch is configured to connect the outlet gas input either to the first input interface output or the second input interface output and to connect the fresh gas either to the second input interface output or the first input interface output.
9. Apparatus according to any of the preceding examples, wherein the output interface (200) comprises a two-way switch comprising an inlet gas output and an exhaust gas outlet for the gas exhaust, wherein the two-way switch is configured to connect the inlet gas output to the turbine output (72) and the exhaust gas output to the first heat exchanger output (12) or to connect the exhaust gas output (1202b) of the turbine output (72) and the inlet gas output to the first heat exchanger output.
10. Apparatus according to any of the examples 1 to 7 or 9, wherein the input interface (1000) comprises a first switch (1000b) or a second switch (1000a), wherein the first switch comprises an output (A1) connected to the first heat exchanger input and wherein the first switch (1000b) comprises a first input connected to an outlet gas channel of the gas supply and a second input connected to a fresh gas channel of the gas supply, wherein the first switch (1000b) is controllable by a control signal (1302b) to either connect the first input or the second input to the output, or wherein the second switch (1000a) comprises an output (A3) connected to the compressor input, and wherein the first switch (1000b) comprises a first input connected to an outlet gas channel of the gas supply and a second input connected to a fresh gas channel of the gas supply, wherein the first switch (1000b) is controllable by a control signal (1302a) to connect either the first input or the second input to the output.
11. Apparatus according to any of the examples 1 to 7, 9, 10, wherein the output interface (200) comprises a first switch (200a) or a second switch (200b), wherein the first switch (200a) comprises an input (A2) connected to the turbine output, and wherein the first switch (200a) comprises a first output connected to an inlet gas channel of the gas exhaust and comprises a second output connected to an exhaust gas channel of the gas exhaust, wherein the first switch (200a) is controllable by a control signal (1304a) to either connect the first output or the second output to the input, or wherein the second switch (200b) comprises an input (A4) connected to the second heat exchanger output, and wherein the second switch (200b) comprises a first output connected to an inlet gas channel of the gas exhaust and comprises a second output connected to an exhaust gas channel of the gas exhaust, wherein the first switch (200a) is controllable by a control signal (1304b) to either connect the first output or the second output to the input.
12. Apparatus according to any of the preceding examples, wherein the inlet gas is an inlet air, wherein the outlet gas is an outlet air, wherein the fresh gas is fresh air and wherein the exhaust gas is exhaust air, or which is configured for cooling operation and a drop catching apparatus is arranged in an outlet flow of the turbine (70) to remove and dissipate the condensation liquid drops from the outlet flow, or which is configured for heating operation and a humidification apparatus is arranged at the first heat exchanger output (12), which brings liquid to be evaporated in touch with the gas flow at the first heat exchanger output (12), or wherein a fan (21) is arranged at the first heat exchanger input (11) to press gas into the first exchanger input (11), or wherein a fan is arranged at the first heat exchanger output (12) to suck gas out of the first heat exchanger output (12).
13. Apparatus according to example 12 configured to be coupled to an air-conditioning device, wherein the air-conditioning device comprises an outlet air terminal (1102a), an inlet air terminal (1202a), an exhaust air terminal and a fresh air terminal, wherein the apparatus for treating gas can be coupled to the air-conditioning device via an input interface (1000) or an output interface (200).
14. Apparatus according to any of the preceding examples, wherein the compressor (40) is arranged above the turbine (70) in operating direction and that is configured.
15. Apparatus according to any of the preceding examples, wherein the compressor (40) comprises a compressor wheel (40a) and the turbine (70) comprises a turbine wheel (70a), wherein the compressor wheel and the turbine wheel (70a) are arranged on a common axis, wherein a rotor (44) of the drive motor is arranged on the axis, which interacts with a stator of the drive motor, or wherein a compressor wheel (40a) has a greater diameter than a rotor (44) of a drive motor or a greater diameter than a turbine wheel (70a) of the turbine (40).
16. Apparatus according to example 15, wherein the rotor (44) is arranged between the compressor wheel (40a) and a turbine wheel (70a), or wherein the compressor wheel (40a), a first axis portion (43a), a rotor (44), a second axis portion (43b) and the turbine wheel (70a) are configured integrally, or wherein a first bearing portion (40b) is formed at the compressor wheel (40a) and a second bearing portion (70b) at the turbine wheel (70a), or wherein the rotor (44) is formed of a non-ferromagnetic material, such as aluminium, and a ferromagnetic feedback element (44a) is arranged around the rotor (44) and magnets (44b) are arranged on the feedback element (44a).
17. Apparatus according to any of the preceding examples, wherein the heat exchanger (10) has a volume shape comprising a central opening positioned in a central area forming a suction area (30), wherein a suction wall (31) extends from a first end of the central opening to a second end, which is closed by a cover (32).
18. Apparatus according to any of the preceding examples, wherein the heat exchanger (10) is rotationally symmetrical, wherein a symmetry axis of the heat exchanger (10) essentially corresponds to an axis of the compressor (40) or an axis of the turbine (70) or an axis of the gas output (5) or the gas input (2) or with an axis of the suction area (30).
19. Apparatus according to any of the preceding examples, wherein the heat exchanger (10) comprises a counter-flow heat exchanger.
20. Apparatus according to example 19, wherein gas in the heat exchanger (10) moves from the first heat exchanger input to the first heat exchanger output from the outside to the inside and gas moves from the second heat exchanger input to the second heat exchanger output from the inside to the outside.
21. Apparatus according to any of the preceding examples, wherein the heat exchanger (10) comprises a volume comprising a counter-flow heat exchanger structure in an outer area and is connected to a suction area (30) in an inner area, wherein the first heat exchanger input (11) is arranged on the outside at the outer area, wherein the first heat exchanger output (12) is arranged at the inner area to guide gas into the suction area (30), wherein the second heat exchanger input (13) is also arranged at the inner area and the second heat exchanger output (14) is also arranged at the outer area, wherein the first heat exchanger input (11) and the second heat exchanger output (14) are fluidically separated in the heat exchanger (10) and the first heat exchanger output (12) and the second heat exchanger input (13) are fluidically separated in the heat exchanger (10).
22. Apparatus according to any of the preceding examples, wherein the heat exchanger (10) comprises connected first gas channels (15) from the first heat exchanger input (11) to the first heat exchanger output (12) and second connected gas channels (16) between the second heat exchanger input (13) and the second heat exchanger output (14), wherein the first gas channels (15) and the second gas channels (16) are arranged in thermal interaction, wherein the heat exchanger (10) comprises, a the second heat exchanger input, a first collecting area (18) connecting the second gas channels (16) on one side and extending along the inner area and forming the second heat exchanger input (12), and a second collecting area (17) connecting the second gas channels on a different side and extending along an edge area of the outer area and forming the second heat exchanger output (14), wherein a suction wall (31) limits the first collecting area and separates the first collecting area (18) from a suction area (30).
23. Apparatus according to any of the preceding examples, wherein an electronic assembly (102) for supplying a drive motor for the compressor (40) with energy or for providing control data to an element of the apparatus or for detecting sensor data from an element of the apparatus is arranged in an area of the apparatus that is configured to cool the electronic assembly, or wherein an electronic assembly (102) for the electrical supply of the apparatus with energy and/or control signals is arranged in an area between the turbine output (72) and the gas output (5) and a housing wall of the housing (100) outside the gas output (5), or wherein an electronic assembly (102) for the electrical supply of the apparatus with energy and/or control signals is arranged in an area between a base of a compressor wheel (40a) of the compressor (40) and a base of a turbine wheel (70a) of the turbine, or wherein an electronic assembly (102) for the electrical supply of the apparatus with energy and/or control signals is arranged at a limiting element (71a) of a turbine input (71) of the turbine (70), wherein the electronic assembly is further arranged outside the turbine input (71) of the turbine (70), or wherein an electronic assembly (102) for the electrical supply of the apparatus with energy and/or control signals comprises an opening in the center and is disc-shaped and extends around a stator of a drive motor for the compressor (40) or is integrated with the stator and is arranged, for example, in an area between a base of a compressor wheel (40a) of the compressor (40) and the base of a turbine wheel (70a) of the turbine (70).
24. Air-conditioning device, comprising: a room outlet air terminal (508); a room inlet air terminal (510); and an apparatus according to any one of examples 1 to 23, wherein the room outlet air terminal (508) is coupled to the gas supply and the room inlet air terminal (508) is coupled to the gas exhaust.
25. Air-conditioning device according to example 24, comprising: a divider (502) for dividing air from the room outlet air terminal (508) into an outlet air flow for an outlet air channel (1102a) and a feeding flow (512); a treater (504) for rendering the feeding flow (512); and a combiner (506) for combining an output of the treater (504) with an inlet air flow from an inlet air channel (1202a) to feed air into the room inlet air terminal (510), wherein the gas supply of the apparatus is configured to receive the outlet air flow from the outlet air channel (1102a) and wherein the gas exhaust is configured to provide the inlet air flow for the inlet air channel (1202a), or a divider (502) for dividing air from the room outlet air terminal (508) into an outlet air flow for an outlet air channel (1102a) and a feeding flow (512); a combiner (506) for combining the feeding flow (512) with an inlet air flow from an inlet air channel (1202a) to obtain a combined air flow; and a treater (504) for rendering the combined air flow to obtain a rendered air flow that is fed into the room inlet air terminal (510); and wherein the gas supply of the apparatus is configured to receive the outlet air flow from the outlet air channel (1102a), and wherein the gas exhaust is configured to provide the inlet air flow for the inlet air channel (1202a).
26. Air-conditioning device according to example 25, wherein the treater (504) is configured to treat the feeding flow as regards to oxygen, humidity or disinfection.
27. Air-conditioning device according to any of examples 25 or 26, wherein the divider (502) or the combiner (506) are controllable to adjust, in dependence on a temperature in the room or a target temperature in the room inlet air terminal (510), a ratio between an amount of air in the outlet air flow or an amount of air in the feeding flow or a ratio between an amount of air of the output of the treater (504) and an amount of air of the inlet air flow.
28. Air-conditioning device according to any of examples 25 to 27, wherein the combiner (506) comprises a blower (506a) to suck the inlet air flow in the inlet air channel (1202a), or wherein the divider (502) comprises a blower to pump the outlet air flow into the outlet air channel (1102a), or wherein the divider (502) comprises flow control to move, due to an effect of the compressor (40) of the apparatus, air via the room outlet air terminal (508) from the room into the divider (502) and into the compressor input (41).
29. Method for operating an apparatus for treating gas, comprising a compressor (40) with a compressor input (41) and a compressor output (42); a heat exchanger (10) with a first heat exchanger input (11), a first exchanger output (12), a second heat exchanger input (13) and a second heat exchanger output (14), wherein the heat exchanger is configured as gas-gas heat exchanger; and a turbine (70) with a turbine input (71) and a turbine output (72), comprising: feeding compressed gas from the compressor output (42) into the second heat exchanger input (13); and feeding gas from the second heat exchanger output (14) into the turbine input (71) and relaxing the gas in the turbine (70).
30. Method for producing an apparatus for treating gas comprising a compressor (40) with a compressor input (41) and a compressor output (42); a heat exchanger (10) with a first heat exchanger input (11), a first exchanger output (12), a second heat exchanger input (13) and a second heat exchanger output (14) wherein the heat exchanger is configured as gas-gas heat exchanger; and a turbine (70) with a turbine input (71) and a turbine output (72), comprising: connecting the compressor output (42) to the second heat exchanger input (13); and connecting the second heat exchanger output (14) to the turbine input (71).
Although some aspects have been described in the context of an apparatus, it is obvious that these aspects also represent a description of the corresponding method, such that a block or device of an apparatus also corresponds to a respective method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or detail or feature of a corresponding apparatus. Some or all of the method steps may be performed by a hardware apparatus (or using a hardware apparatus), such as a microprocessor, a programmable computer or an electronic circuit. In some embodiments, some or several of the most important method steps may be performed by such an apparatus.
While this invention has been described in terms of several advantageous embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2021 201 532.8 | Feb 2021 | DE | national |
This application is a continuation of copending International Application No. PCT/EP2022/054002, filed Feb. 17, 2022, which is incorporated herein by reference in its entirety, and additionally claims priority from German Application No. 102021201532.8, filed Feb. 17, 2021, which is also incorporated herein by reference in its entirety. The present invention relates to thermo-dynamical plants and in particular to heat exchangers for an air-air heat exchange process as they can be used, for example, as recuperator for gas refrigerating machines.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2022/054002 | Feb 2022 | US |
Child | 18446638 | US |